/* * Copyright © 2012 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt * */ #include "brw_cfg.h" #include "brw_vec4_live_variables.h" using namespace brw; /** @file brw_vec4_live_variables.cpp * * Support for computing at the basic block level which variables * (virtual GRFs in our case) are live at entry and exit. * * See Muchnick's Advanced Compiler Design and Implementation, section * 14.1 (p444). */ /** * Sets up the use[] and def[] arrays. * * The basic-block-level live variable analysis needs to know which * variables get used before they're completely defined, and which * variables are completely defined before they're used. * * We independently track each channel of a vec4. This is because we need to * be able to recognize a sequence like: * * ... * DP4 tmp.x a b; * DP4 tmp.y c d; * MUL result.xy tmp.xy e.xy * ... * * as having tmp live only across that sequence (assuming it's used nowhere * else), because it's a common pattern. A more conservative approach that * doesn't get tmp marked a deffed in this block will tend to result in * spilling. */ void vec4_live_variables::setup_def_use() { int ip = 0; foreach_block (block, cfg) { assert(ip == block->start_ip); if (block->num > 0) assert(cfg->blocks[block->num - 1]->end_ip == ip - 1); foreach_inst_in_block(vec4_instruction, inst, block) { struct block_data *bd = &block_data[block->num]; /* Set use[] for this instruction */ for (unsigned int i = 0; i < 3; i++) { if (inst->src[i].file == GRF) { for (unsigned j = 0; j < inst->regs_read(i); j++) { for (int c = 0; c < 4; c++) { const unsigned v = var_from_reg(alloc, offset(inst->src[i], j), c); if (!BITSET_TEST(bd->def, v)) BITSET_SET(bd->use, v); } } } } if (inst->reads_flag()) { if (!BITSET_TEST(bd->flag_def, 0)) { BITSET_SET(bd->flag_use, 0); } } /* Check for unconditional writes to whole registers. These * are the things that screen off preceding definitions of a * variable, and thus qualify for being in def[]. */ if (inst->dst.file == GRF && (!inst->predicate || inst->opcode == BRW_OPCODE_SEL)) { for (unsigned i = 0; i < inst->regs_written; i++) { for (int c = 0; c < 4; c++) { if (inst->dst.writemask & (1 << c)) { const unsigned v = var_from_reg(alloc, offset(inst->dst, i), c); if (!BITSET_TEST(bd->use, v)) BITSET_SET(bd->def, v); } } } } if (inst->writes_flag()) { if (!BITSET_TEST(bd->flag_use, 0)) { BITSET_SET(bd->flag_def, 0); } } ip++; } } } /** * The algorithm incrementally sets bits in liveout and livein, * propagating it through control flow. It will eventually terminate * because it only ever adds bits, and stops when no bits are added in * a pass. */ void vec4_live_variables::compute_live_variables() { bool cont = true; while (cont) { cont = false; foreach_block_reverse (block, cfg) { struct block_data *bd = &block_data[block->num]; /* Update liveout */ foreach_list_typed(bblock_link, child_link, link, &block->children) { struct block_data *child_bd = &block_data[child_link->block->num]; for (int i = 0; i < bitset_words; i++) { BITSET_WORD new_liveout = (child_bd->livein[i] & ~bd->liveout[i]); if (new_liveout) { bd->liveout[i] |= new_liveout; cont = true; } } BITSET_WORD new_liveout = (child_bd->flag_livein[0] & ~bd->flag_liveout[0]); if (new_liveout) { bd->flag_liveout[0] |= new_liveout; cont = true; } } /* Update livein */ for (int i = 0; i < bitset_words; i++) { BITSET_WORD new_livein = (bd->use[i] | (bd->liveout[i] & ~bd->def[i])); if (new_livein & ~bd->livein[i]) { bd->livein[i] |= new_livein; cont = true; } } BITSET_WORD new_livein = (bd->flag_use[0] | (bd->flag_liveout[0] & ~bd->flag_def[0])); if (new_livein & ~bd->flag_livein[0]) { bd->flag_livein[0] |= new_livein; cont = true; } } } } vec4_live_variables::vec4_live_variables(const simple_allocator &alloc, cfg_t *cfg) : alloc(alloc), cfg(cfg) { mem_ctx = ralloc_context(NULL); num_vars = alloc.total_size * 4; block_data = rzalloc_array(mem_ctx, struct block_data, cfg->num_blocks); bitset_words = BITSET_WORDS(num_vars); for (int i = 0; i < cfg->num_blocks; i++) { block_data[i].def = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words); block_data[i].use = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words); block_data[i].livein = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words); block_data[i].liveout = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words); block_data[i].flag_def[0] = 0; block_data[i].flag_use[0] = 0; block_data[i].flag_livein[0] = 0; block_data[i].flag_liveout[0] = 0; } setup_def_use(); compute_live_variables(); } vec4_live_variables::~vec4_live_variables() { ralloc_free(mem_ctx); } #define MAX_INSTRUCTION (1 << 30) /** * Computes a conservative start/end of the live intervals for each virtual GRF. * * We could expose per-channel live intervals to the consumer based on the * information we computed in vec4_live_variables, except that our only * current user is virtual_grf_interferes(). So we instead union the * per-channel ranges into a per-vgrf range for virtual_grf_start[] and * virtual_grf_end[]. * * We could potentially have virtual_grf_interferes() do the test per-channel, * which would let some interesting register allocation occur (particularly on * code-generated GLSL sequences from the Cg compiler which does register * allocation at the GLSL level and thus reuses components of the variable * with distinct lifetimes). But right now the complexity of doing so doesn't * seem worth it, since having virtual_grf_interferes() be cheap is important * for register allocation performance. */ void vec4_visitor::calculate_live_intervals() { if (this->live_intervals) return; int *start = ralloc_array(mem_ctx, int, this->alloc.total_size * 4); int *end = ralloc_array(mem_ctx, int, this->alloc.total_size * 4); ralloc_free(this->virtual_grf_start); ralloc_free(this->virtual_grf_end); this->virtual_grf_start = start; this->virtual_grf_end = end; for (unsigned i = 0; i < this->alloc.total_size * 4; i++) { start[i] = MAX_INSTRUCTION; end[i] = -1; } /* Start by setting up the intervals with no knowledge of control * flow. */ int ip = 0; foreach_block_and_inst(block, vec4_instruction, inst, cfg) { for (unsigned int i = 0; i < 3; i++) { if (inst->src[i].file == GRF) { for (unsigned j = 0; j < inst->regs_read(i); j++) { for (int c = 0; c < 4; c++) { const unsigned v = var_from_reg(alloc, offset(inst->src[i], j), c); start[v] = MIN2(start[v], ip); end[v] = ip; } } } } if (inst->dst.file == GRF) { for (unsigned i = 0; i < inst->regs_written; i++) { for (int c = 0; c < 4; c++) { if (inst->dst.writemask & (1 << c)) { const unsigned v = var_from_reg(alloc, offset(inst->dst, i), c); start[v] = MIN2(start[v], ip); end[v] = ip; } } } } ip++; } /* Now, extend those intervals using our analysis of control flow. * * The control flow-aware analysis was done at a channel level, while at * this point we're distilling it down to vgrfs. */ this->live_intervals = new(mem_ctx) vec4_live_variables(alloc, cfg); foreach_block (block, cfg) { struct block_data *bd = &live_intervals->block_data[block->num]; for (int i = 0; i < live_intervals->num_vars; i++) { if (BITSET_TEST(bd->livein, i)) { start[i] = MIN2(start[i], block->start_ip); end[i] = MAX2(end[i], block->start_ip); } if (BITSET_TEST(bd->liveout, i)) { start[i] = MIN2(start[i], block->end_ip); end[i] = MAX2(end[i], block->end_ip); } } } } void vec4_visitor::invalidate_live_intervals() { ralloc_free(live_intervals); live_intervals = NULL; } int vec4_visitor::var_range_start(unsigned v, unsigned n) const { int start = INT_MAX; for (unsigned i = 0; i < n; i++) start = MIN2(start, virtual_grf_start[v + i]); return start; } int vec4_visitor::var_range_end(unsigned v, unsigned n) const { int end = INT_MIN; for (unsigned i = 0; i < n; i++) end = MAX2(end, virtual_grf_end[v + i]); return end; } bool vec4_visitor::virtual_grf_interferes(int a, int b) { return !((var_range_end(4 * alloc.offsets[a], 4 * alloc.sizes[a]) <= var_range_start(4 * alloc.offsets[b], 4 * alloc.sizes[b])) || (var_range_end(4 * alloc.offsets[b], 4 * alloc.sizes[b]) <= var_range_start(4 * alloc.offsets[a], 4 * alloc.sizes[a]))); }