/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "brw_context.h" #include "brw_defines.h" #include "intel_fbo.h" #include "brw_meta_util.h" #include "brw_state.h" #include "main/blend.h" #include "main/fbobject.h" #include "util/format_srgb.h" /** * Helper function for handling mirror image blits. * * If coord0 > coord1, swap them and invert the "mirror" boolean. */ static inline void fixup_mirroring(bool *mirror, float *coord0, float *coord1) { if (*coord0 > *coord1) { *mirror = !*mirror; float tmp = *coord0; *coord0 = *coord1; *coord1 = tmp; } } /** * Compute the number of pixels to clip for each side of a rect * * \param x0 The rect's left coordinate * \param y0 The rect's bottom coordinate * \param x1 The rect's right coordinate * \param y1 The rect's top coordinate * \param min_x The clipping region's left coordinate * \param min_y The clipping region's bottom coordinate * \param max_x The clipping region's right coordinate * \param max_y The clipping region's top coordinate * \param clipped_x0 The number of pixels to clip from the left side * \param clipped_y0 The number of pixels to clip from the bottom side * \param clipped_x1 The number of pixels to clip from the right side * \param clipped_y1 The number of pixels to clip from the top side * * \return false if we clip everything away, true otherwise */ static inline bool compute_pixels_clipped(float x0, float y0, float x1, float y1, float min_x, float min_y, float max_x, float max_y, float *clipped_x0, float *clipped_y0, float *clipped_x1, float *clipped_y1) { /* If we are going to clip everything away, stop. */ if (!(min_x <= max_x && min_y <= max_y && x0 <= max_x && y0 <= max_y && min_x <= x1 && min_y <= y1 && x0 <= x1 && y0 <= y1)) { return false; } if (x0 < min_x) *clipped_x0 = min_x - x0; else *clipped_x0 = 0; if (max_x < x1) *clipped_x1 = x1 - max_x; else *clipped_x1 = 0; if (y0 < min_y) *clipped_y0 = min_y - y0; else *clipped_y0 = 0; if (max_y < y1) *clipped_y1 = y1 - max_y; else *clipped_y1 = 0; return true; } /** * Clips a coordinate (left, right, top or bottom) for the src or dst rect * (whichever requires the largest clip) and adjusts the coordinate * for the other rect accordingly. * * \param mirror true if mirroring is required * \param src the source rect coordinate (for example srcX0) * \param dst0 the dst rect coordinate (for example dstX0) * \param dst1 the opposite dst rect coordinate (for example dstX1) * \param clipped_src0 number of pixels to clip from the src coordinate * \param clipped_dst0 number of pixels to clip from the dst coordinate * \param clipped_dst1 number of pixels to clip from the opposite dst coordinate * \param scale the src vs dst scale involved for that coordinate * \param isLeftOrBottom true if we are clipping the left or bottom sides * of the rect. */ static inline void clip_coordinates(bool mirror, float *src, float *dst0, float *dst1, float clipped_src0, float clipped_dst0, float clipped_dst1, float scale, bool isLeftOrBottom) { /* When clipping we need to add or subtract pixels from the original * coordinates depending on whether we are acting on the left/bottom * or right/top sides of the rect respectively. We assume we have to * add them in the code below, and multiply by -1 when we should * subtract. */ int mult = isLeftOrBottom ? 1 : -1; if (!mirror) { if (clipped_src0 >= clipped_dst0 * scale) { *src += clipped_src0 * mult; *dst0 += clipped_src0 / scale * mult; } else { *dst0 += clipped_dst0 * mult; *src += clipped_dst0 * scale * mult; } } else { if (clipped_src0 >= clipped_dst1 * scale) { *src += clipped_src0 * mult; *dst1 -= clipped_src0 / scale * mult; } else { *dst1 -= clipped_dst1 * mult; *src += clipped_dst1 * scale * mult; } } } bool brw_meta_mirror_clip_and_scissor(const struct gl_context *ctx, const struct gl_framebuffer *read_fb, const struct gl_framebuffer *draw_fb, GLfloat *srcX0, GLfloat *srcY0, GLfloat *srcX1, GLfloat *srcY1, GLfloat *dstX0, GLfloat *dstY0, GLfloat *dstX1, GLfloat *dstY1, bool *mirror_x, bool *mirror_y) { *mirror_x = false; *mirror_y = false; /* Detect if the blit needs to be mirrored */ fixup_mirroring(mirror_x, srcX0, srcX1); fixup_mirroring(mirror_x, dstX0, dstX1); fixup_mirroring(mirror_y, srcY0, srcY1); fixup_mirroring(mirror_y, dstY0, dstY1); /* Compute number of pixels to clip for each side of both rects. Return * early if we are going to clip everything away. */ float clip_src_x0; float clip_src_x1; float clip_src_y0; float clip_src_y1; float clip_dst_x0; float clip_dst_x1; float clip_dst_y0; float clip_dst_y1; if (!compute_pixels_clipped(*srcX0, *srcY0, *srcX1, *srcY1, 0, 0, read_fb->Width, read_fb->Height, &clip_src_x0, &clip_src_y0, &clip_src_x1, &clip_src_y1)) return true; if (!compute_pixels_clipped(*dstX0, *dstY0, *dstX1, *dstY1, draw_fb->_Xmin, draw_fb->_Ymin, draw_fb->_Xmax, draw_fb->_Ymax, &clip_dst_x0, &clip_dst_y0, &clip_dst_x1, &clip_dst_y1)) return true; /* When clipping any of the two rects we need to adjust the coordinates in * the other rect considering the scaling factor involved. To obtain the best * precision we want to make sure that we only clip once per side to avoid * accumulating errors due to the scaling adjustment. * * For example, if srcX0 and dstX0 need both to be clipped we want to avoid * the situation where we clip srcX0 first, then adjust dstX0 accordingly * but then we realize that the resulting dstX0 still needs to be clipped, * so we clip dstX0 and adjust srcX0 again. Because we are applying scaling * factors to adjust the coordinates in each clipping pass we lose some * precision and that can affect the results of the blorp blit operation * slightly. What we want to do here is detect the rect that we should * clip first for each side so that when we adjust the other rect we ensure * the resulting coordinate does not need to be clipped again. * * The code below implements this by comparing the number of pixels that * we need to clip for each side of both rects considering the scales * involved. For example, clip_src_x0 represents the number of pixels to be * clipped for the src rect's left side, so if clip_src_x0 = 5, * clip_dst_x0 = 4 and scaleX = 2 it means that we are clipping more from * the dst rect so we should clip dstX0 only and adjust srcX0. This is * because clipping 4 pixels in the dst is equivalent to clipping * 4 * 2 = 8 > 5 in the src. */ float scaleX = (float) (*srcX1 - *srcX0) / (*dstX1 - *dstX0); float scaleY = (float) (*srcY1 - *srcY0) / (*dstY1 - *dstY0); /* Clip left side */ clip_coordinates(*mirror_x, srcX0, dstX0, dstX1, clip_src_x0, clip_dst_x0, clip_dst_x1, scaleX, true); /* Clip right side */ clip_coordinates(*mirror_x, srcX1, dstX1, dstX0, clip_src_x1, clip_dst_x1, clip_dst_x0, scaleX, false); /* Clip bottom side */ clip_coordinates(*mirror_y, srcY0, dstY0, dstY1, clip_src_y0, clip_dst_y0, clip_dst_y1, scaleY, true); /* Clip top side */ clip_coordinates(*mirror_y, srcY1, dstY1, dstY0, clip_src_y1, clip_dst_y1, clip_dst_y0, scaleY, false); /* Account for the fact that in the system framebuffer, the origin is at * the lower left. */ if (_mesa_is_winsys_fbo(read_fb)) { GLint tmp = read_fb->Height - *srcY0; *srcY0 = read_fb->Height - *srcY1; *srcY1 = tmp; *mirror_y = !*mirror_y; } if (_mesa_is_winsys_fbo(draw_fb)) { GLint tmp = draw_fb->Height - *dstY0; *dstY0 = draw_fb->Height - *dstY1; *dstY1 = tmp; *mirror_y = !*mirror_y; } return false; } /** * Determine if fast color clear supports the given clear color. * * Fast color clear can only clear to color values of 1.0 or 0.0. At the * moment we only support floating point, unorm, and snorm buffers. */ bool brw_is_color_fast_clear_compatible(struct brw_context *brw, const struct intel_mipmap_tree *mt, const union gl_color_union *color) { const struct gen_device_info *devinfo = &brw->screen->devinfo; const struct gl_context *ctx = &brw->ctx; /* If we're mapping the render format to a different format than the * format we use for texturing then it is a bit questionable whether it * should be possible to use a fast clear. Although we only actually * render using a renderable format, without the override workaround it * wouldn't be possible to have a non-renderable surface in a fast clear * state so the hardware probably legitimately doesn't need to support * this case. At least on Gen9 this really does seem to cause problems. */ if (devinfo->gen >= 9 && brw_isl_format_for_mesa_format(mt->format) != brw->mesa_to_isl_render_format[mt->format]) return false; /* Gen9 doesn't support fast clear on single-sampled SRGB buffers. When * GL_FRAMEBUFFER_SRGB is enabled any color renderbuffers will be * resolved in intel_update_state. In that case it's pointless to do a * fast clear because it's very likely to be immediately resolved. */ if (devinfo->gen >= 9 && mt->surf.samples == 1 && ctx->Color.sRGBEnabled && _mesa_get_srgb_format_linear(mt->format) != mt->format) return false; const mesa_format format = _mesa_get_render_format(ctx, mt->format); if (_mesa_is_format_integer_color(format)) { if (devinfo->gen >= 8) { perf_debug("Integer fast clear not enabled for (%s)", _mesa_get_format_name(format)); } return false; } for (int i = 0; i < 4; i++) { if (!_mesa_format_has_color_component(format, i)) { continue; } if (devinfo->gen < 9 && color->f[i] != 0.0f && color->f[i] != 1.0f) { return false; } } return true; } /** * Convert the given color to a bitfield suitable for ORing into DWORD 7 of * SURFACE_STATE (DWORD 12-15 on SKL+). */ union isl_color_value brw_meta_convert_fast_clear_color(const struct brw_context *brw, const struct intel_mipmap_tree *mt, const union gl_color_union *color) { union isl_color_value override_color = { .u32 = { color->ui[0], color->ui[1], color->ui[2], color->ui[3], }, }; /* The sampler doesn't look at the format of the surface when the fast * clear color is used so we need to implement luminance, intensity and * missing components manually. */ switch (_mesa_get_format_base_format(mt->format)) { case GL_INTENSITY: override_color.u32[3] = override_color.u32[0]; /* flow through */ case GL_LUMINANCE: case GL_LUMINANCE_ALPHA: override_color.u32[1] = override_color.u32[0]; override_color.u32[2] = override_color.u32[0]; break; default: for (int i = 0; i < 3; i++) { if (!_mesa_format_has_color_component(mt->format, i)) override_color.u32[i] = 0; } break; } switch (_mesa_get_format_datatype(mt->format)) { case GL_UNSIGNED_NORMALIZED: for (int i = 0; i < 4; i++) override_color.f32[i] = CLAMP(override_color.f32[i], 0.0f, 1.0f); break; case GL_SIGNED_NORMALIZED: for (int i = 0; i < 4; i++) override_color.f32[i] = CLAMP(override_color.f32[i], -1.0f, 1.0f); break; case GL_UNSIGNED_INT: for (int i = 0; i < 4; i++) { unsigned bits = _mesa_get_format_bits(mt->format, GL_RED_BITS + i); if (bits < 32) { uint32_t max = (1u << bits) - 1; override_color.u32[i] = MIN2(override_color.u32[i], max); } } break; case GL_INT: for (int i = 0; i < 4; i++) { unsigned bits = _mesa_get_format_bits(mt->format, GL_RED_BITS + i); if (bits < 32) { int32_t max = (1 << (bits - 1)) - 1; int32_t min = -(1 << (bits - 1)); override_color.i32[i] = CLAMP(override_color.i32[i], min, max); } } break; case GL_FLOAT: if (!_mesa_is_format_signed(mt->format)) { for (int i = 0; i < 4; i++) override_color.f32[i] = MAX2(override_color.f32[i], 0.0f); } break; } if (!_mesa_format_has_color_component(mt->format, 3)) { if (_mesa_is_format_integer_color(mt->format)) override_color.u32[3] = 1; else override_color.f32[3] = 1.0f; } /* Handle linear to SRGB conversion */ if (brw->ctx.Color.sRGBEnabled && _mesa_get_srgb_format_linear(mt->format) != mt->format) { for (int i = 0; i < 3; i++) { override_color.f32[i] = util_format_linear_to_srgb_float(override_color.f32[i]); } } return override_color; }