/* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt * */ #include "brw_fs.h" #include "glsl/glsl_types.h" #include "glsl/ir_optimization.h" #include "glsl/ir_print_visitor.h" /** @file brw_fs_schedule_instructions.cpp * * List scheduling of FS instructions. * * The basic model of the list scheduler is to take a basic block, * compute a DAG of the dependencies (RAW ordering with latency, WAW * ordering, WAR ordering), and make a list of the DAG heads. * Heuristically pick a DAG head, then put all the children that are * now DAG heads into the list of things to schedule. * * The heuristic is the important part. We're trying to be cheap, * since actually computing the optimal scheduling is NP complete. * What we do is track a "current clock". When we schedule a node, we * update the earliest-unblocked clock time of its children, and * increment the clock. Then, when trying to schedule, we just pick * the earliest-unblocked instruction to schedule. * * Note that often there will be many things which could execute * immediately, and there are a range of heuristic options to choose * from in picking among those. */ static bool debug = false; class schedule_node : public exec_node { public: schedule_node(fs_inst *inst, int gen) { this->inst = inst; this->child_array_size = 0; this->children = NULL; this->child_latency = NULL; this->child_count = 0; this->parent_count = 0; this->unblocked_time = 0; if (gen >= 7) set_latency_gen7(); else set_latency_gen4(); } void set_latency_gen4(); void set_latency_gen7(); fs_inst *inst; schedule_node **children; int *child_latency; int child_count; int parent_count; int child_array_size; int unblocked_time; int latency; }; void schedule_node::set_latency_gen4() { int chans = 8; int math_latency = 22; switch (inst->opcode) { case SHADER_OPCODE_RCP: this->latency = 1 * chans * math_latency; break; case SHADER_OPCODE_RSQ: this->latency = 2 * chans * math_latency; break; case SHADER_OPCODE_INT_QUOTIENT: case SHADER_OPCODE_SQRT: case SHADER_OPCODE_LOG2: /* full precision log. partial is 2. */ this->latency = 3 * chans * math_latency; break; case SHADER_OPCODE_INT_REMAINDER: case SHADER_OPCODE_EXP2: /* full precision. partial is 3, same throughput. */ this->latency = 4 * chans * math_latency; break; case SHADER_OPCODE_POW: this->latency = 8 * chans * math_latency; break; case SHADER_OPCODE_SIN: case SHADER_OPCODE_COS: /* minimum latency, max is 12 rounds. */ this->latency = 5 * chans * math_latency; break; default: this->latency = 2; break; } } void schedule_node::set_latency_gen7() { switch (inst->opcode) { case BRW_OPCODE_MAD: /* 3 cycles (this is said to be 4 cycles sometimes depending on the * register numbers in the sources): * mad(8) g4<1>F g2.2<4,1,1>F.x g2<4,1,1>F.x g2.1<4,1,1>F.x { align16 WE_normal 1Q }; * * 20 cycles: * mad(8) g4<1>F g2.2<4,1,1>F.x g2<4,1,1>F.x g2.1<4,1,1>F.x { align16 WE_normal 1Q }; * mov(8) null g4<4,4,1>F { align16 WE_normal 1Q }; */ latency = 17; break; case SHADER_OPCODE_RCP: case SHADER_OPCODE_RSQ: case SHADER_OPCODE_SQRT: case SHADER_OPCODE_LOG2: case SHADER_OPCODE_EXP2: case SHADER_OPCODE_SIN: case SHADER_OPCODE_COS: /* 2 cycles: * math inv(8) g4<1>F g2<0,1,0>F null { align1 WE_normal 1Q }; * * 18 cycles: * math inv(8) g4<1>F g2<0,1,0>F null { align1 WE_normal 1Q }; * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q }; * * Same for exp2, log2, rsq, sqrt, sin, cos. */ latency = 16; break; case SHADER_OPCODE_POW: /* 2 cycles: * math pow(8) g4<1>F g2<0,1,0>F g2.1<0,1,0>F { align1 WE_normal 1Q }; * * 26 cycles: * math pow(8) g4<1>F g2<0,1,0>F g2.1<0,1,0>F { align1 WE_normal 1Q }; * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q }; */ latency = 24; break; case SHADER_OPCODE_TEX: case SHADER_OPCODE_TXD: case SHADER_OPCODE_TXF: case SHADER_OPCODE_TXL: /* 18 cycles: * mov(8) g115<1>F 0F { align1 WE_normal 1Q }; * mov(8) g114<1>F 0F { align1 WE_normal 1Q }; * send(8) g4<1>UW g114<8,8,1>F * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q }; * * 697 +/-49 cycles (min 610, n=26): * mov(8) g115<1>F 0F { align1 WE_normal 1Q }; * mov(8) g114<1>F 0F { align1 WE_normal 1Q }; * send(8) g4<1>UW g114<8,8,1>F * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q }; * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q }; * * So the latency on our first texture load of the batchbuffer takes * ~700 cycles, since the caches are cold at that point. * * 840 +/- 92 cycles (min 720, n=25): * mov(8) g115<1>F 0F { align1 WE_normal 1Q }; * mov(8) g114<1>F 0F { align1 WE_normal 1Q }; * send(8) g4<1>UW g114<8,8,1>F * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q }; * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q }; * send(8) g4<1>UW g114<8,8,1>F * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q }; * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q }; * * On the second load, it takes just an extra ~140 cycles, and after * accounting for the 14 cycles of the MOV's latency, that makes ~130. * * 683 +/- 49 cycles (min = 602, n=47): * mov(8) g115<1>F 0F { align1 WE_normal 1Q }; * mov(8) g114<1>F 0F { align1 WE_normal 1Q }; * send(8) g4<1>UW g114<8,8,1>F * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q }; * send(8) g50<1>UW g114<8,8,1>F * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q }; * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q }; * * The unit appears to be pipelined, since this matches up with the * cache-cold case, despite there being two loads here. If you replace * the g4 in the MOV to null with g50, it's still 693 +/- 52 (n=39). * * So, take some number between the cache-hot 140 cycles and the * cache-cold 700 cycles. No particular tuning was done on this. * * I haven't done significant testing of the non-TEX opcodes. TXL at * least looked about the same as TEX. */ latency = 200; break; case SHADER_OPCODE_TXS: /* Testing textureSize(sampler2D, 0), one load was 420 +/- 41 * cycles (n=15): * mov(8) g114<1>UD 0D { align1 WE_normal 1Q }; * send(8) g6<1>UW g114<8,8,1>F * sampler (10, 0, 10, 1) mlen 1 rlen 4 { align1 WE_normal 1Q }; * mov(16) g6<1>F g6<8,8,1>D { align1 WE_normal 1Q }; * * * Two loads was 535 +/- 30 cycles (n=19): * mov(16) g114<1>UD 0D { align1 WE_normal 1H }; * send(16) g6<1>UW g114<8,8,1>F * sampler (10, 0, 10, 2) mlen 2 rlen 8 { align1 WE_normal 1H }; * mov(16) g114<1>UD 0D { align1 WE_normal 1H }; * mov(16) g6<1>F g6<8,8,1>D { align1 WE_normal 1H }; * send(16) g8<1>UW g114<8,8,1>F * sampler (10, 0, 10, 2) mlen 2 rlen 8 { align1 WE_normal 1H }; * mov(16) g8<1>F g8<8,8,1>D { align1 WE_normal 1H }; * add(16) g6<1>F g6<8,8,1>F g8<8,8,1>F { align1 WE_normal 1H }; * * Since the only caches that should matter are just the * instruction/state cache containing the surface state, assume that we * always have hot caches. */ latency = 100; break; case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD: case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD: /* testing using varying-index pull constants: * * 16 cycles: * mov(8) g4<1>D g2.1<0,1,0>F { align1 WE_normal 1Q }; * send(8) g4<1>F g4<8,8,1>D * data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q }; * * ~480 cycles: * mov(8) g4<1>D g2.1<0,1,0>F { align1 WE_normal 1Q }; * send(8) g4<1>F g4<8,8,1>D * data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q }; * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q }; * * ~620 cycles: * mov(8) g4<1>D g2.1<0,1,0>F { align1 WE_normal 1Q }; * send(8) g4<1>F g4<8,8,1>D * data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q }; * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q }; * send(8) g4<1>F g4<8,8,1>D * data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q }; * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q }; * * So, if it's cache-hot, it's about 140. If it's cache cold, it's * about 460. We expect to mostly be cache hot, so pick something more * in that direction. */ latency = 200; break; default: /* 2 cycles: * mul(8) g4<1>F g2<0,1,0>F 0.5F { align1 WE_normal 1Q }; * * 16 cycles: * mul(8) g4<1>F g2<0,1,0>F 0.5F { align1 WE_normal 1Q }; * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q }; */ latency = 14; break; } } class instruction_scheduler { public: instruction_scheduler(fs_visitor *v, void *mem_ctx, int grf_count, bool post_reg_alloc) { this->v = v; this->mem_ctx = ralloc_context(mem_ctx); this->grf_count = grf_count; this->instructions.make_empty(); this->instructions_to_schedule = 0; this->post_reg_alloc = post_reg_alloc; } ~instruction_scheduler() { ralloc_free(this->mem_ctx); } void add_barrier_deps(schedule_node *n); void add_dep(schedule_node *before, schedule_node *after, int latency); void add_dep(schedule_node *before, schedule_node *after); void add_inst(fs_inst *inst); void calculate_deps(); void schedule_instructions(fs_inst *next_block_header); bool is_compressed(fs_inst *inst); void *mem_ctx; bool post_reg_alloc; int instructions_to_schedule; int grf_count; exec_list instructions; fs_visitor *v; }; void instruction_scheduler::add_inst(fs_inst *inst) { schedule_node *n = new(mem_ctx) schedule_node(inst, v->intel->gen); assert(!inst->is_head_sentinel()); assert(!inst->is_tail_sentinel()); this->instructions_to_schedule++; inst->remove(); instructions.push_tail(n); } /** * Add a dependency between two instruction nodes. * * The @after node will be scheduled after @before. We will try to * schedule it @latency cycles after @before, but no guarantees there. */ void instruction_scheduler::add_dep(schedule_node *before, schedule_node *after, int latency) { if (!before || !after) return; assert(before != after); for (int i = 0; i < before->child_count; i++) { if (before->children[i] == after) { before->child_latency[i] = MAX2(before->child_latency[i], latency); return; } } if (before->child_array_size <= before->child_count) { if (before->child_array_size < 16) before->child_array_size = 16; else before->child_array_size *= 2; before->children = reralloc(mem_ctx, before->children, schedule_node *, before->child_array_size); before->child_latency = reralloc(mem_ctx, before->child_latency, int, before->child_array_size); } before->children[before->child_count] = after; before->child_latency[before->child_count] = latency; before->child_count++; after->parent_count++; } void instruction_scheduler::add_dep(schedule_node *before, schedule_node *after) { if (!before) return; add_dep(before, after, before->latency); } /** * Sometimes we really want this node to execute after everything that * was before it and before everything that followed it. This adds * the deps to do so. */ void instruction_scheduler::add_barrier_deps(schedule_node *n) { schedule_node *prev = (schedule_node *)n->prev; schedule_node *next = (schedule_node *)n->next; if (prev) { while (!prev->is_head_sentinel()) { add_dep(prev, n, 0); prev = (schedule_node *)prev->prev; } } if (next) { while (!next->is_tail_sentinel()) { add_dep(n, next, 0); next = (schedule_node *)next->next; } } } /* instruction scheduling needs to be aware of when an MRF write * actually writes 2 MRFs. */ bool instruction_scheduler::is_compressed(fs_inst *inst) { return (v->dispatch_width == 16 && !inst->force_uncompressed && !inst->force_sechalf); } void instruction_scheduler::calculate_deps() { /* Pre-register-allocation, this tracks the last write per VGRF (so * different reg_offsets within it can interfere when they shouldn't). * After register allocation, reg_offsets are gone and we track individual * GRF registers. */ schedule_node *last_grf_write[grf_count]; schedule_node *last_mrf_write[BRW_MAX_MRF]; schedule_node *last_conditional_mod[2] = { NULL, NULL }; /* Fixed HW registers are assumed to be separate from the virtual * GRFs, so they can be tracked separately. We don't really write * to fixed GRFs much, so don't bother tracking them on a more * granular level. */ schedule_node *last_fixed_grf_write = NULL; int reg_width = v->dispatch_width / 8; /* The last instruction always needs to still be the last * instruction. Either it's flow control (IF, ELSE, ENDIF, DO, * WHILE) and scheduling other things after it would disturb the * basic block, or it's FB_WRITE and we should do a better job at * dead code elimination anyway. */ schedule_node *last = (schedule_node *)instructions.get_tail(); add_barrier_deps(last); memset(last_grf_write, 0, sizeof(last_grf_write)); memset(last_mrf_write, 0, sizeof(last_mrf_write)); /* top-to-bottom dependencies: RAW and WAW. */ foreach_list(node, &instructions) { schedule_node *n = (schedule_node *)node; fs_inst *inst = n->inst; /* read-after-write deps. */ for (int i = 0; i < 3; i++) { if (inst->src[i].file == GRF) { if (post_reg_alloc) { for (int r = 0; r < reg_width; r++) add_dep(last_grf_write[inst->src[i].reg + r], n); } else { add_dep(last_grf_write[inst->src[i].reg], n); } } else if (inst->src[i].file == FIXED_HW_REG && (inst->src[i].fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE)) { if (post_reg_alloc) { for (int r = 0; r < reg_width; r++) add_dep(last_grf_write[inst->src[i].fixed_hw_reg.nr + r], n); } else { add_dep(last_fixed_grf_write, n); } } else if (inst->src[i].file != BAD_FILE && inst->src[i].file != IMM && inst->src[i].file != UNIFORM) { assert(inst->src[i].file != MRF); add_barrier_deps(n); } } for (int i = 0; i < inst->mlen; i++) { /* It looks like the MRF regs are released in the send * instruction once it's sent, not when the result comes * back. */ add_dep(last_mrf_write[inst->base_mrf + i], n); } if (inst->predicate) { add_dep(last_conditional_mod[inst->flag_subreg], n); } /* write-after-write deps. */ if (inst->dst.file == GRF) { if (post_reg_alloc) { for (int r = 0; r < inst->regs_written() * reg_width; r++) { add_dep(last_grf_write[inst->dst.reg + r], n); last_grf_write[inst->dst.reg + r] = n; } } else { add_dep(last_grf_write[inst->dst.reg], n); last_grf_write[inst->dst.reg] = n; } } else if (inst->dst.file == MRF) { int reg = inst->dst.reg & ~BRW_MRF_COMPR4; add_dep(last_mrf_write[reg], n); last_mrf_write[reg] = n; if (is_compressed(inst)) { if (inst->dst.reg & BRW_MRF_COMPR4) reg += 4; else reg++; add_dep(last_mrf_write[reg], n); last_mrf_write[reg] = n; } } else if (inst->dst.file == FIXED_HW_REG && inst->dst.fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE) { if (post_reg_alloc) { for (int r = 0; r < reg_width; r++) last_grf_write[inst->dst.fixed_hw_reg.nr + r] = n; } else { last_fixed_grf_write = n; } } else if (inst->dst.file != BAD_FILE) { add_barrier_deps(n); } if (inst->mlen > 0) { for (int i = 0; i < v->implied_mrf_writes(inst); i++) { add_dep(last_mrf_write[inst->base_mrf + i], n); last_mrf_write[inst->base_mrf + i] = n; } } /* Treat FS_OPCODE_MOV_DISPATCH_TO_FLAGS as though it had a * conditional_mod, because it sets the flag register. */ if (inst->conditional_mod || inst->opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) { add_dep(last_conditional_mod[inst->flag_subreg], n, 0); last_conditional_mod[inst->flag_subreg] = n; } } /* bottom-to-top dependencies: WAR */ memset(last_grf_write, 0, sizeof(last_grf_write)); memset(last_mrf_write, 0, sizeof(last_mrf_write)); memset(last_conditional_mod, 0, sizeof(last_conditional_mod)); last_fixed_grf_write = NULL; exec_node *node; exec_node *prev; for (node = instructions.get_tail(), prev = node->prev; !node->is_head_sentinel(); node = prev, prev = node->prev) { schedule_node *n = (schedule_node *)node; fs_inst *inst = n->inst; /* write-after-read deps. */ for (int i = 0; i < 3; i++) { if (inst->src[i].file == GRF) { if (post_reg_alloc) { for (int r = 0; r < reg_width; r++) add_dep(n, last_grf_write[inst->src[i].reg + r]); } else { add_dep(n, last_grf_write[inst->src[i].reg]); } } else if (inst->src[i].file == FIXED_HW_REG && (inst->src[i].fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE)) { if (post_reg_alloc) { for (int r = 0; r < reg_width; r++) add_dep(n, last_grf_write[inst->src[i].fixed_hw_reg.nr + r]); } else { add_dep(n, last_fixed_grf_write); } } else if (inst->src[i].file != BAD_FILE && inst->src[i].file != IMM && inst->src[i].file != UNIFORM) { assert(inst->src[i].file != MRF); add_barrier_deps(n); } } for (int i = 0; i < inst->mlen; i++) { /* It looks like the MRF regs are released in the send * instruction once it's sent, not when the result comes * back. */ add_dep(n, last_mrf_write[inst->base_mrf + i], 2); } if (inst->predicate) { add_dep(n, last_conditional_mod[inst->flag_subreg]); } /* Update the things this instruction wrote, so earlier reads * can mark this as WAR dependency. */ if (inst->dst.file == GRF) { if (post_reg_alloc) { for (int r = 0; r < inst->regs_written() * reg_width; r++) last_grf_write[inst->dst.reg + r] = n; } else { last_grf_write[inst->dst.reg] = n; } } else if (inst->dst.file == MRF) { int reg = inst->dst.reg & ~BRW_MRF_COMPR4; last_mrf_write[reg] = n; if (is_compressed(inst)) { if (inst->dst.reg & BRW_MRF_COMPR4) reg += 4; else reg++; last_mrf_write[reg] = n; } } else if (inst->dst.file == FIXED_HW_REG && inst->dst.fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE) { if (post_reg_alloc) { for (int r = 0; r < reg_width; r++) last_grf_write[inst->dst.fixed_hw_reg.nr + r] = n; } else { last_fixed_grf_write = n; } } else if (inst->dst.file != BAD_FILE) { add_barrier_deps(n); } if (inst->mlen > 0) { for (int i = 0; i < v->implied_mrf_writes(inst); i++) { last_mrf_write[inst->base_mrf + i] = n; } } /* Treat FS_OPCODE_MOV_DISPATCH_TO_FLAGS as though it had a * conditional_mod, because it sets the flag register. */ if (inst->conditional_mod || inst->opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) { last_conditional_mod[inst->flag_subreg] = n; } } } void instruction_scheduler::schedule_instructions(fs_inst *next_block_header) { int time = 0; /* Remove non-DAG heads from the list. */ foreach_list_safe(node, &instructions) { schedule_node *n = (schedule_node *)node; if (n->parent_count != 0) n->remove(); } while (!instructions.is_empty()) { schedule_node *chosen = NULL; int chosen_time = 0; if (post_reg_alloc) { /* Of the instructions closest ready to execute or the closest to * being ready, choose the oldest one. */ foreach_list(node, &instructions) { schedule_node *n = (schedule_node *)node; if (!chosen || n->unblocked_time < chosen_time) { chosen = n; chosen_time = n->unblocked_time; } } } else { /* Before register allocation, we don't care about the latencies of * instructions. All we care about is reducing live intervals of * variables so that we can avoid register spilling, or get 16-wide * shaders which naturally do a better job of hiding instruction * latency. * * To do so, schedule our instructions in a roughly LIFO/depth-first * order: when new instructions become available as a result of * scheduling something, choose those first so that our result * hopefully is consumed quickly. * * The exception is messages that generate more than one result * register (AKA texturing). In those cases, the LIFO search would * normally tend to choose them quickly (because scheduling the * previous message not only unblocked the children using its result, * but also the MRF setup for the next sampler message, which in turn * unblocks the next sampler message). */ for (schedule_node *node = (schedule_node *)instructions.get_tail(); node != instructions.get_head()->prev; node = (schedule_node *)node->prev) { schedule_node *n = (schedule_node *)node; chosen = n; if (chosen->inst->regs_written() <= 1) break; } chosen_time = chosen->unblocked_time; } /* Schedule this instruction. */ assert(chosen); chosen->remove(); next_block_header->insert_before(chosen->inst); instructions_to_schedule--; /* Bump the clock. Instructions in gen hardware are handled one simd4 * vector at a time, with 1 cycle per vector dispatched. Thus 8-wide * pixel shaders take 2 cycles to dispatch and 16-wide (compressed) * instructions take 4. */ if (is_compressed(chosen->inst)) time += 4; else time += 2; /* If we expected a delay for scheduling, then bump the clock to reflect * that as well. In reality, the hardware will switch to another * hyperthread and may not return to dispatching our thread for a while * even after we're unblocked. */ time = MAX2(time, chosen_time); if (debug) { printf("clock %4d, scheduled: ", time); v->dump_instruction(chosen->inst); } /* Now that we've scheduled a new instruction, some of its * children can be promoted to the list of instructions ready to * be scheduled. Update the children's unblocked time for this * DAG edge as we do so. */ for (int i = 0; i < chosen->child_count; i++) { schedule_node *child = chosen->children[i]; child->unblocked_time = MAX2(child->unblocked_time, time + chosen->child_latency[i]); child->parent_count--; if (child->parent_count == 0) { if (debug) { printf("now available: "); v->dump_instruction(child->inst); } instructions.push_tail(child); } } /* Shared resource: the mathbox. There's one per EU (on later * generations, it's even more limited pre-gen6), so if we send * something off to it then the next math isn't going to make * progress until the first is done. */ if (chosen->inst->is_math()) { foreach_list(node, &instructions) { schedule_node *n = (schedule_node *)node; if (n->inst->is_math()) n->unblocked_time = MAX2(n->unblocked_time, time + chosen->latency); } } } assert(instructions_to_schedule == 0); } void fs_visitor::schedule_instructions(bool post_reg_alloc) { fs_inst *next_block_header = (fs_inst *)instructions.head; int grf_count; if (post_reg_alloc) grf_count = grf_used; else grf_count = virtual_grf_count; if (debug) { printf("\nInstructions before scheduling (reg_alloc %d)\n", post_reg_alloc); dump_instructions(); } instruction_scheduler sched(this, mem_ctx, grf_count, post_reg_alloc); while (!next_block_header->is_tail_sentinel()) { /* Add things to be scheduled until we get to a new BB. */ while (!next_block_header->is_tail_sentinel()) { fs_inst *inst = next_block_header; next_block_header = (fs_inst *)next_block_header->next; sched.add_inst(inst); if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_ELSE || inst->opcode == BRW_OPCODE_ENDIF || inst->opcode == BRW_OPCODE_DO || inst->opcode == BRW_OPCODE_WHILE || inst->opcode == BRW_OPCODE_BREAK || inst->opcode == BRW_OPCODE_CONTINUE) { break; } } sched.calculate_deps(); sched.schedule_instructions(next_block_header); } if (debug) { printf("\nInstructions after scheduling (reg_alloc %d)\n", post_reg_alloc); dump_instructions(); } this->live_intervals_valid = false; }