/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #include #include #include "drm-uapi/drm_fourcc.h" #include "anv_private.h" #include "util/debug.h" #include "vk_util.h" #include "util/u_math.h" #include "vk_format_info.h" static const enum isl_surf_dim vk_to_isl_surf_dim[] = { [VK_IMAGE_TYPE_1D] = ISL_SURF_DIM_1D, [VK_IMAGE_TYPE_2D] = ISL_SURF_DIM_2D, [VK_IMAGE_TYPE_3D] = ISL_SURF_DIM_3D, }; static isl_surf_usage_flags_t choose_isl_surf_usage(VkImageCreateFlags vk_create_flags, VkImageUsageFlags vk_usage, isl_surf_usage_flags_t isl_extra_usage, VkImageAspectFlagBits aspect) { isl_surf_usage_flags_t isl_usage = isl_extra_usage; if (vk_usage & VK_IMAGE_USAGE_SAMPLED_BIT) isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT; if (vk_usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT) isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT; if (vk_usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) isl_usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT; if (vk_create_flags & VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT) isl_usage |= ISL_SURF_USAGE_CUBE_BIT; /* Even if we're only using it for transfer operations, clears to depth and * stencil images happen as depth and stencil so they need the right ISL * usage bits or else things will fall apart. */ switch (aspect) { case VK_IMAGE_ASPECT_DEPTH_BIT: isl_usage |= ISL_SURF_USAGE_DEPTH_BIT; break; case VK_IMAGE_ASPECT_STENCIL_BIT: isl_usage |= ISL_SURF_USAGE_STENCIL_BIT; break; case VK_IMAGE_ASPECT_COLOR_BIT: case VK_IMAGE_ASPECT_PLANE_0_BIT: case VK_IMAGE_ASPECT_PLANE_1_BIT: case VK_IMAGE_ASPECT_PLANE_2_BIT: break; default: unreachable("bad VkImageAspect"); } if (vk_usage & VK_IMAGE_USAGE_TRANSFER_SRC_BIT) { /* blorp implements transfers by sampling from the source image. */ isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT; } if (vk_usage & VK_IMAGE_USAGE_TRANSFER_DST_BIT && aspect == VK_IMAGE_ASPECT_COLOR_BIT) { /* blorp implements transfers by rendering into the destination image. * Only request this with color images, as we deal with depth/stencil * formats differently. */ isl_usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT; } return isl_usage; } static isl_tiling_flags_t choose_isl_tiling_flags(const struct gen_device_info *devinfo, const struct anv_image_create_info *anv_info, const struct isl_drm_modifier_info *isl_mod_info, bool legacy_scanout) { const VkImageCreateInfo *base_info = anv_info->vk_info; isl_tiling_flags_t flags = 0; assert((isl_mod_info != NULL) == (base_info->tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT)); switch (base_info->tiling) { default: unreachable("bad VkImageTiling"); case VK_IMAGE_TILING_OPTIMAL: flags = ISL_TILING_ANY_MASK; break; case VK_IMAGE_TILING_LINEAR: flags = ISL_TILING_LINEAR_BIT; break; case VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT: flags = 1 << isl_mod_info->tiling; } if (anv_info->isl_tiling_flags) { assert(isl_mod_info == NULL); flags &= anv_info->isl_tiling_flags; } if (legacy_scanout) { isl_tiling_flags_t legacy_mask = ISL_TILING_LINEAR_BIT; if (devinfo->has_tiling_uapi) legacy_mask |= ISL_TILING_X_BIT; flags &= legacy_mask; } assert(flags); return flags; } static void add_surface(struct anv_image *image, struct anv_surface *surf, uint32_t plane) { assert(surf->isl.size_B > 0); /* isl surface must be initialized */ if (image->disjoint) { surf->offset = align_u32(image->planes[plane].size, surf->isl.alignment_B); /* Plane offset is always 0 when it's disjoint. */ } else { surf->offset = align_u32(image->size, surf->isl.alignment_B); /* Determine plane's offset only once when the first surface is added. */ if (image->planes[plane].size == 0) image->planes[plane].offset = image->size; } image->size = surf->offset + surf->isl.size_B; image->planes[plane].size = (surf->offset + surf->isl.size_B) - image->planes[plane].offset; image->alignment = MAX2(image->alignment, surf->isl.alignment_B); image->planes[plane].alignment = MAX2(image->planes[plane].alignment, surf->isl.alignment_B); } /** * Do hardware limitations require the image plane to use a shadow surface? * * If hardware limitations force us to use a shadow surface, then the same * limitations may also constrain the tiling of the primary surface; therefore * paramater @a inout_primary_tiling_flags. * * If the image plane is a separate stencil plane and if the user provided * VkImageStencilUsageCreateInfoEXT, then @a usage must be stencilUsage. * * @see anv_image::planes[]::shadow_surface */ static bool anv_image_plane_needs_shadow_surface(const struct gen_device_info *devinfo, struct anv_format_plane plane_format, VkImageTiling vk_tiling, VkImageUsageFlags vk_plane_usage, VkImageCreateFlags vk_create_flags, isl_tiling_flags_t *inout_primary_tiling_flags) { if (devinfo->gen <= 8 && (vk_create_flags & VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT) && vk_tiling == VK_IMAGE_TILING_OPTIMAL) { /* We must fallback to a linear surface because we may not be able to * correctly handle the offsets if tiled. (On gen9, * RENDER_SURFACE_STATE::X/Y Offset are sufficient). To prevent garbage * performance while texturing, we maintain a tiled shadow surface. */ assert(isl_format_is_compressed(plane_format.isl_format)); if (inout_primary_tiling_flags) { *inout_primary_tiling_flags = ISL_TILING_LINEAR_BIT; } return true; } if (devinfo->gen <= 7 && plane_format.aspect == VK_IMAGE_ASPECT_STENCIL_BIT && (vk_plane_usage & VK_IMAGE_USAGE_SAMPLED_BIT)) { /* gen7 can't sample from W-tiled surfaces. */ return true; } return false; } bool anv_formats_ccs_e_compatible(const struct gen_device_info *devinfo, VkImageCreateFlags create_flags, VkFormat vk_format, VkImageTiling vk_tiling, const VkImageFormatListCreateInfoKHR *fmt_list) { enum isl_format format = anv_get_isl_format(devinfo, vk_format, VK_IMAGE_ASPECT_COLOR_BIT, vk_tiling); if (!isl_format_supports_ccs_e(devinfo, format)) return false; if (!(create_flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT)) return true; if (!fmt_list || fmt_list->viewFormatCount == 0) return false; for (uint32_t i = 0; i < fmt_list->viewFormatCount; i++) { enum isl_format view_format = anv_get_isl_format(devinfo, fmt_list->pViewFormats[i], VK_IMAGE_ASPECT_COLOR_BIT, vk_tiling); if (!isl_formats_are_ccs_e_compatible(devinfo, format, view_format)) return false; } return true; } /** * For color images that have an auxiliary surface, request allocation for an * additional buffer that mainly stores fast-clear values. Use of this buffer * allows us to access the image's subresources while being aware of their * fast-clear values in non-trivial cases (e.g., outside of a render pass in * which a fast clear has occurred). * * In order to avoid having multiple clear colors for a single plane of an * image (hence a single RENDER_SURFACE_STATE), we only allow fast-clears on * the first slice (level 0, layer 0). At the time of our testing (Jan 17, * 2018), there were no known applications which would benefit from fast- * clearing more than just the first slice. * * The fast clear portion of the image is laid out in the following order: * * * 1 or 4 dwords (depending on hardware generation) for the clear color * * 1 dword for the anv_fast_clear_type of the clear color * * On gen9+, 1 dword per level and layer of the image (3D levels count * multiple layers) in level-major order for compression state. * * For the purpose of discoverability, the algorithm used to manage * compression and fast-clears is described here: * * * On a transition from UNDEFINED or PREINITIALIZED to a defined layout, * all of the values in the fast clear portion of the image are initialized * to default values. * * * On fast-clear, the clear value is written into surface state and also * into the buffer and the fast clear type is set appropriately. Both * setting the fast-clear value in the buffer and setting the fast-clear * type happen from the GPU using MI commands. * * * Whenever a render or blorp operation is performed with CCS_E, we call * genX(cmd_buffer_mark_image_written) to set the compression state to * true (which is represented by UINT32_MAX). * * * On pipeline barrier transitions, the worst-case transition is computed * from the image layouts. The command streamer inspects the fast clear * type and compression state dwords and constructs a predicate. The * worst-case resolve is performed with the given predicate and the fast * clear and compression state is set accordingly. * * See anv_layout_to_aux_usage and anv_layout_to_fast_clear_type functions for * details on exactly what is allowed in what layouts. * * On gen7-9, we do not have a concept of indirect clear colors in hardware. * In order to deal with this, we have to do some clear color management. * * * For LOAD_OP_LOAD at the top of a renderpass, we have to copy the clear * value from the buffer into the surface state with MI commands. * * * For any blorp operations, we pass the address to the clear value into * blorp and it knows to copy the clear color. */ static void add_aux_state_tracking_buffer(struct anv_image *image, uint32_t plane, const struct anv_device *device) { assert(image && device); assert(image->planes[plane].aux_usage != ISL_AUX_USAGE_NONE && image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV); /* Compressed images must be tiled and therefore everything should be 4K * aligned. The CCS has the same alignment requirements. This is good * because we need at least dword-alignment for MI_LOAD/STORE operations. */ assert(image->alignment % 4 == 0); assert((image->planes[plane].offset + image->planes[plane].size) % 4 == 0); /* This buffer should be at the very end of the plane. */ if (image->disjoint) { assert(image->planes[plane].size == (image->planes[plane].offset + image->planes[plane].size)); } else { assert(image->size == (image->planes[plane].offset + image->planes[plane].size)); } const unsigned clear_color_state_size = device->info.gen >= 10 ? device->isl_dev.ss.clear_color_state_size : device->isl_dev.ss.clear_value_size; /* Clear color and fast clear type */ unsigned state_size = clear_color_state_size + 4; /* We only need to track compression on CCS_E surfaces. */ if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) { if (image->type == VK_IMAGE_TYPE_3D) { for (uint32_t l = 0; l < image->levels; l++) state_size += anv_minify(image->extent.depth, l) * 4; } else { state_size += image->levels * image->array_size * 4; } } /* Add some padding to make sure the fast clear color state buffer starts at * a 4K alignment. We believe that 256B might be enough, but due to lack of * testing we will leave this as 4K for now. */ image->planes[plane].size = align_u64(image->planes[plane].size, 4096); image->size = align_u64(image->size, 4096); assert(image->planes[plane].offset % 4096 == 0); image->planes[plane].fast_clear_state_offset = image->planes[plane].offset + image->planes[plane].size; image->planes[plane].size += state_size; image->size += state_size; } /** * The return code indicates whether creation of the VkImage should continue * or fail, not whether the creation of the aux surface succeeded. If the aux * surface is not required (for example, by neither hardware nor DRM format * modifier), then this may return VK_SUCCESS when creation of the aux surface * fails. */ static VkResult add_aux_surface_if_supported(struct anv_device *device, struct anv_image *image, uint32_t plane, struct anv_format_plane plane_format, const VkImageFormatListCreateInfoKHR *fmt_list, isl_surf_usage_flags_t isl_extra_usage_flags) { VkImageAspectFlags aspect = plane_format.aspect; bool ok; /* The aux surface must not be already added. */ assert(image->planes[plane].aux_surface.isl.size_B == 0); if ((isl_extra_usage_flags & ISL_SURF_USAGE_DISABLE_AUX_BIT)) return VK_SUCCESS; if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) { /* We don't advertise that depth buffers could be used as storage * images. */ assert(!(image->usage & VK_IMAGE_USAGE_STORAGE_BIT)); /* Allow the user to control HiZ enabling. Disable by default on gen7 * because resolves are not currently implemented pre-BDW. */ if (!(image->usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) { /* It will never be used as an attachment, HiZ is pointless. */ return VK_SUCCESS; } if (device->info.gen == 7) { anv_perf_warn(device, &image->base, "Implement gen7 HiZ"); return VK_SUCCESS; } if (image->levels > 1) { anv_perf_warn(device, &image->base, "Enable multi-LOD HiZ"); return VK_SUCCESS; } if (device->info.gen == 8 && image->samples > 1) { anv_perf_warn(device, &image->base, "Enable gen8 multisampled HiZ"); return VK_SUCCESS; } if (INTEL_DEBUG & DEBUG_NO_HIZ) return VK_SUCCESS; ok = isl_surf_get_hiz_surf(&device->isl_dev, &image->planes[plane].surface.isl, &image->planes[plane].aux_surface.isl); assert(ok); if (!isl_surf_supports_ccs(&device->isl_dev, &image->planes[plane].surface.isl)) { image->planes[plane].aux_usage = ISL_AUX_USAGE_HIZ; } else if (image->usage & (VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT) && image->samples == 1) { /* If it's used as an input attachment or a texture and it's * single-sampled (this is a requirement for HiZ+CCS write-through * mode), use write-through mode so that we don't need to resolve * before texturing. This will make depth testing a bit slower but * texturing faster. * * TODO: This is a heuristic trade-off; we haven't tuned it at all. */ assert(device->info.gen >= 12); image->planes[plane].aux_usage = ISL_AUX_USAGE_HIZ_CCS_WT; } else { assert(device->info.gen >= 12); image->planes[plane].aux_usage = ISL_AUX_USAGE_HIZ_CCS; } add_surface(image, &image->planes[plane].aux_surface, plane); } else if (aspect == VK_IMAGE_ASPECT_STENCIL_BIT) { if (INTEL_DEBUG & DEBUG_NO_RBC) return VK_SUCCESS; if (!isl_surf_supports_ccs(&device->isl_dev, &image->planes[plane].surface.isl)) return VK_SUCCESS; image->planes[plane].aux_usage = ISL_AUX_USAGE_STC_CCS; } else if ((aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) && image->samples == 1) { if (image->n_planes != 1) { /* Multiplanar images seem to hit a sampler bug with CCS and R16G16 * format. (Putting the clear state a page/4096bytes further fixes * the issue). */ return VK_SUCCESS; } if ((image->create_flags & VK_IMAGE_CREATE_ALIAS_BIT)) { /* The image may alias a plane of a multiplanar image. Above we ban * CCS on multiplanar images. */ return VK_SUCCESS; } if (!isl_format_supports_rendering(&device->info, plane_format.isl_format)) { /* Disable CCS because it is not useful (we can't render to the image * with CCS enabled). While it may be technically possible to enable * CCS for this case, we currently don't have things hooked up to get * it working. */ anv_perf_warn(device, &image->base, "This image format doesn't support rendering. " "Not allocating an CCS buffer."); return VK_SUCCESS; } if (device->info.gen >= 12 && image->array_size > 1) { /* HSD 14010672564: On TGL, if a block of fragment shader outputs * match the surface's clear color, the HW may convert them to * fast-clears. Anv only does clear color tracking for the first * slice unfortunately. Disable CCS until anv gains more clear color * tracking abilities. */ anv_perf_warn(device, &image->base, "HW may put fast-clear blocks on more slices than SW " "currently tracks. Not allocating a CCS buffer."); return VK_SUCCESS; } if (INTEL_DEBUG & DEBUG_NO_RBC) return VK_SUCCESS; ok = isl_surf_get_ccs_surf(&device->isl_dev, &image->planes[plane].surface.isl, &image->planes[plane].aux_surface.isl, NULL, 0); if (!ok) return VK_SUCCESS; /* Choose aux usage */ if (!(image->usage & VK_IMAGE_USAGE_STORAGE_BIT) && anv_formats_ccs_e_compatible(&device->info, image->create_flags, image->vk_format, image->tiling, fmt_list)) { /* For images created without MUTABLE_FORMAT_BIT set, we know that * they will always be used with the original format. In particular, * they will always be used with a format that supports color * compression. If it's never used as a storage image, then it will * only be used through the sampler or the as a render target. This * means that it's safe to just leave compression on at all times for * these formats. */ image->planes[plane].aux_usage = ISL_AUX_USAGE_CCS_E; } else if (device->info.gen >= 12) { anv_perf_warn(device, &image->base, "The CCS_D aux mode is not yet handled on " "Gen12+. Not allocating a CCS buffer."); image->planes[plane].aux_surface.isl.size_B = 0; return VK_SUCCESS; } else { image->planes[plane].aux_usage = ISL_AUX_USAGE_CCS_D; } if (!device->physical->has_implicit_ccs) add_surface(image, &image->planes[plane].aux_surface, plane); add_aux_state_tracking_buffer(image, plane, device); } else if ((aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) && image->samples > 1) { assert(!(image->usage & VK_IMAGE_USAGE_STORAGE_BIT)); ok = isl_surf_get_mcs_surf(&device->isl_dev, &image->planes[plane].surface.isl, &image->planes[plane].aux_surface.isl); if (!ok) return VK_SUCCESS; image->planes[plane].aux_usage = ISL_AUX_USAGE_MCS; add_surface(image, &image->planes[plane].aux_surface, plane); add_aux_state_tracking_buffer(image, plane, device); } return VK_SUCCESS; } static VkResult add_shadow_surface(struct anv_device *device, struct anv_image *image, uint32_t plane, struct anv_format_plane plane_format, uint32_t stride, VkImageUsageFlags vk_plane_usage) { ASSERTED bool ok; ok = isl_surf_init(&device->isl_dev, &image->planes[plane].shadow_surface.isl, .dim = vk_to_isl_surf_dim[image->type], .format = plane_format.isl_format, .width = image->extent.width, .height = image->extent.height, .depth = image->extent.depth, .levels = image->levels, .array_len = image->array_size, .samples = image->samples, .min_alignment_B = 0, .row_pitch_B = stride, .usage = ISL_SURF_USAGE_TEXTURE_BIT | (vk_plane_usage & ISL_SURF_USAGE_CUBE_BIT), .tiling_flags = ISL_TILING_ANY_MASK); /* isl_surf_init() will fail only if provided invalid input. Invalid input * here is illegal in Vulkan. */ assert(ok); add_surface(image, &image->planes[plane].shadow_surface, plane); return VK_SUCCESS; } /** * Initialize the anv_image::*_surface selected by \a aspect. Then update the * image's memory requirements (that is, the image's size and alignment). */ static VkResult add_primary_surface(struct anv_device *device, struct anv_image *image, uint32_t plane, struct anv_format_plane plane_format, uint32_t stride, isl_tiling_flags_t isl_tiling_flags, isl_surf_usage_flags_t isl_usage) { bool ok; struct anv_surface *anv_surf = &image->planes[plane].surface; ok = isl_surf_init(&device->isl_dev, &anv_surf->isl, .dim = vk_to_isl_surf_dim[image->type], .format = plane_format.isl_format, .width = image->extent.width / plane_format.denominator_scales[0], .height = image->extent.height / plane_format.denominator_scales[1], .depth = image->extent.depth, .levels = image->levels, .array_len = image->array_size, .samples = image->samples, .min_alignment_B = 0, .row_pitch_B = stride, .usage = isl_usage, .tiling_flags = isl_tiling_flags); if (!ok) return VK_ERROR_OUT_OF_DEVICE_MEMORY; image->planes[plane].aux_usage = ISL_AUX_USAGE_NONE; add_surface(image, anv_surf, plane); return VK_SUCCESS; } /** * 'plane' must be the most recently added plane. */ static void check_surfaces(const struct anv_image *image, const struct anv_image_plane *plane) { #ifdef DEBUG /* FINISHME: Check the shadow surface. */ /* XXX: This looks buggy. If the aux surface starts before the primary * surface, then it derives a meaningless value by adding the primary's size * to the aux's offset. */ uintmax_t plane_end = plane->offset + plane->size; const struct anv_surface *primary_surface = &plane->surface; const struct anv_surface *aux_surface = &plane->aux_surface; uintmax_t last_surface_offset = MAX2(primary_surface->offset, aux_surface->offset); uintmax_t last_surface_size = aux_surface->isl.size_B > 0 ? aux_surface->isl.size_B : primary_surface->isl.size_B; uintmax_t last_surface_end = last_surface_offset + last_surface_size; if (plane->aux_usage != ISL_AUX_USAGE_NONE) assert(plane->fast_clear_state_offset < plane_end); assert(last_surface_end <= plane_end); assert(plane_end == image->size); #endif } static VkResult add_all_surfaces(struct anv_device *device, struct anv_image *image, const VkImageFormatListCreateInfo *format_list_info, uint32_t stride, isl_tiling_flags_t isl_tiling_flags, isl_surf_usage_flags_t isl_extra_usage_flags) { const struct gen_device_info *devinfo = &device->info; VkResult result; uint32_t b; for_each_bit(b, image->aspects) { VkImageAspectFlagBits aspect = 1 << b; uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect); const struct anv_format_plane plane_format = anv_get_format_plane(devinfo, image->vk_format, aspect, image->tiling); VkImageUsageFlags vk_usage = image->usage; if (aspect == VK_IMAGE_ASPECT_STENCIL_BIT) vk_usage = image->stencil_usage; isl_surf_usage_flags_t isl_usage = choose_isl_surf_usage(image->create_flags, vk_usage, isl_extra_usage_flags, aspect); /* Must call this before adding any surfaces because it may modify * isl_tiling_flags. */ bool needs_shadow = anv_image_plane_needs_shadow_surface(devinfo, plane_format, image->tiling, vk_usage, image->create_flags, &isl_tiling_flags); result = add_primary_surface(device, image, plane, plane_format, stride, isl_tiling_flags, isl_usage); if (result != VK_SUCCESS) return result; check_surfaces(image, &image->planes[plane]); if (needs_shadow) { result = add_shadow_surface(device, image, plane, plane_format, stride, vk_usage); if (result != VK_SUCCESS) return result; check_surfaces(image, &image->planes[plane]); } result = add_aux_surface_if_supported(device, image, plane, plane_format, format_list_info, isl_extra_usage_flags); if (result != VK_SUCCESS) return result; check_surfaces(image, &image->planes[plane]); } return VK_SUCCESS; } static const struct isl_drm_modifier_info * choose_drm_format_mod(const struct anv_physical_device *device, uint32_t modifier_count, const uint64_t *modifiers) { uint64_t best_mod = UINT64_MAX; uint32_t best_score = 0; for (uint32_t i = 0; i < modifier_count; ++i) { uint32_t score = isl_drm_modifier_get_score(&device->info, modifiers[i]); if (score > best_score) { best_mod = modifiers[i]; best_score = score; } } if (best_score > 0) return isl_drm_modifier_get_info(best_mod); else return NULL; } static VkImageUsageFlags anv_image_create_usage(const VkImageCreateInfo *pCreateInfo, VkImageUsageFlags usage) { /* Add TRANSFER_SRC usage for multisample attachment images. This is * because we might internally use the TRANSFER_SRC layout on them for * blorp operations associated with resolving those into other attachments * at the end of a subpass. * * Without this additional usage, we compute an incorrect AUX state in * anv_layout_to_aux_state(). */ if (pCreateInfo->samples > VK_SAMPLE_COUNT_1_BIT && (usage & (VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT))) usage |= VK_IMAGE_USAGE_TRANSFER_SRC_BIT; return usage; } VkResult anv_image_create(VkDevice _device, const struct anv_image_create_info *create_info, const VkAllocationCallbacks* alloc, VkImage *pImage) { ANV_FROM_HANDLE(anv_device, device, _device); const VkImageCreateInfo *pCreateInfo = create_info->vk_info; const struct isl_drm_modifier_info *isl_mod_info = NULL; struct anv_image *image = NULL; VkResult r; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO); const struct wsi_image_create_info *wsi_info = vk_find_struct_const(pCreateInfo->pNext, WSI_IMAGE_CREATE_INFO_MESA); if (pCreateInfo->tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) { const VkImageDrmFormatModifierListCreateInfoEXT *mod_info = vk_find_struct_const(pCreateInfo->pNext, IMAGE_DRM_FORMAT_MODIFIER_LIST_CREATE_INFO_EXT); isl_mod_info = choose_drm_format_mod(device->physical, mod_info->drmFormatModifierCount, mod_info->pDrmFormatModifiers); assert(isl_mod_info); } anv_assert(pCreateInfo->mipLevels > 0); anv_assert(pCreateInfo->arrayLayers > 0); anv_assert(pCreateInfo->samples > 0); anv_assert(pCreateInfo->extent.width > 0); anv_assert(pCreateInfo->extent.height > 0); anv_assert(pCreateInfo->extent.depth > 0); image = vk_zalloc2(&device->vk.alloc, alloc, sizeof(*image), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!image) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); vk_object_base_init(&device->vk, &image->base, VK_OBJECT_TYPE_IMAGE); image->type = pCreateInfo->imageType; image->extent = anv_sanitize_image_extent(pCreateInfo->imageType, pCreateInfo->extent); image->vk_format = pCreateInfo->format; image->format = anv_get_format(pCreateInfo->format); image->aspects = vk_format_aspects(image->vk_format); image->levels = pCreateInfo->mipLevels; image->array_size = pCreateInfo->arrayLayers; image->samples = pCreateInfo->samples; image->usage = anv_image_create_usage(pCreateInfo, pCreateInfo->usage); image->create_flags = pCreateInfo->flags; image->tiling = pCreateInfo->tiling; image->disjoint = pCreateInfo->flags & VK_IMAGE_CREATE_DISJOINT_BIT; image->needs_set_tiling = wsi_info && wsi_info->scanout; image->drm_format_mod = isl_mod_info ? isl_mod_info->modifier : DRM_FORMAT_MOD_INVALID; if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) { image->stencil_usage = pCreateInfo->usage; const VkImageStencilUsageCreateInfoEXT *stencil_usage_info = vk_find_struct_const(pCreateInfo->pNext, IMAGE_STENCIL_USAGE_CREATE_INFO_EXT); if (stencil_usage_info) { image->stencil_usage = anv_image_create_usage(pCreateInfo, stencil_usage_info->stencilUsage); } } /* In case of external format, We don't know format yet, * so skip the rest for now. */ if (create_info->external_format) { image->external_format = true; *pImage = anv_image_to_handle(image); return VK_SUCCESS; } const struct anv_format *format = anv_get_format(image->vk_format); assert(format != NULL); const isl_tiling_flags_t isl_tiling_flags = choose_isl_tiling_flags(&device->info, create_info, isl_mod_info, image->needs_set_tiling); image->n_planes = format->n_planes; const VkImageFormatListCreateInfoKHR *fmt_list = vk_find_struct_const(pCreateInfo->pNext, IMAGE_FORMAT_LIST_CREATE_INFO_KHR); r = add_all_surfaces(device, image, fmt_list, create_info->stride, isl_tiling_flags, create_info->isl_extra_usage_flags); if (r != VK_SUCCESS) goto fail; *pImage = anv_image_to_handle(image); return VK_SUCCESS; fail: if (image) vk_free2(&device->vk.alloc, alloc, image); return r; } static struct anv_image * anv_swapchain_get_image(VkSwapchainKHR swapchain, uint32_t index) { uint32_t n_images = index + 1; VkImage *images = malloc(sizeof(*images) * n_images); VkResult result = wsi_common_get_images(swapchain, &n_images, images); if (result != VK_SUCCESS && result != VK_INCOMPLETE) { free(images); return NULL; } ANV_FROM_HANDLE(anv_image, image, images[index]); free(images); return image; } static VkResult anv_image_from_swapchain(VkDevice device, const VkImageCreateInfo *pCreateInfo, const VkImageSwapchainCreateInfoKHR *swapchain_info, const VkAllocationCallbacks *pAllocator, VkImage *pImage) { struct anv_image *swapchain_image = anv_swapchain_get_image(swapchain_info->swapchain, 0); assert(swapchain_image); assert(swapchain_image->type == pCreateInfo->imageType); assert(swapchain_image->vk_format == pCreateInfo->format); assert(swapchain_image->extent.width == pCreateInfo->extent.width); assert(swapchain_image->extent.height == pCreateInfo->extent.height); assert(swapchain_image->extent.depth == pCreateInfo->extent.depth); assert(swapchain_image->array_size == pCreateInfo->arrayLayers); /* Color attachment is added by the wsi code. */ assert(swapchain_image->usage == (pCreateInfo->usage | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT)); VkImageCreateInfo local_create_info; local_create_info = *pCreateInfo; local_create_info.pNext = NULL; /* The following parameters are implictly selected by the wsi code. */ local_create_info.tiling = VK_IMAGE_TILING_OPTIMAL; local_create_info.samples = VK_SAMPLE_COUNT_1_BIT; local_create_info.usage |= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; /* If the image has a particular modifier, specify that modifier. */ VkImageDrmFormatModifierListCreateInfoEXT local_modifier_info = { .sType = VK_STRUCTURE_TYPE_IMAGE_DRM_FORMAT_MODIFIER_LIST_CREATE_INFO_EXT, .drmFormatModifierCount = 1, .pDrmFormatModifiers = &swapchain_image->drm_format_mod, }; if (swapchain_image->drm_format_mod != DRM_FORMAT_MOD_INVALID) __vk_append_struct(&local_create_info, &local_modifier_info); return anv_image_create(device, &(struct anv_image_create_info) { .vk_info = &local_create_info, .external_format = swapchain_image->external_format, }, pAllocator, pImage); } VkResult anv_CreateImage(VkDevice device, const VkImageCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkImage *pImage) { const VkExternalMemoryImageCreateInfo *create_info = vk_find_struct_const(pCreateInfo->pNext, EXTERNAL_MEMORY_IMAGE_CREATE_INFO); if (create_info && (create_info->handleTypes & VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)) return anv_image_from_external(device, pCreateInfo, create_info, pAllocator, pImage); bool use_external_format = false; const VkExternalFormatANDROID *ext_format = vk_find_struct_const(pCreateInfo->pNext, EXTERNAL_FORMAT_ANDROID); /* "If externalFormat is zero, the effect is as if the * VkExternalFormatANDROID structure was not present. Otherwise, the image * will have the specified external format." */ if (ext_format && ext_format->externalFormat != 0) use_external_format = true; const VkNativeBufferANDROID *gralloc_info = vk_find_struct_const(pCreateInfo->pNext, NATIVE_BUFFER_ANDROID); if (gralloc_info) return anv_image_from_gralloc(device, pCreateInfo, gralloc_info, pAllocator, pImage); const VkImageSwapchainCreateInfoKHR *swapchain_info = vk_find_struct_const(pCreateInfo->pNext, IMAGE_SWAPCHAIN_CREATE_INFO_KHR); if (swapchain_info && swapchain_info->swapchain != VK_NULL_HANDLE) return anv_image_from_swapchain(device, pCreateInfo, swapchain_info, pAllocator, pImage); return anv_image_create(device, &(struct anv_image_create_info) { .vk_info = pCreateInfo, .external_format = use_external_format, }, pAllocator, pImage); } void anv_DestroyImage(VkDevice _device, VkImage _image, const VkAllocationCallbacks *pAllocator) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_image, image, _image); if (!image) return; for (uint32_t p = 0; p < image->n_planes; ++p) { if (image->planes[p].bo_is_owned) { assert(image->planes[p].address.bo != NULL); anv_device_release_bo(device, image->planes[p].address.bo); } } vk_object_base_finish(&image->base); vk_free2(&device->vk.alloc, pAllocator, image); } static void anv_image_bind_memory_plane(struct anv_device *device, struct anv_image *image, uint32_t plane, struct anv_device_memory *memory, uint32_t memory_offset) { assert(!image->planes[plane].bo_is_owned); if (!memory) { image->planes[plane].address = ANV_NULL_ADDRESS; return; } image->planes[plane].address = (struct anv_address) { .bo = memory->bo, .offset = memory_offset, }; /* If we're on a platform that uses implicit CCS and our buffer does not * have any implicit CCS data, disable compression on that image. */ if (device->physical->has_implicit_ccs && !memory->bo->has_implicit_ccs) image->planes[plane].aux_usage = ISL_AUX_USAGE_NONE; } /* We are binding AHardwareBuffer. Get a description, resolve the * format and prepare anv_image properly. */ static void resolve_ahw_image(struct anv_device *device, struct anv_image *image, struct anv_device_memory *mem) { #if defined(ANDROID) && ANDROID_API_LEVEL >= 26 assert(mem->ahw); AHardwareBuffer_Desc desc; AHardwareBuffer_describe(mem->ahw, &desc); VkResult result; /* Check tiling. */ int i915_tiling = anv_gem_get_tiling(device, mem->bo->gem_handle); VkImageTiling vk_tiling; isl_tiling_flags_t isl_tiling_flags = 0; switch (i915_tiling) { case I915_TILING_NONE: vk_tiling = VK_IMAGE_TILING_LINEAR; isl_tiling_flags = ISL_TILING_LINEAR_BIT; break; case I915_TILING_X: vk_tiling = VK_IMAGE_TILING_OPTIMAL; isl_tiling_flags = ISL_TILING_X_BIT; break; case I915_TILING_Y: vk_tiling = VK_IMAGE_TILING_OPTIMAL; isl_tiling_flags = ISL_TILING_Y0_BIT; break; case -1: default: unreachable("Invalid tiling flags."); } assert(vk_tiling == VK_IMAGE_TILING_LINEAR || vk_tiling == VK_IMAGE_TILING_OPTIMAL); /* Check format. */ VkFormat vk_format = vk_format_from_android(desc.format, desc.usage); enum isl_format isl_fmt = anv_get_isl_format(&device->info, vk_format, VK_IMAGE_ASPECT_COLOR_BIT, vk_tiling); assert(isl_fmt != ISL_FORMAT_UNSUPPORTED); /* Handle RGB(X)->RGBA fallback. */ switch (desc.format) { case AHARDWAREBUFFER_FORMAT_R8G8B8_UNORM: case AHARDWAREBUFFER_FORMAT_R8G8B8X8_UNORM: if (isl_format_is_rgb(isl_fmt)) isl_fmt = isl_format_rgb_to_rgba(isl_fmt); break; } /* Now we are able to fill anv_image fields properly and create * isl_surface for it. */ image->vk_format = vk_format; image->format = anv_get_format(vk_format); image->aspects = vk_format_aspects(image->vk_format); image->n_planes = image->format->n_planes; uint32_t stride = desc.stride * (isl_format_get_layout(isl_fmt)->bpb / 8); result = add_all_surfaces(device, image, NULL, stride, isl_tiling_flags, ISL_SURF_USAGE_DISABLE_AUX_BIT); assert(result == VK_SUCCESS); #endif } VkResult anv_BindImageMemory2( VkDevice _device, uint32_t bindInfoCount, const VkBindImageMemoryInfo* pBindInfos) { ANV_FROM_HANDLE(anv_device, device, _device); for (uint32_t i = 0; i < bindInfoCount; i++) { const VkBindImageMemoryInfo *bind_info = &pBindInfos[i]; ANV_FROM_HANDLE(anv_device_memory, mem, bind_info->memory); ANV_FROM_HANDLE(anv_image, image, bind_info->image); /* Resolve will alter the image's aspects, do this first. */ if (mem && mem->ahw) resolve_ahw_image(device, image, mem); VkImageAspectFlags aspects = image->aspects; vk_foreach_struct_const(s, bind_info->pNext) { switch (s->sType) { case VK_STRUCTURE_TYPE_BIND_IMAGE_PLANE_MEMORY_INFO: { const VkBindImagePlaneMemoryInfo *plane_info = (const VkBindImagePlaneMemoryInfo *) s; aspects = plane_info->planeAspect; break; } case VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_SWAPCHAIN_INFO_KHR: { const VkBindImageMemorySwapchainInfoKHR *swapchain_info = (const VkBindImageMemorySwapchainInfoKHR *) s; struct anv_image *swapchain_image = anv_swapchain_get_image(swapchain_info->swapchain, swapchain_info->imageIndex); assert(swapchain_image); assert(image->aspects == swapchain_image->aspects); assert(mem == NULL); uint32_t aspect_bit; anv_foreach_image_aspect_bit(aspect_bit, image, aspects) { uint32_t plane = anv_image_aspect_to_plane(image->aspects, 1UL << aspect_bit); struct anv_device_memory mem = { .bo = swapchain_image->planes[plane].address.bo, }; anv_image_bind_memory_plane(device, image, plane, &mem, bind_info->memoryOffset); } break; } default: anv_debug_ignored_stype(s->sType); break; } } /* VkBindImageMemorySwapchainInfoKHR requires memory to be * VK_NULL_HANDLE. In such case, just carry one with the next bind * item. */ if (!mem) continue; uint32_t aspect_bit; anv_foreach_image_aspect_bit(aspect_bit, image, aspects) { uint32_t plane = anv_image_aspect_to_plane(image->aspects, 1UL << aspect_bit); anv_image_bind_memory_plane(device, image, plane, mem, bind_info->memoryOffset); } } return VK_SUCCESS; } void anv_GetImageSubresourceLayout( VkDevice device, VkImage _image, const VkImageSubresource* subresource, VkSubresourceLayout* layout) { ANV_FROM_HANDLE(anv_image, image, _image); const struct anv_surface *surface; if (subresource->aspectMask == VK_IMAGE_ASPECT_PLANE_1_BIT && image->drm_format_mod != DRM_FORMAT_MOD_INVALID && isl_drm_modifier_has_aux(image->drm_format_mod)) { surface = &image->planes[0].aux_surface; } else { uint32_t plane = anv_image_aspect_to_plane(image->aspects, subresource->aspectMask); surface = &image->planes[plane].surface; } assert(__builtin_popcount(subresource->aspectMask) == 1); layout->offset = surface->offset; layout->rowPitch = surface->isl.row_pitch_B; layout->depthPitch = isl_surf_get_array_pitch(&surface->isl); layout->arrayPitch = isl_surf_get_array_pitch(&surface->isl); if (subresource->mipLevel > 0 || subresource->arrayLayer > 0) { assert(surface->isl.tiling == ISL_TILING_LINEAR); uint32_t offset_B; isl_surf_get_image_offset_B_tile_sa(&surface->isl, subresource->mipLevel, subresource->arrayLayer, 0 /* logical_z_offset_px */, &offset_B, NULL, NULL); layout->offset += offset_B; layout->size = layout->rowPitch * anv_minify(image->extent.height, subresource->mipLevel) * image->extent.depth; } else { layout->size = surface->isl.size_B; } } VkResult anv_GetImageDrmFormatModifierPropertiesEXT( VkDevice device, VkImage _image, VkImageDrmFormatModifierPropertiesEXT* pProperties) { ANV_FROM_HANDLE(anv_image, image, _image); assert(pProperties->sType == VK_STRUCTURE_TYPE_IMAGE_DRM_FORMAT_MODIFIER_PROPERTIES_EXT); pProperties->drmFormatModifier = image->drm_format_mod; return VK_SUCCESS; } static VkImageUsageFlags vk_image_layout_to_usage_flags(VkImageLayout layout, VkImageAspectFlagBits aspect) { assert(util_bitcount(aspect) == 1); switch (layout) { case VK_IMAGE_LAYOUT_UNDEFINED: case VK_IMAGE_LAYOUT_PREINITIALIZED: return 0u; case VK_IMAGE_LAYOUT_GENERAL: return ~0u; case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL: assert(aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV); return VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL: assert(aspect & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)); return VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT; case VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL: assert(aspect & VK_IMAGE_ASPECT_DEPTH_BIT); return vk_image_layout_to_usage_flags( VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, aspect); case VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL: assert(aspect & VK_IMAGE_ASPECT_STENCIL_BIT); return vk_image_layout_to_usage_flags( VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, aspect); case VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL: assert(aspect & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)); return VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT; case VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL: assert(aspect & VK_IMAGE_ASPECT_DEPTH_BIT); return vk_image_layout_to_usage_flags( VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, aspect); case VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL: assert(aspect & VK_IMAGE_ASPECT_STENCIL_BIT); return vk_image_layout_to_usage_flags( VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, aspect); case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL: return VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT; case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL: return VK_IMAGE_USAGE_TRANSFER_SRC_BIT; case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL: return VK_IMAGE_USAGE_TRANSFER_DST_BIT; case VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL: if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) { return vk_image_layout_to_usage_flags( VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, aspect); } else if (aspect == VK_IMAGE_ASPECT_STENCIL_BIT) { return vk_image_layout_to_usage_flags( VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, aspect); } else { assert(!"Must be a depth/stencil aspect"); return 0; } case VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL: if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) { return vk_image_layout_to_usage_flags( VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, aspect); } else if (aspect == VK_IMAGE_ASPECT_STENCIL_BIT) { return vk_image_layout_to_usage_flags( VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, aspect); } else { assert(!"Must be a depth/stencil aspect"); return 0; } case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR: assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT); /* This needs to be handled specially by the caller */ return 0; case VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR: assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT); return vk_image_layout_to_usage_flags(VK_IMAGE_LAYOUT_GENERAL, aspect); case VK_IMAGE_LAYOUT_SHADING_RATE_OPTIMAL_NV: assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT); return VK_IMAGE_USAGE_SHADING_RATE_IMAGE_BIT_NV; case VK_IMAGE_LAYOUT_FRAGMENT_DENSITY_MAP_OPTIMAL_EXT: assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT); return VK_IMAGE_USAGE_FRAGMENT_DENSITY_MAP_BIT_EXT; case VK_IMAGE_LAYOUT_MAX_ENUM: unreachable("Invalid image layout."); } unreachable("Invalid image layout."); } static bool vk_image_layout_is_read_only(VkImageLayout layout, VkImageAspectFlagBits aspect) { assert(util_bitcount(aspect) == 1); switch (layout) { case VK_IMAGE_LAYOUT_UNDEFINED: case VK_IMAGE_LAYOUT_PREINITIALIZED: return true; /* These are only used for layout transitions */ case VK_IMAGE_LAYOUT_GENERAL: case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL: case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL: case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL: case VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR: case VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL: case VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL: return false; case VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL: case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL: case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL: case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR: case VK_IMAGE_LAYOUT_SHADING_RATE_OPTIMAL_NV: case VK_IMAGE_LAYOUT_FRAGMENT_DENSITY_MAP_OPTIMAL_EXT: case VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL: case VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL: return true; case VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL: return aspect == VK_IMAGE_ASPECT_DEPTH_BIT; case VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL: return aspect == VK_IMAGE_ASPECT_STENCIL_BIT; case VK_IMAGE_LAYOUT_MAX_ENUM: unreachable("Invalid image layout."); } unreachable("Invalid image layout."); } /** * This function returns the assumed isl_aux_state for a given VkImageLayout. * Because Vulkan image layouts don't map directly to isl_aux_state enums, the * returned enum is the assumed worst case. * * @param devinfo The device information of the Intel GPU. * @param image The image that may contain a collection of buffers. * @param aspect The aspect of the image to be accessed. * @param layout The current layout of the image aspect(s). * * @return The primary buffer that should be used for the given layout. */ enum isl_aux_state anv_layout_to_aux_state(const struct gen_device_info * const devinfo, const struct anv_image * const image, const VkImageAspectFlagBits aspect, const VkImageLayout layout) { /* Validate the inputs. */ /* The devinfo is needed as the optimal buffer varies across generations. */ assert(devinfo != NULL); /* The layout of a NULL image is not properly defined. */ assert(image != NULL); /* The aspect must be exactly one of the image aspects. */ assert(util_bitcount(aspect) == 1 && (aspect & image->aspects)); /* Determine the optimal buffer. */ uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect); /* If we don't have an aux buffer then aux state makes no sense */ const enum isl_aux_usage aux_usage = image->planes[plane].aux_usage; assert(aux_usage != ISL_AUX_USAGE_NONE); /* All images that use an auxiliary surface are required to be tiled. */ assert(image->planes[plane].surface.isl.tiling != ISL_TILING_LINEAR); /* Handle a few special cases */ switch (layout) { /* Invalid layouts */ case VK_IMAGE_LAYOUT_MAX_ENUM: unreachable("Invalid image layout."); /* Undefined layouts * * The pre-initialized layout is equivalent to the undefined layout for * optimally-tiled images. We can only do color compression (CCS or HiZ) * on tiled images. */ case VK_IMAGE_LAYOUT_UNDEFINED: case VK_IMAGE_LAYOUT_PREINITIALIZED: return ISL_AUX_STATE_AUX_INVALID; case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR: { assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT); enum isl_aux_state aux_state = isl_drm_modifier_get_default_aux_state(image->drm_format_mod); switch (aux_state) { default: assert(!"unexpected isl_aux_state"); case ISL_AUX_STATE_AUX_INVALID: /* The modifier does not support compression. But, if we arrived * here, then we have enabled compression on it anyway, in which case * we must resolve the aux surface before we release ownership to the * presentation engine (because, having no modifier, the presentation * engine will not be aware of the aux surface). The presentation * engine will not access the aux surface (because it is unware of * it), and so the aux surface will still be resolved when we * re-acquire ownership. * * Therefore, at ownership transfers in either direction, there does * exist an aux surface despite the lack of modifier and its state is * pass-through. */ return ISL_AUX_STATE_PASS_THROUGH; case ISL_AUX_STATE_COMPRESSED_NO_CLEAR: return ISL_AUX_STATE_COMPRESSED_NO_CLEAR; } } default: break; } const bool read_only = vk_image_layout_is_read_only(layout, aspect); const VkImageUsageFlags image_aspect_usage = aspect == VK_IMAGE_ASPECT_STENCIL_BIT ? image->stencil_usage : image->usage; const VkImageUsageFlags usage = vk_image_layout_to_usage_flags(layout, aspect) & image_aspect_usage; bool aux_supported = true; if ((usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT) && !read_only) { /* This image could be used as both an input attachment and a render * target (depth, stencil, or color) at the same time and this can cause * corruption. * * We currently only disable aux in this way for depth even though we * disable it for color in GL. * * TODO: Should we be disabling this in more cases? */ if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) aux_supported = false; } if (usage & VK_IMAGE_USAGE_STORAGE_BIT) aux_supported = false; if (usage & (VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)) { switch (aux_usage) { case ISL_AUX_USAGE_HIZ: if (!anv_can_sample_with_hiz(devinfo, image)) aux_supported = false; break; case ISL_AUX_USAGE_HIZ_CCS: aux_supported = false; break; case ISL_AUX_USAGE_HIZ_CCS_WT: break; case ISL_AUX_USAGE_CCS_D: aux_supported = false; break; case ISL_AUX_USAGE_CCS_E: case ISL_AUX_USAGE_MCS: case ISL_AUX_USAGE_STC_CCS: break; default: unreachable("Unsupported aux usage"); } } switch (aux_usage) { case ISL_AUX_USAGE_HIZ: case ISL_AUX_USAGE_HIZ_CCS: case ISL_AUX_USAGE_HIZ_CCS_WT: if (aux_supported) { return ISL_AUX_STATE_COMPRESSED_CLEAR; } else if (read_only) { return ISL_AUX_STATE_RESOLVED; } else { return ISL_AUX_STATE_AUX_INVALID; } case ISL_AUX_USAGE_CCS_D: /* We only support clear in exactly one state */ if (layout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) { assert(aux_supported); return ISL_AUX_STATE_PARTIAL_CLEAR; } else { return ISL_AUX_STATE_PASS_THROUGH; } case ISL_AUX_USAGE_CCS_E: case ISL_AUX_USAGE_MCS: if (aux_supported) { return ISL_AUX_STATE_COMPRESSED_CLEAR; } else { return ISL_AUX_STATE_PASS_THROUGH; } case ISL_AUX_USAGE_STC_CCS: assert(aux_supported); return ISL_AUX_STATE_COMPRESSED_NO_CLEAR; default: unreachable("Unsupported aux usage"); } } /** * This function determines the optimal buffer to use for a given * VkImageLayout and other pieces of information needed to make that * determination. This does not determine the optimal buffer to use * during a resolve operation. * * @param devinfo The device information of the Intel GPU. * @param image The image that may contain a collection of buffers. * @param aspect The aspect of the image to be accessed. * @param usage The usage which describes how the image will be accessed. * @param layout The current layout of the image aspect(s). * * @return The primary buffer that should be used for the given layout. */ enum isl_aux_usage anv_layout_to_aux_usage(const struct gen_device_info * const devinfo, const struct anv_image * const image, const VkImageAspectFlagBits aspect, const VkImageUsageFlagBits usage, const VkImageLayout layout) { uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect); /* If there is no auxiliary surface allocated, we must use the one and only * main buffer. */ if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE) return ISL_AUX_USAGE_NONE; enum isl_aux_state aux_state = anv_layout_to_aux_state(devinfo, image, aspect, layout); switch (aux_state) { case ISL_AUX_STATE_CLEAR: unreachable("We never use this state"); case ISL_AUX_STATE_PARTIAL_CLEAR: assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV); assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_D); assert(image->samples == 1); return ISL_AUX_USAGE_CCS_D; case ISL_AUX_STATE_COMPRESSED_CLEAR: case ISL_AUX_STATE_COMPRESSED_NO_CLEAR: return image->planes[plane].aux_usage; case ISL_AUX_STATE_RESOLVED: /* We can only use RESOLVED in read-only layouts because any write will * either land us in AUX_INVALID or COMPRESSED_NO_CLEAR. We can do * writes in PASS_THROUGH without destroying it so that is allowed. */ assert(vk_image_layout_is_read_only(layout, aspect)); assert(util_is_power_of_two_or_zero(usage)); if (usage == VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) { /* If we have valid HiZ data and are using the image as a read-only * depth/stencil attachment, we should enable HiZ so that we can get * faster depth testing. */ return image->planes[plane].aux_usage; } else { return ISL_AUX_USAGE_NONE; } case ISL_AUX_STATE_PASS_THROUGH: case ISL_AUX_STATE_AUX_INVALID: return ISL_AUX_USAGE_NONE; } unreachable("Invalid isl_aux_state"); } /** * This function returns the level of unresolved fast-clear support of the * given image in the given VkImageLayout. * * @param devinfo The device information of the Intel GPU. * @param image The image that may contain a collection of buffers. * @param aspect The aspect of the image to be accessed. * @param usage The usage which describes how the image will be accessed. * @param layout The current layout of the image aspect(s). */ enum anv_fast_clear_type anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo, const struct anv_image * const image, const VkImageAspectFlagBits aspect, const VkImageLayout layout) { if (INTEL_DEBUG & DEBUG_NO_FAST_CLEAR) return ANV_FAST_CLEAR_NONE; uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect); /* If there is no auxiliary surface allocated, there are no fast-clears */ if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE) return ANV_FAST_CLEAR_NONE; /* We don't support MSAA fast-clears on Ivybridge or Bay Trail because they * lack the MI ALU which we need to determine the predicates. */ if (devinfo->gen == 7 && !devinfo->is_haswell && image->samples > 1) return ANV_FAST_CLEAR_NONE; enum isl_aux_state aux_state = anv_layout_to_aux_state(devinfo, image, aspect, layout); switch (aux_state) { case ISL_AUX_STATE_CLEAR: unreachable("We never use this state"); case ISL_AUX_STATE_PARTIAL_CLEAR: case ISL_AUX_STATE_COMPRESSED_CLEAR: if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) { return ANV_FAST_CLEAR_DEFAULT_VALUE; } else if (layout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) { /* When we're in a render pass we have the clear color data from the * VkRenderPassBeginInfo and we can use arbitrary clear colors. They * must get partially resolved before we leave the render pass. */ return ANV_FAST_CLEAR_ANY; } else if (image->planes[plane].aux_usage == ISL_AUX_USAGE_MCS || image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) { if (devinfo->gen >= 11) { /* On ICL and later, the sampler hardware uses a copy of the clear * value that is encoded as a pixel value. Therefore, we can use * any clear color we like for sampling. */ return ANV_FAST_CLEAR_ANY; } else { /* If the image has MCS or CCS_E enabled all the time then we can * use fast-clear as long as the clear color is the default value * of zero since this is the default value we program into every * surface state used for texturing. */ return ANV_FAST_CLEAR_DEFAULT_VALUE; } } else { return ANV_FAST_CLEAR_NONE; } case ISL_AUX_STATE_COMPRESSED_NO_CLEAR: case ISL_AUX_STATE_RESOLVED: case ISL_AUX_STATE_PASS_THROUGH: case ISL_AUX_STATE_AUX_INVALID: return ANV_FAST_CLEAR_NONE; } unreachable("Invalid isl_aux_state"); } static struct anv_state alloc_surface_state(struct anv_device *device) { return anv_state_pool_alloc(&device->surface_state_pool, 64, 64); } static enum isl_channel_select remap_swizzle(VkComponentSwizzle swizzle, VkComponentSwizzle component, struct isl_swizzle format_swizzle) { if (swizzle == VK_COMPONENT_SWIZZLE_IDENTITY) swizzle = component; switch (swizzle) { case VK_COMPONENT_SWIZZLE_ZERO: return ISL_CHANNEL_SELECT_ZERO; case VK_COMPONENT_SWIZZLE_ONE: return ISL_CHANNEL_SELECT_ONE; case VK_COMPONENT_SWIZZLE_R: return format_swizzle.r; case VK_COMPONENT_SWIZZLE_G: return format_swizzle.g; case VK_COMPONENT_SWIZZLE_B: return format_swizzle.b; case VK_COMPONENT_SWIZZLE_A: return format_swizzle.a; default: unreachable("Invalid swizzle"); } } void anv_image_fill_surface_state(struct anv_device *device, const struct anv_image *image, VkImageAspectFlagBits aspect, const struct isl_view *view_in, isl_surf_usage_flags_t view_usage, enum isl_aux_usage aux_usage, const union isl_color_value *clear_color, enum anv_image_view_state_flags flags, struct anv_surface_state *state_inout, struct brw_image_param *image_param_out) { uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect); const struct anv_surface *surface = &image->planes[plane].surface, *aux_surface = &image->planes[plane].aux_surface; struct isl_view view = *view_in; view.usage |= view_usage; /* For texturing with VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL from a * compressed surface with a shadow surface, we use the shadow instead of * the primary surface. The shadow surface will be tiled, unlike the main * surface, so it should get significantly better performance. */ if (image->planes[plane].shadow_surface.isl.size_B > 0 && isl_format_is_compressed(view.format) && (flags & ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL)) { assert(isl_format_is_compressed(surface->isl.format)); assert(surface->isl.tiling == ISL_TILING_LINEAR); assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR); surface = &image->planes[plane].shadow_surface; } /* For texturing from stencil on gen7, we have to sample from a shadow * surface because we don't support W-tiling in the sampler. */ if (image->planes[plane].shadow_surface.isl.size_B > 0 && aspect == VK_IMAGE_ASPECT_STENCIL_BIT) { assert(device->info.gen == 7); assert(view_usage & ISL_SURF_USAGE_TEXTURE_BIT); surface = &image->planes[plane].shadow_surface; } if (view_usage == ISL_SURF_USAGE_RENDER_TARGET_BIT) view.swizzle = anv_swizzle_for_render(view.swizzle); /* On Ivy Bridge and Bay Trail we do the swizzle in the shader */ if (device->info.gen == 7 && !device->info.is_haswell) view.swizzle = ISL_SWIZZLE_IDENTITY; /* If this is a HiZ buffer we can sample from with a programmable clear * value (SKL+), define the clear value to the optimal constant. */ union isl_color_value default_clear_color = { .u32 = { 0, } }; if (device->info.gen >= 9 && aspect == VK_IMAGE_ASPECT_DEPTH_BIT) default_clear_color.f32[0] = ANV_HZ_FC_VAL; if (!clear_color) clear_color = &default_clear_color; const struct anv_address address = anv_address_add(image->planes[plane].address, surface->offset); if (view_usage == ISL_SURF_USAGE_STORAGE_BIT && !(flags & ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY) && !isl_has_matching_typed_storage_image_format(&device->info, view.format)) { /* In this case, we are a writeable storage buffer which needs to be * lowered to linear. All tiling and offset calculations will be done in * the shader. */ assert(aux_usage == ISL_AUX_USAGE_NONE); isl_buffer_fill_state(&device->isl_dev, state_inout->state.map, .address = anv_address_physical(address), .size_B = surface->isl.size_B, .format = ISL_FORMAT_RAW, .swizzle = ISL_SWIZZLE_IDENTITY, .stride_B = 1, .mocs = anv_mocs(device, address.bo, view_usage)); state_inout->address = address, state_inout->aux_address = ANV_NULL_ADDRESS; state_inout->clear_address = ANV_NULL_ADDRESS; } else { if (view_usage == ISL_SURF_USAGE_STORAGE_BIT && !(flags & ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY)) { /* Typed surface reads support a very limited subset of the shader * image formats. Translate it into the closest format the hardware * supports. */ assert(aux_usage == ISL_AUX_USAGE_NONE); view.format = isl_lower_storage_image_format(&device->info, view.format); } const struct isl_surf *isl_surf = &surface->isl; struct isl_surf tmp_surf; uint32_t offset_B = 0, tile_x_sa = 0, tile_y_sa = 0; if (isl_format_is_compressed(surface->isl.format) && !isl_format_is_compressed(view.format)) { /* We're creating an uncompressed view of a compressed surface. This * is allowed but only for a single level/layer. */ assert(surface->isl.samples == 1); assert(view.levels == 1); assert(view.array_len == 1); isl_surf_get_image_surf(&device->isl_dev, isl_surf, view.base_level, surface->isl.dim == ISL_SURF_DIM_3D ? 0 : view.base_array_layer, surface->isl.dim == ISL_SURF_DIM_3D ? view.base_array_layer : 0, &tmp_surf, &offset_B, &tile_x_sa, &tile_y_sa); /* The newly created image represents the one subimage we're * referencing with this view so it only has one array slice and * miplevel. */ view.base_array_layer = 0; view.base_level = 0; /* We're making an uncompressed view here. The image dimensions need * to be scaled down by the block size. */ const struct isl_format_layout *fmtl = isl_format_get_layout(surface->isl.format); tmp_surf.logical_level0_px = isl_surf_get_logical_level0_el(&tmp_surf); tmp_surf.phys_level0_sa = isl_surf_get_phys_level0_el(&tmp_surf); tmp_surf.format = view.format; tile_x_sa /= fmtl->bw; tile_y_sa /= fmtl->bh; isl_surf = &tmp_surf; if (device->info.gen <= 8) { assert(surface->isl.tiling == ISL_TILING_LINEAR); assert(tile_x_sa == 0); assert(tile_y_sa == 0); } } state_inout->address = anv_address_add(address, offset_B); struct anv_address aux_address = ANV_NULL_ADDRESS; if (aux_usage != ISL_AUX_USAGE_NONE) { aux_address = anv_address_add(image->planes[plane].address, aux_surface->offset); } state_inout->aux_address = aux_address; struct anv_address clear_address = ANV_NULL_ADDRESS; if (device->info.gen >= 10 && isl_aux_usage_has_fast_clears(aux_usage)) { if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) { clear_address = (struct anv_address) { .bo = device->hiz_clear_bo, .offset = 0, }; } else { clear_address = anv_image_get_clear_color_addr(device, image, aspect); } } state_inout->clear_address = clear_address; isl_surf_fill_state(&device->isl_dev, state_inout->state.map, .surf = isl_surf, .view = &view, .address = anv_address_physical(state_inout->address), .clear_color = *clear_color, .aux_surf = &aux_surface->isl, .aux_usage = aux_usage, .aux_address = anv_address_physical(aux_address), .clear_address = anv_address_physical(clear_address), .use_clear_address = !anv_address_is_null(clear_address), .mocs = anv_mocs(device, state_inout->address.bo, view_usage), .x_offset_sa = tile_x_sa, .y_offset_sa = tile_y_sa); /* With the exception of gen8, the bottom 12 bits of the MCS base address * are used to store other information. This should be ok, however, * because the surface buffer addresses are always 4K page aligned. */ uint32_t *aux_addr_dw = state_inout->state.map + device->isl_dev.ss.aux_addr_offset; assert((aux_address.offset & 0xfff) == 0); state_inout->aux_address.offset |= *aux_addr_dw & 0xfff; if (device->info.gen >= 10 && clear_address.bo) { uint32_t *clear_addr_dw = state_inout->state.map + device->isl_dev.ss.clear_color_state_offset; assert((clear_address.offset & 0x3f) == 0); state_inout->clear_address.offset |= *clear_addr_dw & 0x3f; } } if (image_param_out) { assert(view_usage == ISL_SURF_USAGE_STORAGE_BIT); isl_surf_fill_image_param(&device->isl_dev, image_param_out, &surface->isl, &view); } } static VkImageAspectFlags remap_aspect_flags(VkImageAspectFlags view_aspects) { if (view_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) { if (util_bitcount(view_aspects) == 1) return VK_IMAGE_ASPECT_COLOR_BIT; VkImageAspectFlags color_aspects = 0; for (uint32_t i = 0; i < util_bitcount(view_aspects); i++) color_aspects |= VK_IMAGE_ASPECT_PLANE_0_BIT << i; return color_aspects; } /* No special remapping needed for depth & stencil aspects. */ return view_aspects; } static uint32_t anv_image_aspect_get_planes(VkImageAspectFlags aspect_mask) { uint32_t planes = 0; if (aspect_mask & (VK_IMAGE_ASPECT_COLOR_BIT | VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT | VK_IMAGE_ASPECT_PLANE_0_BIT)) planes++; if (aspect_mask & VK_IMAGE_ASPECT_PLANE_1_BIT) planes++; if (aspect_mask & VK_IMAGE_ASPECT_PLANE_2_BIT) planes++; if ((aspect_mask & VK_IMAGE_ASPECT_DEPTH_BIT) != 0 && (aspect_mask & VK_IMAGE_ASPECT_STENCIL_BIT) != 0) planes++; return planes; } VkResult anv_CreateImageView(VkDevice _device, const VkImageViewCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkImageView *pView) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_image, image, pCreateInfo->image); struct anv_image_view *iview; iview = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*iview), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (iview == NULL) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); vk_object_base_init(&device->vk, &iview->base, VK_OBJECT_TYPE_IMAGE_VIEW); const VkImageSubresourceRange *range = &pCreateInfo->subresourceRange; assert(range->layerCount > 0); assert(range->baseMipLevel < image->levels); /* Check if a conversion info was passed. */ const struct anv_format *conv_format = NULL; const VkSamplerYcbcrConversionInfo *conv_info = vk_find_struct_const(pCreateInfo->pNext, SAMPLER_YCBCR_CONVERSION_INFO); /* If image has an external format, the pNext chain must contain an instance of * VKSamplerYcbcrConversionInfo with a conversion object created with the same * external format as image." */ assert(!image->external_format || conv_info); if (conv_info) { ANV_FROM_HANDLE(anv_ycbcr_conversion, conversion, conv_info->conversion); conv_format = conversion->format; } VkImageUsageFlags image_usage = image->usage; if (range->aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) { assert(!(range->aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV)); /* From the Vulkan 1.2.131 spec: * * "If the image was has a depth-stencil format and was created with * a VkImageStencilUsageCreateInfo structure included in the pNext * chain of VkImageCreateInfo, the usage is calculated based on the * subresource.aspectMask provided: * * - If aspectMask includes only VK_IMAGE_ASPECT_STENCIL_BIT, the * implicit usage is equal to * VkImageStencilUsageCreateInfo::stencilUsage. * * - If aspectMask includes only VK_IMAGE_ASPECT_DEPTH_BIT, the * implicit usage is equal to VkImageCreateInfo::usage. * * - If both aspects are included in aspectMask, the implicit usage * is equal to the intersection of VkImageCreateInfo::usage and * VkImageStencilUsageCreateInfo::stencilUsage. */ if (range->aspectMask == VK_IMAGE_ASPECT_STENCIL_BIT) { image_usage = image->stencil_usage; } else if (range->aspectMask == VK_IMAGE_ASPECT_DEPTH_BIT) { image_usage = image->usage; } else { assert(range->aspectMask == (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)); image_usage = image->usage & image->stencil_usage; } } const VkImageViewUsageCreateInfo *usage_info = vk_find_struct_const(pCreateInfo, IMAGE_VIEW_USAGE_CREATE_INFO); VkImageUsageFlags view_usage = usage_info ? usage_info->usage : image_usage; /* View usage should be a subset of image usage */ assert((view_usage & ~image_usage) == 0); assert(view_usage & (VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT | VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)); switch (image->type) { default: unreachable("bad VkImageType"); case VK_IMAGE_TYPE_1D: case VK_IMAGE_TYPE_2D: assert(range->baseArrayLayer + anv_get_layerCount(image, range) - 1 <= image->array_size); break; case VK_IMAGE_TYPE_3D: assert(range->baseArrayLayer + anv_get_layerCount(image, range) - 1 <= anv_minify(image->extent.depth, range->baseMipLevel)); break; } /* First expand aspects to the image's ones (for example * VK_IMAGE_ASPECT_COLOR_BIT will be converted to * VK_IMAGE_ASPECT_PLANE_0_BIT | VK_IMAGE_ASPECT_PLANE_1_BIT | * VK_IMAGE_ASPECT_PLANE_2_BIT for an image of format * VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM. */ VkImageAspectFlags expanded_aspects = anv_image_expand_aspects(image, range->aspectMask); iview->image = image; /* Remap the expanded aspects for the image view. For example if only * VK_IMAGE_ASPECT_PLANE_1_BIT was given in range->aspectMask, we will * convert it to VK_IMAGE_ASPECT_COLOR_BIT since from the point of view of * the image view, it only has a single plane. */ iview->aspect_mask = remap_aspect_flags(expanded_aspects); iview->n_planes = anv_image_aspect_get_planes(iview->aspect_mask); iview->vk_format = pCreateInfo->format; /* "If image has an external format, format must be VK_FORMAT_UNDEFINED." */ assert(!image->external_format || pCreateInfo->format == VK_FORMAT_UNDEFINED); /* Format is undefined, this can happen when using external formats. Set * view format from the passed conversion info. */ if (iview->vk_format == VK_FORMAT_UNDEFINED && conv_format) iview->vk_format = conv_format->vk_format; iview->extent = (VkExtent3D) { .width = anv_minify(image->extent.width , range->baseMipLevel), .height = anv_minify(image->extent.height, range->baseMipLevel), .depth = anv_minify(image->extent.depth , range->baseMipLevel), }; /* Now go through the underlying image selected planes (computed in * expanded_aspects) and map them to planes in the image view. */ uint32_t iaspect_bit, vplane = 0; anv_foreach_image_aspect_bit(iaspect_bit, image, expanded_aspects) { uint32_t iplane = anv_image_aspect_to_plane(image->aspects, 1UL << iaspect_bit); VkImageAspectFlags vplane_aspect = anv_plane_to_aspect(iview->aspect_mask, vplane); struct anv_format_plane format = anv_get_format_plane(&device->info, iview->vk_format, vplane_aspect, image->tiling); iview->planes[vplane].image_plane = iplane; iview->planes[vplane].isl = (struct isl_view) { .format = format.isl_format, .base_level = range->baseMipLevel, .levels = anv_get_levelCount(image, range), .base_array_layer = range->baseArrayLayer, .array_len = anv_get_layerCount(image, range), .swizzle = { .r = remap_swizzle(pCreateInfo->components.r, VK_COMPONENT_SWIZZLE_R, format.swizzle), .g = remap_swizzle(pCreateInfo->components.g, VK_COMPONENT_SWIZZLE_G, format.swizzle), .b = remap_swizzle(pCreateInfo->components.b, VK_COMPONENT_SWIZZLE_B, format.swizzle), .a = remap_swizzle(pCreateInfo->components.a, VK_COMPONENT_SWIZZLE_A, format.swizzle), }, }; if (pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_3D) { iview->planes[vplane].isl.base_array_layer = 0; iview->planes[vplane].isl.array_len = iview->extent.depth; } if (pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE || pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY) { iview->planes[vplane].isl.usage = ISL_SURF_USAGE_CUBE_BIT; } else { iview->planes[vplane].isl.usage = 0; } if (view_usage & VK_IMAGE_USAGE_SAMPLED_BIT || (view_usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT && !(iview->aspect_mask & VK_IMAGE_ASPECT_COLOR_BIT))) { iview->planes[vplane].optimal_sampler_surface_state.state = alloc_surface_state(device); iview->planes[vplane].general_sampler_surface_state.state = alloc_surface_state(device); enum isl_aux_usage general_aux_usage = anv_layout_to_aux_usage(&device->info, image, 1UL << iaspect_bit, VK_IMAGE_USAGE_SAMPLED_BIT, VK_IMAGE_LAYOUT_GENERAL); enum isl_aux_usage optimal_aux_usage = anv_layout_to_aux_usage(&device->info, image, 1UL << iaspect_bit, VK_IMAGE_USAGE_SAMPLED_BIT, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit, &iview->planes[vplane].isl, ISL_SURF_USAGE_TEXTURE_BIT, optimal_aux_usage, NULL, ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL, &iview->planes[vplane].optimal_sampler_surface_state, NULL); anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit, &iview->planes[vplane].isl, ISL_SURF_USAGE_TEXTURE_BIT, general_aux_usage, NULL, 0, &iview->planes[vplane].general_sampler_surface_state, NULL); } /* NOTE: This one needs to go last since it may stomp isl_view.format */ if (view_usage & VK_IMAGE_USAGE_STORAGE_BIT) { iview->planes[vplane].storage_surface_state.state = alloc_surface_state(device); iview->planes[vplane].writeonly_storage_surface_state.state = alloc_surface_state(device); anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit, &iview->planes[vplane].isl, ISL_SURF_USAGE_STORAGE_BIT, ISL_AUX_USAGE_NONE, NULL, 0, &iview->planes[vplane].storage_surface_state, &iview->planes[vplane].storage_image_param); anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit, &iview->planes[vplane].isl, ISL_SURF_USAGE_STORAGE_BIT, ISL_AUX_USAGE_NONE, NULL, ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY, &iview->planes[vplane].writeonly_storage_surface_state, NULL); } vplane++; } *pView = anv_image_view_to_handle(iview); return VK_SUCCESS; } void anv_DestroyImageView(VkDevice _device, VkImageView _iview, const VkAllocationCallbacks *pAllocator) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_image_view, iview, _iview); if (!iview) return; for (uint32_t plane = 0; plane < iview->n_planes; plane++) { if (iview->planes[plane].optimal_sampler_surface_state.state.alloc_size > 0) { anv_state_pool_free(&device->surface_state_pool, iview->planes[plane].optimal_sampler_surface_state.state); } if (iview->planes[plane].general_sampler_surface_state.state.alloc_size > 0) { anv_state_pool_free(&device->surface_state_pool, iview->planes[plane].general_sampler_surface_state.state); } if (iview->planes[plane].storage_surface_state.state.alloc_size > 0) { anv_state_pool_free(&device->surface_state_pool, iview->planes[plane].storage_surface_state.state); } if (iview->planes[plane].writeonly_storage_surface_state.state.alloc_size > 0) { anv_state_pool_free(&device->surface_state_pool, iview->planes[plane].writeonly_storage_surface_state.state); } } vk_object_base_finish(&iview->base); vk_free2(&device->vk.alloc, pAllocator, iview); } VkResult anv_CreateBufferView(VkDevice _device, const VkBufferViewCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkBufferView *pView) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_buffer, buffer, pCreateInfo->buffer); struct anv_buffer_view *view; view = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*view), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!view) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); /* TODO: Handle the format swizzle? */ vk_object_base_init(&device->vk, &view->base, VK_OBJECT_TYPE_BUFFER_VIEW); view->format = anv_get_isl_format(&device->info, pCreateInfo->format, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_TILING_LINEAR); const uint32_t format_bs = isl_format_get_layout(view->format)->bpb / 8; view->range = anv_buffer_get_range(buffer, pCreateInfo->offset, pCreateInfo->range); view->range = align_down_npot_u32(view->range, format_bs); view->address = anv_address_add(buffer->address, pCreateInfo->offset); if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT) { view->surface_state = alloc_surface_state(device); anv_fill_buffer_surface_state(device, view->surface_state, view->format, ISL_SURF_USAGE_TEXTURE_BIT, view->address, view->range, format_bs); } else { view->surface_state = (struct anv_state){ 0 }; } if (buffer->usage & VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT) { view->storage_surface_state = alloc_surface_state(device); view->writeonly_storage_surface_state = alloc_surface_state(device); enum isl_format storage_format = isl_has_matching_typed_storage_image_format(&device->info, view->format) ? isl_lower_storage_image_format(&device->info, view->format) : ISL_FORMAT_RAW; anv_fill_buffer_surface_state(device, view->storage_surface_state, storage_format, ISL_SURF_USAGE_STORAGE_BIT, view->address, view->range, (storage_format == ISL_FORMAT_RAW ? 1 : isl_format_get_layout(storage_format)->bpb / 8)); /* Write-only accesses should use the original format. */ anv_fill_buffer_surface_state(device, view->writeonly_storage_surface_state, view->format, ISL_SURF_USAGE_STORAGE_BIT, view->address, view->range, isl_format_get_layout(view->format)->bpb / 8); isl_buffer_fill_image_param(&device->isl_dev, &view->storage_image_param, view->format, view->range); } else { view->storage_surface_state = (struct anv_state){ 0 }; view->writeonly_storage_surface_state = (struct anv_state){ 0 }; } *pView = anv_buffer_view_to_handle(view); return VK_SUCCESS; } void anv_DestroyBufferView(VkDevice _device, VkBufferView bufferView, const VkAllocationCallbacks *pAllocator) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_buffer_view, view, bufferView); if (!view) return; if (view->surface_state.alloc_size > 0) anv_state_pool_free(&device->surface_state_pool, view->surface_state); if (view->storage_surface_state.alloc_size > 0) anv_state_pool_free(&device->surface_state_pool, view->storage_surface_state); if (view->writeonly_storage_surface_state.alloc_size > 0) anv_state_pool_free(&device->surface_state_pool, view->writeonly_storage_surface_state); vk_object_base_finish(&view->base); vk_free2(&device->vk.alloc, pAllocator, view); }