/* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /** * \file lower_instructions.cpp * * Many GPUs lack native instructions for certain expression operations, and * must replace them with some other expression tree. This pass lowers some * of the most common cases, allowing the lowering code to be implemented once * rather than in each driver backend. * * Currently supported transformations: * - SUB_TO_ADD_NEG * - DIV_TO_MUL_RCP * - INT_DIV_TO_MUL_RCP * - EXP_TO_EXP2 * - POW_TO_EXP2 * - LOG_TO_LOG2 * - MOD_TO_FRACT * * SUB_TO_ADD_NEG: * --------------- * Breaks an ir_binop_sub expression down to add(op0, neg(op1)) * * This simplifies expression reassociation, and for many backends * there is no subtract operation separate from adding the negation. * For backends with native subtract operations, they will probably * want to recognize add(op0, neg(op1)) or the other way around to * produce a subtract anyway. * * DIV_TO_MUL_RCP and INT_DIV_TO_MUL_RCP: * -------------------------------------- * Breaks an ir_binop_div expression down to op0 * (rcp(op1)). * * Many GPUs don't have a divide instruction (945 and 965 included), * but they do have an RCP instruction to compute an approximate * reciprocal. By breaking the operation down, constant reciprocals * can get constant folded. * * DIV_TO_MUL_RCP only lowers floating point division; INT_DIV_TO_MUL_RCP * handles the integer case, converting to and from floating point so that * RCP is possible. * * EXP_TO_EXP2 and LOG_TO_LOG2: * ---------------------------- * Many GPUs don't have a base e log or exponent instruction, but they * do have base 2 versions, so this pass converts exp and log to exp2 * and log2 operations. * * POW_TO_EXP2: * ----------- * Many older GPUs don't have an x**y instruction. For these GPUs, convert * x**y to 2**(y * log2(x)). * * MOD_TO_FRACT: * ------------- * Breaks an ir_binop_mod expression down to (op1 * fract(op0 / op1)) * * Many GPUs don't have a MOD instruction (945 and 965 included), and * if we have to break it down like this anyway, it gives an * opportunity to do things like constant fold the (1.0 / op1) easily. */ #include "main/core.h" /* for M_LOG2E */ #include "glsl_types.h" #include "ir.h" #include "ir_optimization.h" class lower_instructions_visitor : public ir_hierarchical_visitor { public: lower_instructions_visitor(unsigned lower) : progress(false), lower(lower) { } ir_visitor_status visit_leave(ir_expression *); bool progress; private: unsigned lower; /** Bitfield of which operations to lower */ void sub_to_add_neg(ir_expression *); void div_to_mul_rcp(ir_expression *); void int_div_to_mul_rcp(ir_expression *); void mod_to_fract(ir_expression *); void exp_to_exp2(ir_expression *); void pow_to_exp2(ir_expression *); void log_to_log2(ir_expression *); }; /** * Determine if a particular type of lowering should occur */ #define lowering(x) (this->lower & x) bool lower_instructions(exec_list *instructions, unsigned what_to_lower) { lower_instructions_visitor v(what_to_lower); visit_list_elements(&v, instructions); return v.progress; } void lower_instructions_visitor::sub_to_add_neg(ir_expression *ir) { ir->operation = ir_binop_add; ir->operands[1] = new(ir) ir_expression(ir_unop_neg, ir->operands[1]->type, ir->operands[1], NULL); this->progress = true; } void lower_instructions_visitor::div_to_mul_rcp(ir_expression *ir) { assert(ir->operands[1]->type->is_float()); /* New expression for the 1.0 / op1 */ ir_rvalue *expr; expr = new(ir) ir_expression(ir_unop_rcp, ir->operands[1]->type, ir->operands[1]); /* op0 / op1 -> op0 * (1.0 / op1) */ ir->operation = ir_binop_mul; ir->operands[1] = expr; this->progress = true; } void lower_instructions_visitor::int_div_to_mul_rcp(ir_expression *ir) { assert(ir->operands[1]->type->is_integer()); /* Be careful with integer division -- we need to do it as a * float and re-truncate, since rcp(n > 1) of an integer would * just be 0. */ ir_rvalue *op0, *op1; const struct glsl_type *vec_type; vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT, ir->operands[1]->type->vector_elements, ir->operands[1]->type->matrix_columns); if (ir->operands[1]->type->base_type == GLSL_TYPE_INT) op1 = new(ir) ir_expression(ir_unop_i2f, vec_type, ir->operands[1], NULL); else op1 = new(ir) ir_expression(ir_unop_u2f, vec_type, ir->operands[1], NULL); op1 = new(ir) ir_expression(ir_unop_rcp, op1->type, op1, NULL); vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT, ir->operands[0]->type->vector_elements, ir->operands[0]->type->matrix_columns); if (ir->operands[0]->type->base_type == GLSL_TYPE_INT) op0 = new(ir) ir_expression(ir_unop_i2f, vec_type, ir->operands[0], NULL); else op0 = new(ir) ir_expression(ir_unop_u2f, vec_type, ir->operands[0], NULL); vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT, ir->type->vector_elements, ir->type->matrix_columns); op0 = new(ir) ir_expression(ir_binop_mul, vec_type, op0, op1); if (ir->operands[1]->type->base_type == GLSL_TYPE_INT) { ir->operation = ir_unop_f2i; ir->operands[0] = op0; } else { ir->operation = ir_unop_i2u; ir->operands[0] = new(ir) ir_expression(ir_unop_f2i, op0); } ir->operands[1] = NULL; this->progress = true; } void lower_instructions_visitor::exp_to_exp2(ir_expression *ir) { ir_constant *log2_e = new(ir) ir_constant(float(M_LOG2E)); ir->operation = ir_unop_exp2; ir->operands[0] = new(ir) ir_expression(ir_binop_mul, ir->operands[0]->type, ir->operands[0], log2_e); this->progress = true; } void lower_instructions_visitor::pow_to_exp2(ir_expression *ir) { ir_expression *const log2_x = new(ir) ir_expression(ir_unop_log2, ir->operands[0]->type, ir->operands[0]); ir->operation = ir_unop_exp2; ir->operands[0] = new(ir) ir_expression(ir_binop_mul, ir->operands[1]->type, ir->operands[1], log2_x); ir->operands[1] = NULL; this->progress = true; } void lower_instructions_visitor::log_to_log2(ir_expression *ir) { ir->operation = ir_binop_mul; ir->operands[0] = new(ir) ir_expression(ir_unop_log2, ir->operands[0]->type, ir->operands[0], NULL); ir->operands[1] = new(ir) ir_constant(float(1.0 / M_LOG2E)); this->progress = true; } void lower_instructions_visitor::mod_to_fract(ir_expression *ir) { ir_variable *temp = new(ir) ir_variable(ir->operands[1]->type, "mod_b", ir_var_temporary); this->base_ir->insert_before(temp); ir_assignment *const assign = new(ir) ir_assignment(new(ir) ir_dereference_variable(temp), ir->operands[1], NULL); this->base_ir->insert_before(assign); ir_expression *const div_expr = new(ir) ir_expression(ir_binop_div, ir->operands[0]->type, ir->operands[0], new(ir) ir_dereference_variable(temp)); /* Don't generate new IR that would need to be lowered in an additional * pass. */ if (lowering(DIV_TO_MUL_RCP)) div_to_mul_rcp(div_expr); ir_rvalue *expr = new(ir) ir_expression(ir_unop_fract, ir->operands[0]->type, div_expr, NULL); ir->operation = ir_binop_mul; ir->operands[0] = new(ir) ir_dereference_variable(temp); ir->operands[1] = expr; this->progress = true; } ir_visitor_status lower_instructions_visitor::visit_leave(ir_expression *ir) { switch (ir->operation) { case ir_binop_sub: if (lowering(SUB_TO_ADD_NEG)) sub_to_add_neg(ir); break; case ir_binop_div: if (ir->operands[1]->type->is_integer() && lowering(INT_DIV_TO_MUL_RCP)) int_div_to_mul_rcp(ir); else if (ir->operands[1]->type->is_float() && lowering(DIV_TO_MUL_RCP)) div_to_mul_rcp(ir); break; case ir_unop_exp: if (lowering(EXP_TO_EXP2)) exp_to_exp2(ir); break; case ir_unop_log: if (lowering(LOG_TO_LOG2)) log_to_log2(ir); break; case ir_binop_mod: if (lowering(MOD_TO_FRACT) && ir->type->is_float()) mod_to_fract(ir); break; case ir_binop_pow: if (lowering(POW_TO_EXP2)) pow_to_exp2(ir); break; default: return visit_continue; } return visit_continue; }