/* * Copyright © 2009 Corbin Simpson * Copyright © 2009 Joakim Sindholt * Copyright © 2011 Marek Olšák * Copyright © 2015 Advanced Micro Devices, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS, AUTHORS * AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. */ #include "amdgpu_cs.h" #include "amdgpu_public.h" #include "util/os_file.h" #include "util/os_misc.h" #include "util/u_cpu_detect.h" #include "util/u_hash_table.h" #include "util/hash_table.h" #include "util/xmlconfig.h" #include "drm-uapi/amdgpu_drm.h" #include #include #include #include #include "ac_llvm_util.h" #include "sid.h" static struct hash_table *dev_tab = NULL; static simple_mtx_t dev_tab_mutex = _SIMPLE_MTX_INITIALIZER_NP; #if DEBUG DEBUG_GET_ONCE_BOOL_OPTION(all_bos, "RADEON_ALL_BOS", false) #endif static void handle_env_var_force_family(struct amdgpu_winsys *ws) { const char *family = debug_get_option("SI_FORCE_FAMILY", NULL); unsigned i; if (!family) return; for (i = CHIP_TAHITI; i < CHIP_LAST; i++) { if (!strcmp(family, ac_get_llvm_processor_name(i))) { /* Override family and chip_class. */ ws->info.family = i; ws->info.name = "GCN-NOOP"; if (i >= CHIP_SIENNA_CICHLID) ws->info.chip_class = GFX10_3; else if (i >= CHIP_NAVI10) ws->info.chip_class = GFX10; else if (i >= CHIP_VEGA10) ws->info.chip_class = GFX9; else if (i >= CHIP_TONGA) ws->info.chip_class = GFX8; else if (i >= CHIP_BONAIRE) ws->info.chip_class = GFX7; else ws->info.chip_class = GFX6; /* Don't submit any IBs. */ setenv("RADEON_NOOP", "1", 1); return; } } fprintf(stderr, "radeonsi: Unknown family: %s\n", family); exit(1); } /* Helper function to do the ioctls needed for setup and init. */ static bool do_winsys_init(struct amdgpu_winsys *ws, const struct pipe_screen_config *config, int fd) { if (!ac_query_gpu_info(fd, ws->dev, &ws->info, &ws->amdinfo)) goto fail; /* TODO: Enable this once the kernel handles it efficiently. */ if (ws->info.has_dedicated_vram) ws->info.has_local_buffers = false; handle_env_var_force_family(ws); ws->addrlib = ac_addrlib_create(&ws->info, &ws->info.max_alignment); if (!ws->addrlib) { fprintf(stderr, "amdgpu: Cannot create addrlib.\n"); goto fail; } ws->check_vm = strstr(debug_get_option("R600_DEBUG", ""), "check_vm") != NULL || strstr(debug_get_option("AMD_DEBUG", ""), "check_vm") != NULL; ws->noop_cs = debug_get_bool_option("RADEON_NOOP", false); #if DEBUG ws->debug_all_bos = debug_get_option_all_bos(); #endif ws->reserve_vmid = strstr(debug_get_option("R600_DEBUG", ""), "reserve_vmid") != NULL || strstr(debug_get_option("AMD_DEBUG", ""), "reserve_vmid") != NULL; ws->zero_all_vram_allocs = strstr(debug_get_option("R600_DEBUG", ""), "zerovram") != NULL || driQueryOptionb(config->options, "radeonsi_zerovram"); return true; fail: amdgpu_device_deinitialize(ws->dev); ws->dev = NULL; return false; } static void do_winsys_deinit(struct amdgpu_winsys *ws) { if (ws->reserve_vmid) amdgpu_vm_unreserve_vmid(ws->dev, 0); if (util_queue_is_initialized(&ws->cs_queue)) util_queue_destroy(&ws->cs_queue); simple_mtx_destroy(&ws->bo_fence_lock); for (unsigned i = 0; i < NUM_SLAB_ALLOCATORS; i++) { if (ws->bo_slabs[i].groups) pb_slabs_deinit(&ws->bo_slabs[i]); } pb_cache_deinit(&ws->bo_cache); _mesa_hash_table_destroy(ws->bo_export_table, NULL); simple_mtx_destroy(&ws->sws_list_lock); #if DEBUG simple_mtx_destroy(&ws->global_bo_list_lock); #endif simple_mtx_destroy(&ws->bo_export_table_lock); ac_addrlib_destroy(ws->addrlib); amdgpu_device_deinitialize(ws->dev); FREE(ws); } static void amdgpu_winsys_destroy(struct radeon_winsys *rws) { struct amdgpu_screen_winsys *sws = amdgpu_screen_winsys(rws); struct amdgpu_winsys *ws = sws->aws; bool destroy; /* When the reference counter drops to zero, remove the device pointer * from the table. * This must happen while the mutex is locked, so that * amdgpu_winsys_create in another thread doesn't get the winsys * from the table when the counter drops to 0. */ simple_mtx_lock(&dev_tab_mutex); destroy = pipe_reference(&ws->reference, NULL); if (destroy && dev_tab) { _mesa_hash_table_remove_key(dev_tab, ws->dev); if (_mesa_hash_table_num_entries(dev_tab) == 0) { _mesa_hash_table_destroy(dev_tab, NULL); dev_tab = NULL; } } simple_mtx_unlock(&dev_tab_mutex); if (destroy) do_winsys_deinit(ws); close(sws->fd); FREE(rws); } static void amdgpu_winsys_query_info(struct radeon_winsys *rws, struct radeon_info *info, bool enable_smart_access_memory, bool disable_smart_access_memory) { struct amdgpu_winsys *ws = amdgpu_winsys(rws); if (disable_smart_access_memory) ws->info.smart_access_memory = false; else if (enable_smart_access_memory && ws->info.all_vram_visible) ws->info.smart_access_memory = true; *info = ws->info; } static bool amdgpu_cs_request_feature(struct radeon_cmdbuf *rcs, enum radeon_feature_id fid, bool enable) { return false; } static uint64_t amdgpu_query_value(struct radeon_winsys *rws, enum radeon_value_id value) { struct amdgpu_winsys *ws = amdgpu_winsys(rws); struct amdgpu_heap_info heap; uint64_t retval = 0; switch (value) { case RADEON_REQUESTED_VRAM_MEMORY: return ws->allocated_vram; case RADEON_REQUESTED_GTT_MEMORY: return ws->allocated_gtt; case RADEON_MAPPED_VRAM: return ws->mapped_vram; case RADEON_MAPPED_GTT: return ws->mapped_gtt; case RADEON_SLAB_WASTED_VRAM: return ws->slab_wasted_vram; case RADEON_SLAB_WASTED_GTT: return ws->slab_wasted_gtt; case RADEON_BUFFER_WAIT_TIME_NS: return ws->buffer_wait_time; case RADEON_NUM_MAPPED_BUFFERS: return ws->num_mapped_buffers; case RADEON_TIMESTAMP: amdgpu_query_info(ws->dev, AMDGPU_INFO_TIMESTAMP, 8, &retval); return retval; case RADEON_NUM_GFX_IBS: return ws->num_gfx_IBs; case RADEON_NUM_SDMA_IBS: return ws->num_sdma_IBs; case RADEON_GFX_BO_LIST_COUNTER: return ws->gfx_bo_list_counter; case RADEON_GFX_IB_SIZE_COUNTER: return ws->gfx_ib_size_counter; case RADEON_NUM_BYTES_MOVED: amdgpu_query_info(ws->dev, AMDGPU_INFO_NUM_BYTES_MOVED, 8, &retval); return retval; case RADEON_NUM_EVICTIONS: amdgpu_query_info(ws->dev, AMDGPU_INFO_NUM_EVICTIONS, 8, &retval); return retval; case RADEON_NUM_VRAM_CPU_PAGE_FAULTS: amdgpu_query_info(ws->dev, AMDGPU_INFO_NUM_VRAM_CPU_PAGE_FAULTS, 8, &retval); return retval; case RADEON_VRAM_USAGE: amdgpu_query_heap_info(ws->dev, AMDGPU_GEM_DOMAIN_VRAM, 0, &heap); return heap.heap_usage; case RADEON_VRAM_VIS_USAGE: amdgpu_query_heap_info(ws->dev, AMDGPU_GEM_DOMAIN_VRAM, AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED, &heap); return heap.heap_usage; case RADEON_GTT_USAGE: amdgpu_query_heap_info(ws->dev, AMDGPU_GEM_DOMAIN_GTT, 0, &heap); return heap.heap_usage; case RADEON_GPU_TEMPERATURE: amdgpu_query_sensor_info(ws->dev, AMDGPU_INFO_SENSOR_GPU_TEMP, 4, &retval); return retval; case RADEON_CURRENT_SCLK: amdgpu_query_sensor_info(ws->dev, AMDGPU_INFO_SENSOR_GFX_SCLK, 4, &retval); return retval; case RADEON_CURRENT_MCLK: amdgpu_query_sensor_info(ws->dev, AMDGPU_INFO_SENSOR_GFX_MCLK, 4, &retval); return retval; case RADEON_CS_THREAD_TIME: return util_queue_get_thread_time_nano(&ws->cs_queue, 0); } return 0; } static bool amdgpu_read_registers(struct radeon_winsys *rws, unsigned reg_offset, unsigned num_registers, uint32_t *out) { struct amdgpu_winsys *ws = amdgpu_winsys(rws); return amdgpu_read_mm_registers(ws->dev, reg_offset / 4, num_registers, 0xffffffff, 0, out) == 0; } static bool amdgpu_winsys_unref(struct radeon_winsys *rws) { struct amdgpu_screen_winsys *sws = amdgpu_screen_winsys(rws); struct amdgpu_winsys *aws = sws->aws; bool ret; simple_mtx_lock(&aws->sws_list_lock); ret = pipe_reference(&sws->reference, NULL); if (ret) { struct amdgpu_screen_winsys **sws_iter; struct amdgpu_winsys *aws = sws->aws; /* Remove this amdgpu_screen_winsys from amdgpu_winsys' list, so that * amdgpu_winsys_create can't re-use it anymore */ for (sws_iter = &aws->sws_list; *sws_iter; sws_iter = &(*sws_iter)->next) { if (*sws_iter == sws) { *sws_iter = sws->next; break; } } } simple_mtx_unlock(&aws->sws_list_lock); if (ret && sws->kms_handles) { struct drm_gem_close args; hash_table_foreach(sws->kms_handles, entry) { args.handle = (uintptr_t)entry->data; drmIoctl(sws->fd, DRM_IOCTL_GEM_CLOSE, &args); } _mesa_hash_table_destroy(sws->kms_handles, NULL); } return ret; } static void amdgpu_pin_threads_to_L3_cache(struct radeon_winsys *rws, unsigned cache) { struct amdgpu_winsys *ws = amdgpu_winsys(rws); util_set_thread_affinity(ws->cs_queue.threads[0], util_get_cpu_caps()->L3_affinity_mask[cache], NULL, util_get_cpu_caps()->num_cpu_mask_bits); } static uint32_t kms_handle_hash(const void *key) { const struct amdgpu_winsys_bo *bo = key; return bo->u.real.kms_handle; } static bool kms_handle_equals(const void *a, const void *b) { return a == b; } static bool amdgpu_cs_is_secure(struct radeon_cmdbuf *rcs) { struct amdgpu_cs *cs = amdgpu_cs(rcs); return cs->csc->secure; } PUBLIC struct radeon_winsys * amdgpu_winsys_create(int fd, const struct pipe_screen_config *config, radeon_screen_create_t screen_create) { struct amdgpu_screen_winsys *ws; struct amdgpu_winsys *aws; amdgpu_device_handle dev; uint32_t drm_major, drm_minor; int r; ws = CALLOC_STRUCT(amdgpu_screen_winsys); if (!ws) return NULL; pipe_reference_init(&ws->reference, 1); ws->fd = os_dupfd_cloexec(fd); /* Look up the winsys from the dev table. */ simple_mtx_lock(&dev_tab_mutex); if (!dev_tab) dev_tab = util_hash_table_create_ptr_keys(); /* Initialize the amdgpu device. This should always return the same pointer * for the same fd. */ r = amdgpu_device_initialize(ws->fd, &drm_major, &drm_minor, &dev); if (r) { fprintf(stderr, "amdgpu: amdgpu_device_initialize failed.\n"); goto fail; } /* Lookup a winsys if we have already created one for this device. */ aws = util_hash_table_get(dev_tab, dev); if (aws) { struct amdgpu_screen_winsys *sws_iter; /* Release the device handle, because we don't need it anymore. * This function is returning an existing winsys instance, which * has its own device handle. */ amdgpu_device_deinitialize(dev); simple_mtx_lock(&aws->sws_list_lock); for (sws_iter = aws->sws_list; sws_iter; sws_iter = sws_iter->next) { r = os_same_file_description(sws_iter->fd, ws->fd); if (r == 0) { close(ws->fd); FREE(ws); ws = sws_iter; pipe_reference(NULL, &ws->reference); simple_mtx_unlock(&aws->sws_list_lock); goto unlock; } else if (r < 0) { static bool logged; if (!logged) { os_log_message("amdgpu: os_same_file_description couldn't " "determine if two DRM fds reference the same " "file description.\n" "If they do, bad things may happen!\n"); logged = true; } } } simple_mtx_unlock(&aws->sws_list_lock); ws->kms_handles = _mesa_hash_table_create(NULL, kms_handle_hash, kms_handle_equals); if (!ws->kms_handles) goto fail; pipe_reference(NULL, &aws->reference); } else { /* Create a new winsys. */ aws = CALLOC_STRUCT(amdgpu_winsys); if (!aws) goto fail; aws->dev = dev; aws->fd = ws->fd; aws->info.drm_major = drm_major; aws->info.drm_minor = drm_minor; aws->dummy_ws.aws = aws; /* only the pointer is used */ if (!do_winsys_init(aws, config, fd)) goto fail_alloc; /* Create managers. */ pb_cache_init(&aws->bo_cache, RADEON_MAX_CACHED_HEAPS, 500000, aws->check_vm ? 1.0f : 2.0f, 0, (aws->info.vram_size + aws->info.gart_size) / 8, aws, /* Cast to void* because one of the function parameters * is a struct pointer instead of void*. */ (void*)amdgpu_bo_destroy, (void*)amdgpu_bo_can_reclaim); unsigned min_slab_order = 8; /* 256 bytes */ unsigned max_slab_order = 20; /* 1 MB (slab size = 2 MB) */ unsigned num_slab_orders_per_allocator = (max_slab_order - min_slab_order) / NUM_SLAB_ALLOCATORS; /* Divide the size order range among slab managers. */ for (unsigned i = 0; i < NUM_SLAB_ALLOCATORS; i++) { unsigned min_order = min_slab_order; unsigned max_order = MIN2(min_order + num_slab_orders_per_allocator, max_slab_order); if (!pb_slabs_init(&aws->bo_slabs[i], min_order, max_order, RADEON_MAX_SLAB_HEAPS, true, aws, amdgpu_bo_can_reclaim_slab, amdgpu_bo_slab_alloc_normal, /* Cast to void* because one of the function parameters * is a struct pointer instead of void*. */ (void*)amdgpu_bo_slab_free)) { amdgpu_winsys_destroy(&ws->base); simple_mtx_unlock(&dev_tab_mutex); return NULL; } if (aws->info.has_tmz_support && !pb_slabs_init(&aws->bo_slabs_encrypted[i], min_order, max_order, RADEON_MAX_SLAB_HEAPS, true, aws, amdgpu_bo_can_reclaim_slab, amdgpu_bo_slab_alloc_encrypted, /* Cast to void* because one of the function parameters * is a struct pointer instead of void*. */ (void*)amdgpu_bo_slab_free)) { amdgpu_winsys_destroy(&ws->base); simple_mtx_unlock(&dev_tab_mutex); return NULL; } min_slab_order = max_order + 1; } aws->info.min_alloc_size = 1 << aws->bo_slabs[0].min_order; /* init reference */ pipe_reference_init(&aws->reference, 1); #if DEBUG list_inithead(&aws->global_bo_list); #endif aws->bo_export_table = util_hash_table_create_ptr_keys(); (void) simple_mtx_init(&aws->sws_list_lock, mtx_plain); #if DEBUG (void) simple_mtx_init(&aws->global_bo_list_lock, mtx_plain); #endif (void) simple_mtx_init(&aws->bo_fence_lock, mtx_plain); (void) simple_mtx_init(&aws->bo_export_table_lock, mtx_plain); if (!util_queue_init(&aws->cs_queue, "cs", 8, 1, UTIL_QUEUE_INIT_RESIZE_IF_FULL)) { amdgpu_winsys_destroy(&ws->base); simple_mtx_unlock(&dev_tab_mutex); return NULL; } _mesa_hash_table_insert(dev_tab, dev, aws); if (aws->reserve_vmid) { r = amdgpu_vm_reserve_vmid(dev, 0); if (r) { amdgpu_winsys_destroy(&ws->base); simple_mtx_unlock(&dev_tab_mutex); return NULL; } } } ws->aws = aws; /* Set functions. */ ws->base.unref = amdgpu_winsys_unref; ws->base.destroy = amdgpu_winsys_destroy; ws->base.query_info = amdgpu_winsys_query_info; ws->base.cs_request_feature = amdgpu_cs_request_feature; ws->base.query_value = amdgpu_query_value; ws->base.read_registers = amdgpu_read_registers; ws->base.pin_threads_to_L3_cache = amdgpu_pin_threads_to_L3_cache; ws->base.cs_is_secure = amdgpu_cs_is_secure; amdgpu_bo_init_functions(ws); amdgpu_cs_init_functions(ws); amdgpu_surface_init_functions(ws); simple_mtx_lock(&aws->sws_list_lock); ws->next = aws->sws_list; aws->sws_list = ws; simple_mtx_unlock(&aws->sws_list_lock); /* Create the screen at the end. The winsys must be initialized * completely. * * Alternatively, we could create the screen based on "ws->gen" * and link all drivers into one binary blob. */ ws->base.screen = screen_create(&ws->base, config); if (!ws->base.screen) { amdgpu_winsys_destroy(&ws->base); simple_mtx_unlock(&dev_tab_mutex); return NULL; } unlock: /* We must unlock the mutex once the winsys is fully initialized, so that * other threads attempting to create the winsys from the same fd will * get a fully initialized winsys and not just half-way initialized. */ simple_mtx_unlock(&dev_tab_mutex); return &ws->base; fail_alloc: FREE(aws); fail: if (ws->kms_handles) _mesa_hash_table_destroy(ws->kms_handles, NULL); close(ws->fd); FREE(ws); simple_mtx_unlock(&dev_tab_mutex); return NULL; }