/* * Copyright © 2008 Jérôme Glisse * Copyright © 2010 Marek Olšák * Copyright © 2015 Advanced Micro Devices, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS, AUTHORS * AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. */ #include "amdgpu_cs.h" #include "util/os_time.h" #include #include #include "amd/common/sid.h" /* FENCES */ static struct pipe_fence_handle * amdgpu_fence_create(struct amdgpu_ctx *ctx, unsigned ip_type, unsigned ip_instance, unsigned ring) { struct amdgpu_fence *fence = CALLOC_STRUCT(amdgpu_fence); fence->reference.count = 1; fence->ws = ctx->ws; fence->ctx = ctx; fence->fence.context = ctx->ctx; fence->fence.ip_type = ip_type; fence->fence.ip_instance = ip_instance; fence->fence.ring = ring; util_queue_fence_init(&fence->submitted); util_queue_fence_reset(&fence->submitted); p_atomic_inc(&ctx->refcount); return (struct pipe_fence_handle *)fence; } static struct pipe_fence_handle * amdgpu_fence_import_syncobj(struct radeon_winsys *rws, int fd) { struct amdgpu_winsys *ws = amdgpu_winsys(rws); struct amdgpu_fence *fence = CALLOC_STRUCT(amdgpu_fence); int r; if (!fence) return NULL; pipe_reference_init(&fence->reference, 1); fence->ws = ws; r = amdgpu_cs_import_syncobj(ws->dev, fd, &fence->syncobj); if (r) { FREE(fence); return NULL; } util_queue_fence_init(&fence->submitted); assert(amdgpu_fence_is_syncobj(fence)); return (struct pipe_fence_handle*)fence; } static struct pipe_fence_handle * amdgpu_fence_import_sync_file(struct radeon_winsys *rws, int fd) { struct amdgpu_winsys *ws = amdgpu_winsys(rws); struct amdgpu_fence *fence = CALLOC_STRUCT(amdgpu_fence); if (!fence) return NULL; pipe_reference_init(&fence->reference, 1); fence->ws = ws; /* fence->ctx == NULL means that the fence is syncobj-based. */ /* Convert sync_file into syncobj. */ int r = amdgpu_cs_create_syncobj(ws->dev, &fence->syncobj); if (r) { FREE(fence); return NULL; } r = amdgpu_cs_syncobj_import_sync_file(ws->dev, fence->syncobj, fd); if (r) { amdgpu_cs_destroy_syncobj(ws->dev, fence->syncobj); FREE(fence); return NULL; } util_queue_fence_init(&fence->submitted); return (struct pipe_fence_handle*)fence; } static int amdgpu_fence_export_sync_file(struct radeon_winsys *rws, struct pipe_fence_handle *pfence) { struct amdgpu_winsys *ws = amdgpu_winsys(rws); struct amdgpu_fence *fence = (struct amdgpu_fence*)pfence; if (amdgpu_fence_is_syncobj(fence)) { int fd, r; /* Convert syncobj into sync_file. */ r = amdgpu_cs_syncobj_export_sync_file(ws->dev, fence->syncobj, &fd); return r ? -1 : fd; } util_queue_fence_wait(&fence->submitted); /* Convert the amdgpu fence into a fence FD. */ int fd; if (amdgpu_cs_fence_to_handle(ws->dev, &fence->fence, AMDGPU_FENCE_TO_HANDLE_GET_SYNC_FILE_FD, (uint32_t*)&fd)) return -1; return fd; } static int amdgpu_export_signalled_sync_file(struct radeon_winsys *rws) { struct amdgpu_winsys *ws = amdgpu_winsys(rws); uint32_t syncobj; int fd = -1; int r = amdgpu_cs_create_syncobj2(ws->dev, DRM_SYNCOBJ_CREATE_SIGNALED, &syncobj); if (r) { return -1; } r = amdgpu_cs_syncobj_export_sync_file(ws->dev, syncobj, &fd); if (r) { fd = -1; } amdgpu_cs_destroy_syncobj(ws->dev, syncobj); return fd; } static void amdgpu_fence_submitted(struct pipe_fence_handle *fence, uint64_t seq_no, uint64_t *user_fence_cpu_address) { struct amdgpu_fence *afence = (struct amdgpu_fence*)fence; afence->fence.fence = seq_no; afence->user_fence_cpu_address = user_fence_cpu_address; util_queue_fence_signal(&afence->submitted); } static void amdgpu_fence_signalled(struct pipe_fence_handle *fence) { struct amdgpu_fence *afence = (struct amdgpu_fence*)fence; afence->signalled = true; util_queue_fence_signal(&afence->submitted); } bool amdgpu_fence_wait(struct pipe_fence_handle *fence, uint64_t timeout, bool absolute) { struct amdgpu_fence *afence = (struct amdgpu_fence*)fence; uint32_t expired; int64_t abs_timeout; uint64_t *user_fence_cpu; int r; if (afence->signalled) return true; if (absolute) abs_timeout = timeout; else abs_timeout = os_time_get_absolute_timeout(timeout); /* Handle syncobjs. */ if (amdgpu_fence_is_syncobj(afence)) { if (abs_timeout == OS_TIMEOUT_INFINITE) abs_timeout = INT64_MAX; if (amdgpu_cs_syncobj_wait(afence->ws->dev, &afence->syncobj, 1, abs_timeout, 0, NULL)) return false; afence->signalled = true; return true; } /* The fence might not have a number assigned if its IB is being * submitted in the other thread right now. Wait until the submission * is done. */ if (!util_queue_fence_wait_timeout(&afence->submitted, abs_timeout)) return false; user_fence_cpu = afence->user_fence_cpu_address; if (user_fence_cpu) { if (*user_fence_cpu >= afence->fence.fence) { afence->signalled = true; return true; } /* No timeout, just query: no need for the ioctl. */ if (!absolute && !timeout) return false; } /* Now use the libdrm query. */ r = amdgpu_cs_query_fence_status(&afence->fence, abs_timeout, AMDGPU_QUERY_FENCE_TIMEOUT_IS_ABSOLUTE, &expired); if (r) { fprintf(stderr, "amdgpu: amdgpu_cs_query_fence_status failed.\n"); return false; } if (expired) { /* This variable can only transition from false to true, so it doesn't * matter if threads race for it. */ afence->signalled = true; return true; } return false; } static bool amdgpu_fence_wait_rel_timeout(struct radeon_winsys *rws, struct pipe_fence_handle *fence, uint64_t timeout) { return amdgpu_fence_wait(fence, timeout, false); } static struct pipe_fence_handle * amdgpu_cs_get_next_fence(struct radeon_cmdbuf *rcs) { struct amdgpu_cs *cs = amdgpu_cs(rcs); struct pipe_fence_handle *fence = NULL; if (cs->noop) return NULL; if (cs->next_fence) { amdgpu_fence_reference(&fence, cs->next_fence); return fence; } fence = amdgpu_fence_create(cs->ctx, cs->csc->ib[IB_MAIN].ip_type, cs->csc->ib[IB_MAIN].ip_instance, cs->csc->ib[IB_MAIN].ring); if (!fence) return NULL; amdgpu_fence_reference(&cs->next_fence, fence); return fence; } /* CONTEXTS */ static struct radeon_winsys_ctx *amdgpu_ctx_create(struct radeon_winsys *ws) { struct amdgpu_ctx *ctx = CALLOC_STRUCT(amdgpu_ctx); int r; struct amdgpu_bo_alloc_request alloc_buffer = {}; amdgpu_bo_handle buf_handle; if (!ctx) return NULL; ctx->ws = amdgpu_winsys(ws); ctx->refcount = 1; ctx->initial_num_total_rejected_cs = ctx->ws->num_total_rejected_cs; r = amdgpu_cs_ctx_create(ctx->ws->dev, &ctx->ctx); if (r) { fprintf(stderr, "amdgpu: amdgpu_cs_ctx_create failed. (%i)\n", r); goto error_create; } alloc_buffer.alloc_size = ctx->ws->info.gart_page_size; alloc_buffer.phys_alignment = ctx->ws->info.gart_page_size; alloc_buffer.preferred_heap = AMDGPU_GEM_DOMAIN_GTT; r = amdgpu_bo_alloc(ctx->ws->dev, &alloc_buffer, &buf_handle); if (r) { fprintf(stderr, "amdgpu: amdgpu_bo_alloc failed. (%i)\n", r); goto error_user_fence_alloc; } r = amdgpu_bo_cpu_map(buf_handle, (void**)&ctx->user_fence_cpu_address_base); if (r) { fprintf(stderr, "amdgpu: amdgpu_bo_cpu_map failed. (%i)\n", r); goto error_user_fence_map; } memset(ctx->user_fence_cpu_address_base, 0, alloc_buffer.alloc_size); ctx->user_fence_bo = buf_handle; return (struct radeon_winsys_ctx*)ctx; error_user_fence_map: amdgpu_bo_free(buf_handle); error_user_fence_alloc: amdgpu_cs_ctx_free(ctx->ctx); error_create: FREE(ctx); return NULL; } static void amdgpu_ctx_destroy(struct radeon_winsys_ctx *rwctx) { amdgpu_ctx_unref((struct amdgpu_ctx*)rwctx); } static enum pipe_reset_status amdgpu_ctx_query_reset_status(struct radeon_winsys_ctx *rwctx) { struct amdgpu_ctx *ctx = (struct amdgpu_ctx*)rwctx; int r; /* Return a failure due to a GPU hang. */ if (ctx->ws->info.drm_minor >= 24) { uint64_t flags; r = amdgpu_cs_query_reset_state2(ctx->ctx, &flags); if (r) { fprintf(stderr, "amdgpu: amdgpu_cs_query_reset_state failed. (%i)\n", r); return PIPE_NO_RESET; } if (flags & AMDGPU_CTX_QUERY2_FLAGS_RESET) { if (flags & AMDGPU_CTX_QUERY2_FLAGS_GUILTY) return PIPE_GUILTY_CONTEXT_RESET; else return PIPE_INNOCENT_CONTEXT_RESET; } } else { uint32_t result, hangs; r = amdgpu_cs_query_reset_state(ctx->ctx, &result, &hangs); if (r) { fprintf(stderr, "amdgpu: amdgpu_cs_query_reset_state failed. (%i)\n", r); return PIPE_NO_RESET; } switch (result) { case AMDGPU_CTX_GUILTY_RESET: return PIPE_GUILTY_CONTEXT_RESET; case AMDGPU_CTX_INNOCENT_RESET: return PIPE_INNOCENT_CONTEXT_RESET; case AMDGPU_CTX_UNKNOWN_RESET: return PIPE_UNKNOWN_CONTEXT_RESET; } } /* Return a failure due to a rejected command submission. */ if (ctx->ws->num_total_rejected_cs > ctx->initial_num_total_rejected_cs) { return ctx->num_rejected_cs ? PIPE_GUILTY_CONTEXT_RESET : PIPE_INNOCENT_CONTEXT_RESET; } return PIPE_NO_RESET; } /* COMMAND SUBMISSION */ static bool amdgpu_cs_has_user_fence(struct amdgpu_cs_context *cs) { return cs->ib[IB_MAIN].ip_type != AMDGPU_HW_IP_UVD && cs->ib[IB_MAIN].ip_type != AMDGPU_HW_IP_VCE && cs->ib[IB_MAIN].ip_type != AMDGPU_HW_IP_UVD_ENC && cs->ib[IB_MAIN].ip_type != AMDGPU_HW_IP_VCN_DEC && cs->ib[IB_MAIN].ip_type != AMDGPU_HW_IP_VCN_ENC && cs->ib[IB_MAIN].ip_type != AMDGPU_HW_IP_VCN_JPEG; } static bool amdgpu_cs_has_chaining(struct amdgpu_cs *cs) { return cs->ws->info.chip_class >= GFX7 && (cs->ring_type == RING_GFX || cs->ring_type == RING_COMPUTE); } static unsigned amdgpu_cs_epilog_dws(struct amdgpu_cs *cs) { if (amdgpu_cs_has_chaining(cs)) return 4; /* for chaining */ return 0; } static int amdgpu_lookup_buffer(struct amdgpu_cs_context *cs, struct amdgpu_winsys_bo *bo, struct amdgpu_cs_buffer *buffers, unsigned num_buffers) { unsigned hash = bo->unique_id & (ARRAY_SIZE(cs->buffer_indices_hashlist)-1); int i = cs->buffer_indices_hashlist[hash]; /* not found or found */ if (i < 0 || (i < num_buffers && buffers[i].bo == bo)) return i; /* Hash collision, look for the BO in the list of buffers linearly. */ for (int i = num_buffers - 1; i >= 0; i--) { if (buffers[i].bo == bo) { /* Put this buffer in the hash list. * This will prevent additional hash collisions if there are * several consecutive lookup_buffer calls for the same buffer. * * Example: Assuming buffers A,B,C collide in the hash list, * the following sequence of buffers: * AAAAAAAAAAABBBBBBBBBBBBBBCCCCCCCC * will collide here: ^ and here: ^, * meaning that we should get very few collisions in the end. */ cs->buffer_indices_hashlist[hash] = i; return i; } } return -1; } int amdgpu_lookup_buffer_any_type(struct amdgpu_cs_context *cs, struct amdgpu_winsys_bo *bo) { struct amdgpu_cs_buffer *buffers; int num_buffers; if (bo->bo) { buffers = cs->real_buffers; num_buffers = cs->num_real_buffers; } else if (!(bo->base.usage & RADEON_FLAG_SPARSE)) { buffers = cs->slab_buffers; num_buffers = cs->num_slab_buffers; } else { buffers = cs->sparse_buffers; num_buffers = cs->num_sparse_buffers; } return amdgpu_lookup_buffer(cs, bo, buffers, num_buffers); } static int amdgpu_do_add_real_buffer(struct amdgpu_winsys *ws, struct amdgpu_cs_context *cs, struct amdgpu_winsys_bo *bo) { struct amdgpu_cs_buffer *buffer; int idx; /* New buffer, check if the backing array is large enough. */ if (cs->num_real_buffers >= cs->max_real_buffers) { unsigned new_max = MAX2(cs->max_real_buffers + 16, (unsigned)(cs->max_real_buffers * 1.3)); struct amdgpu_cs_buffer *new_buffers; new_buffers = MALLOC(new_max * sizeof(*new_buffers)); if (!new_buffers) { fprintf(stderr, "amdgpu_do_add_buffer: allocation failed\n"); FREE(new_buffers); return -1; } memcpy(new_buffers, cs->real_buffers, cs->num_real_buffers * sizeof(*new_buffers)); FREE(cs->real_buffers); cs->max_real_buffers = new_max; cs->real_buffers = new_buffers; } idx = cs->num_real_buffers; buffer = &cs->real_buffers[idx]; memset(buffer, 0, sizeof(*buffer)); amdgpu_winsys_bo_reference(ws, &buffer->bo, bo); cs->num_real_buffers++; return idx; } static int amdgpu_lookup_or_add_real_buffer(struct radeon_cmdbuf *rcs, struct amdgpu_cs *acs, struct amdgpu_winsys_bo *bo) { struct amdgpu_cs_context *cs = acs->csc; unsigned hash; int idx = amdgpu_lookup_buffer(cs, bo, cs->real_buffers, cs->num_real_buffers); if (idx >= 0) return idx; idx = amdgpu_do_add_real_buffer(acs->ws, cs, bo); hash = bo->unique_id & (ARRAY_SIZE(cs->buffer_indices_hashlist)-1); cs->buffer_indices_hashlist[hash] = idx; if (bo->base.placement & RADEON_DOMAIN_VRAM) rcs->used_vram_kb += bo->base.size / 1024; else if (bo->base.placement & RADEON_DOMAIN_GTT) rcs->used_gart_kb += bo->base.size / 1024; return idx; } static int amdgpu_lookup_or_add_slab_buffer(struct amdgpu_winsys *ws, struct radeon_cmdbuf *rcs, struct amdgpu_cs *acs, struct amdgpu_winsys_bo *bo) { struct amdgpu_cs_context *cs = acs->csc; struct amdgpu_cs_buffer *buffer; unsigned hash; int idx = amdgpu_lookup_buffer(cs, bo, cs->slab_buffers, cs->num_slab_buffers); int real_idx; if (idx >= 0) return idx; real_idx = amdgpu_lookup_or_add_real_buffer(rcs, acs, bo->u.slab.real); if (real_idx < 0) return -1; /* New buffer, check if the backing array is large enough. */ if (cs->num_slab_buffers >= cs->max_slab_buffers) { unsigned new_max = MAX2(cs->max_slab_buffers + 16, (unsigned)(cs->max_slab_buffers * 1.3)); struct amdgpu_cs_buffer *new_buffers; new_buffers = REALLOC(cs->slab_buffers, cs->max_slab_buffers * sizeof(*new_buffers), new_max * sizeof(*new_buffers)); if (!new_buffers) { fprintf(stderr, "amdgpu_lookup_or_add_slab_buffer: allocation failed\n"); return -1; } cs->max_slab_buffers = new_max; cs->slab_buffers = new_buffers; } idx = cs->num_slab_buffers; buffer = &cs->slab_buffers[idx]; memset(buffer, 0, sizeof(*buffer)); amdgpu_winsys_bo_reference(ws, &buffer->bo, bo); buffer->u.slab.real_idx = real_idx; cs->num_slab_buffers++; hash = bo->unique_id & (ARRAY_SIZE(cs->buffer_indices_hashlist)-1); cs->buffer_indices_hashlist[hash] = idx; return idx; } static int amdgpu_lookup_or_add_sparse_buffer(struct amdgpu_winsys *ws, struct radeon_cmdbuf *rcs, struct amdgpu_cs *acs, struct amdgpu_winsys_bo *bo) { struct amdgpu_cs_context *cs = acs->csc; struct amdgpu_cs_buffer *buffer; unsigned hash; int idx = amdgpu_lookup_buffer(cs, bo, cs->sparse_buffers, cs->num_sparse_buffers); if (idx >= 0) return idx; /* New buffer, check if the backing array is large enough. */ if (cs->num_sparse_buffers >= cs->max_sparse_buffers) { unsigned new_max = MAX2(cs->max_sparse_buffers + 16, (unsigned)(cs->max_sparse_buffers * 1.3)); struct amdgpu_cs_buffer *new_buffers; new_buffers = REALLOC(cs->sparse_buffers, cs->max_sparse_buffers * sizeof(*new_buffers), new_max * sizeof(*new_buffers)); if (!new_buffers) { fprintf(stderr, "amdgpu_lookup_or_add_sparse_buffer: allocation failed\n"); return -1; } cs->max_sparse_buffers = new_max; cs->sparse_buffers = new_buffers; } idx = cs->num_sparse_buffers; buffer = &cs->sparse_buffers[idx]; memset(buffer, 0, sizeof(*buffer)); amdgpu_winsys_bo_reference(ws, &buffer->bo, bo); cs->num_sparse_buffers++; hash = bo->unique_id & (ARRAY_SIZE(cs->buffer_indices_hashlist)-1); cs->buffer_indices_hashlist[hash] = idx; /* We delay adding the backing buffers until we really have to. However, * we cannot delay accounting for memory use. */ simple_mtx_lock(&bo->lock); list_for_each_entry(struct amdgpu_sparse_backing, backing, &bo->u.sparse.backing, list) { if (bo->base.placement & RADEON_DOMAIN_VRAM) rcs->used_vram_kb += backing->bo->base.size / 1024; else if (bo->base.placement & RADEON_DOMAIN_GTT) rcs->used_gart_kb += backing->bo->base.size / 1024; } simple_mtx_unlock(&bo->lock); return idx; } static unsigned amdgpu_cs_add_buffer(struct radeon_cmdbuf *rcs, struct pb_buffer *buf, enum radeon_bo_usage usage, enum radeon_bo_domain domains, enum radeon_bo_priority priority) { /* Don't use the "domains" parameter. Amdgpu doesn't support changing * the buffer placement during command submission. */ struct amdgpu_cs *acs = amdgpu_cs(rcs); struct amdgpu_cs_context *cs = acs->csc; struct amdgpu_winsys_bo *bo = (struct amdgpu_winsys_bo*)buf; struct amdgpu_cs_buffer *buffer; int index; /* Fast exit for no-op calls. * This is very effective with suballocators and linear uploaders that * are outside of the winsys. */ if (bo == cs->last_added_bo && (usage & cs->last_added_bo_usage) == usage && (1u << priority) & cs->last_added_bo_priority_usage) return cs->last_added_bo_index; if (!(bo->base.usage & RADEON_FLAG_SPARSE)) { if (!bo->bo) { index = amdgpu_lookup_or_add_slab_buffer(acs->ws, rcs, acs, bo); if (index < 0) return 0; buffer = &cs->slab_buffers[index]; buffer->usage |= usage; usage &= ~RADEON_USAGE_SYNCHRONIZED; index = buffer->u.slab.real_idx; } else { index = amdgpu_lookup_or_add_real_buffer(rcs, acs, bo); if (index < 0) return 0; } buffer = &cs->real_buffers[index]; } else { index = amdgpu_lookup_or_add_sparse_buffer(acs->ws, rcs, acs, bo); if (index < 0) return 0; buffer = &cs->sparse_buffers[index]; } buffer->u.real.priority_usage |= 1u << priority; buffer->usage |= usage; cs->last_added_bo = bo; cs->last_added_bo_index = index; cs->last_added_bo_usage = buffer->usage; cs->last_added_bo_priority_usage = buffer->u.real.priority_usage; return index; } static bool amdgpu_ib_new_buffer(struct amdgpu_winsys *ws, struct amdgpu_ib *ib, struct amdgpu_cs *cs) { struct pb_buffer *pb; uint8_t *mapped; unsigned buffer_size; /* Always create a buffer that is at least as large as the maximum seen IB * size, aligned to a power of two (and multiplied by 4 to reduce internal * fragmentation if chaining is not available). Limit to 512k dwords, which * is the largest power of two that fits into the size field of the * INDIRECT_BUFFER packet. */ if (amdgpu_cs_has_chaining(cs)) buffer_size = 4 *util_next_power_of_two(ib->max_ib_size); else buffer_size = 4 *util_next_power_of_two(4 * ib->max_ib_size); const unsigned min_size = MAX2(ib->max_check_space_size, 8 * 1024 * 4); const unsigned max_size = 512 * 1024 * 4; buffer_size = MIN2(buffer_size, max_size); buffer_size = MAX2(buffer_size, min_size); /* min_size is more important */ enum radeon_bo_domain domain; unsigned flags = RADEON_FLAG_NO_INTERPROCESS_SHARING; if (cs->ring_type == RING_GFX || cs->ring_type == RING_COMPUTE || cs->ring_type == RING_DMA) { domain = ws->info.smart_access_memory ? RADEON_DOMAIN_VRAM : RADEON_DOMAIN_GTT; flags |= RADEON_FLAG_32BIT | RADEON_FLAG_GTT_WC; } else { /* UVD/VCE */ /* TODO: validate that UVD/VCE don't read from IBs and enable WC or even VRAM. */ domain = RADEON_DOMAIN_GTT; } pb = amdgpu_bo_create(ws, buffer_size, ws->info.gart_page_size, domain, flags); if (!pb) return false; mapped = amdgpu_bo_map(&ws->dummy_ws.base, pb, NULL, PIPE_MAP_WRITE); if (!mapped) { radeon_bo_reference(&ws->dummy_ws.base, &pb, NULL); return false; } radeon_bo_reference(&ws->dummy_ws.base, &ib->big_ib_buffer, pb); radeon_bo_reference(&ws->dummy_ws.base, &pb, NULL); ib->ib_mapped = mapped; ib->used_ib_space = 0; return true; } static unsigned amdgpu_ib_max_submit_dwords(enum ib_type ib_type) { /* The maximum IB size including all chained IBs. */ switch (ib_type) { case IB_MAIN: /* Smaller submits means the GPU gets busy sooner and there is less * waiting for buffers and fences. Proof: * http://www.phoronix.com/scan.php?page=article&item=mesa-111-si&num=1 */ return 20 * 1024; case IB_PARALLEL_COMPUTE: /* Always chain this IB. */ return UINT_MAX; default: unreachable("bad ib_type"); } } static bool amdgpu_get_new_ib(struct amdgpu_winsys *ws, struct radeon_cmdbuf *rcs, struct amdgpu_ib *ib, struct amdgpu_cs *cs) { /* Small IBs are better than big IBs, because the GPU goes idle quicker * and there is less waiting for buffers and fences. Proof: * http://www.phoronix.com/scan.php?page=article&item=mesa-111-si&num=1 */ struct drm_amdgpu_cs_chunk_ib *info = &cs->csc->ib[ib->ib_type]; /* This is the minimum size of a contiguous IB. */ unsigned ib_size = 4 * 1024 * 4; /* Always allocate at least the size of the biggest cs_check_space call, * because precisely the last call might have requested this size. */ ib_size = MAX2(ib_size, ib->max_check_space_size); if (!amdgpu_cs_has_chaining(cs)) { ib_size = MAX2(ib_size, 4 * MIN2(util_next_power_of_two(ib->max_ib_size), amdgpu_ib_max_submit_dwords(ib->ib_type))); } ib->max_ib_size = ib->max_ib_size - ib->max_ib_size / 32; rcs->prev_dw = 0; rcs->num_prev = 0; rcs->current.cdw = 0; rcs->current.buf = NULL; /* Allocate a new buffer for IBs if the current buffer is all used. */ if (!ib->big_ib_buffer || ib->used_ib_space + ib_size > ib->big_ib_buffer->size) { if (!amdgpu_ib_new_buffer(ws, ib, cs)) return false; } info->va_start = amdgpu_winsys_bo(ib->big_ib_buffer)->va + ib->used_ib_space; info->ib_bytes = 0; /* ib_bytes is in dwords and the conversion to bytes will be done before * the CS ioctl. */ ib->ptr_ib_size = &info->ib_bytes; ib->ptr_ib_size_inside_ib = false; amdgpu_cs_add_buffer(cs->main.rcs, ib->big_ib_buffer, RADEON_USAGE_READ, 0, RADEON_PRIO_IB1); rcs->current.buf = (uint32_t*)(ib->ib_mapped + ib->used_ib_space); ib_size = ib->big_ib_buffer->size - ib->used_ib_space; rcs->current.max_dw = ib_size / 4 - amdgpu_cs_epilog_dws(cs); rcs->gpu_address = info->va_start; return true; } static void amdgpu_set_ib_size(struct radeon_cmdbuf *rcs, struct amdgpu_ib *ib) { if (ib->ptr_ib_size_inside_ib) { *ib->ptr_ib_size = rcs->current.cdw | S_3F2_CHAIN(1) | S_3F2_VALID(1); } else { *ib->ptr_ib_size = rcs->current.cdw; } } static void amdgpu_ib_finalize(struct amdgpu_winsys *ws, struct radeon_cmdbuf *rcs, struct amdgpu_ib *ib) { amdgpu_set_ib_size(rcs, ib); ib->used_ib_space += rcs->current.cdw * 4; ib->used_ib_space = align(ib->used_ib_space, ws->info.ib_alignment); ib->max_ib_size = MAX2(ib->max_ib_size, rcs->prev_dw + rcs->current.cdw); } static bool amdgpu_init_cs_context(struct amdgpu_winsys *ws, struct amdgpu_cs_context *cs, enum ring_type ring_type) { switch (ring_type) { case RING_DMA: cs->ib[IB_MAIN].ip_type = AMDGPU_HW_IP_DMA; break; case RING_UVD: cs->ib[IB_MAIN].ip_type = AMDGPU_HW_IP_UVD; break; case RING_UVD_ENC: cs->ib[IB_MAIN].ip_type = AMDGPU_HW_IP_UVD_ENC; break; case RING_VCE: cs->ib[IB_MAIN].ip_type = AMDGPU_HW_IP_VCE; break; case RING_VCN_DEC: cs->ib[IB_MAIN].ip_type = AMDGPU_HW_IP_VCN_DEC; break; case RING_VCN_ENC: cs->ib[IB_MAIN].ip_type = AMDGPU_HW_IP_VCN_ENC; break; case RING_VCN_JPEG: cs->ib[IB_MAIN].ip_type = AMDGPU_HW_IP_VCN_JPEG; break; case RING_COMPUTE: case RING_GFX: cs->ib[IB_MAIN].ip_type = ring_type == RING_GFX ? AMDGPU_HW_IP_GFX : AMDGPU_HW_IP_COMPUTE; /* The kernel shouldn't invalidate L2 and vL1. The proper place for cache * invalidation is the beginning of IBs (the previous commit does that), * because completion of an IB doesn't care about the state of GPU caches, * but the beginning of an IB does. Draw calls from multiple IBs can be * executed in parallel, so draw calls from the current IB can finish after * the next IB starts drawing, and so the cache flush at the end of IB * is always late. */ if (ws->info.drm_minor >= 26) cs->ib[IB_MAIN].flags = AMDGPU_IB_FLAG_TC_WB_NOT_INVALIDATE; break; default: assert(0); } cs->ib[IB_PARALLEL_COMPUTE].ip_type = AMDGPU_HW_IP_COMPUTE; cs->ib[IB_PARALLEL_COMPUTE].flags = AMDGPU_IB_FLAG_TC_WB_NOT_INVALIDATE; memset(cs->buffer_indices_hashlist, -1, sizeof(cs->buffer_indices_hashlist)); cs->last_added_bo = NULL; return true; } static void cleanup_fence_list(struct amdgpu_fence_list *fences) { for (unsigned i = 0; i < fences->num; i++) amdgpu_fence_reference(&fences->list[i], NULL); fences->num = 0; } static void amdgpu_cs_context_cleanup(struct amdgpu_winsys *ws, struct amdgpu_cs_context *cs) { unsigned i; for (i = 0; i < cs->num_real_buffers; i++) { amdgpu_winsys_bo_reference(ws, &cs->real_buffers[i].bo, NULL); } for (i = 0; i < cs->num_slab_buffers; i++) { amdgpu_winsys_bo_reference(ws, &cs->slab_buffers[i].bo, NULL); } for (i = 0; i < cs->num_sparse_buffers; i++) { amdgpu_winsys_bo_reference(ws, &cs->sparse_buffers[i].bo, NULL); } cleanup_fence_list(&cs->fence_dependencies); cleanup_fence_list(&cs->syncobj_dependencies); cleanup_fence_list(&cs->syncobj_to_signal); cleanup_fence_list(&cs->compute_fence_dependencies); cleanup_fence_list(&cs->compute_start_fence_dependencies); cs->num_real_buffers = 0; cs->num_slab_buffers = 0; cs->num_sparse_buffers = 0; amdgpu_fence_reference(&cs->fence, NULL); memset(cs->buffer_indices_hashlist, -1, sizeof(cs->buffer_indices_hashlist)); cs->last_added_bo = NULL; } static void amdgpu_destroy_cs_context(struct amdgpu_winsys *ws, struct amdgpu_cs_context *cs) { amdgpu_cs_context_cleanup(ws, cs); FREE(cs->real_buffers); FREE(cs->slab_buffers); FREE(cs->sparse_buffers); FREE(cs->fence_dependencies.list); FREE(cs->syncobj_dependencies.list); FREE(cs->syncobj_to_signal.list); FREE(cs->compute_fence_dependencies.list); FREE(cs->compute_start_fence_dependencies.list); } static bool amdgpu_cs_create(struct radeon_cmdbuf *rcs, struct radeon_winsys_ctx *rwctx, enum ring_type ring_type, void (*flush)(void *ctx, unsigned flags, struct pipe_fence_handle **fence), void *flush_ctx, bool stop_exec_on_failure) { struct amdgpu_ctx *ctx = (struct amdgpu_ctx*)rwctx; struct amdgpu_cs *cs; cs = CALLOC_STRUCT(amdgpu_cs); if (!cs) { return false; } util_queue_fence_init(&cs->flush_completed); cs->ws = ctx->ws; cs->ctx = ctx; cs->flush_cs = flush; cs->flush_data = flush_ctx; cs->ring_type = ring_type; cs->stop_exec_on_failure = stop_exec_on_failure; cs->noop = ctx->ws->noop_cs; struct amdgpu_cs_fence_info fence_info; fence_info.handle = cs->ctx->user_fence_bo; fence_info.offset = cs->ring_type * 4; amdgpu_cs_chunk_fence_info_to_data(&fence_info, (void*)&cs->fence_chunk); cs->main.ib_type = IB_MAIN; cs->compute_ib.ib_type = IB_PARALLEL_COMPUTE; if (!amdgpu_init_cs_context(ctx->ws, &cs->csc1, ring_type)) { FREE(cs); return false; } if (!amdgpu_init_cs_context(ctx->ws, &cs->csc2, ring_type)) { amdgpu_destroy_cs_context(ctx->ws, &cs->csc1); FREE(cs); return false; } /* Set the first submission context as current. */ cs->csc = &cs->csc1; cs->cst = &cs->csc2; cs->main.rcs = rcs; rcs->priv = cs; if (!amdgpu_get_new_ib(ctx->ws, rcs, &cs->main, cs)) { amdgpu_destroy_cs_context(ctx->ws, &cs->csc2); amdgpu_destroy_cs_context(ctx->ws, &cs->csc1); FREE(cs); rcs->priv = NULL; return false; } p_atomic_inc(&ctx->ws->num_cs); return true; } static bool amdgpu_cs_add_parallel_compute_ib(struct radeon_cmdbuf *compute_cs, struct radeon_cmdbuf *gfx_cs, bool uses_gds_ordered_append) { struct amdgpu_cs *cs = amdgpu_cs(gfx_cs); struct amdgpu_winsys *ws = cs->ws; if (cs->ring_type != RING_GFX) return false; /* only one secondary IB can be added */ if (cs->compute_ib.ib_mapped) return false; /* Allocate the compute IB. */ if (!amdgpu_get_new_ib(ws, compute_cs, &cs->compute_ib, cs)) return false; if (uses_gds_ordered_append) { cs->csc1.ib[IB_PARALLEL_COMPUTE].flags |= AMDGPU_IB_FLAG_RESET_GDS_MAX_WAVE_ID; cs->csc2.ib[IB_PARALLEL_COMPUTE].flags |= AMDGPU_IB_FLAG_RESET_GDS_MAX_WAVE_ID; } cs->compute_ib.rcs = compute_cs; compute_cs->priv = cs; return true; } static bool amdgpu_cs_setup_preemption(struct radeon_cmdbuf *rcs, const uint32_t *preamble_ib, unsigned preamble_num_dw) { struct amdgpu_cs *cs = amdgpu_cs(rcs); struct amdgpu_winsys *ws = cs->ws; struct amdgpu_cs_context *csc[2] = {&cs->csc1, &cs->csc2}; unsigned size = align(preamble_num_dw * 4, ws->info.ib_alignment); struct pb_buffer *preamble_bo; uint32_t *map; /* Create the preamble IB buffer. */ preamble_bo = amdgpu_bo_create(ws, size, ws->info.ib_alignment, RADEON_DOMAIN_VRAM, RADEON_FLAG_NO_INTERPROCESS_SHARING | RADEON_FLAG_GTT_WC | RADEON_FLAG_READ_ONLY); if (!preamble_bo) return false; map = (uint32_t*)amdgpu_bo_map(&ws->dummy_ws.base, preamble_bo, NULL, PIPE_MAP_WRITE | RADEON_MAP_TEMPORARY); if (!map) { radeon_bo_reference(&ws->dummy_ws.base, &preamble_bo, NULL); return false; } /* Upload the preamble IB. */ memcpy(map, preamble_ib, preamble_num_dw * 4); /* Pad the IB. */ uint32_t ib_pad_dw_mask = ws->info.ib_pad_dw_mask[cs->ring_type]; while (preamble_num_dw & ib_pad_dw_mask) map[preamble_num_dw++] = PKT3_NOP_PAD; amdgpu_bo_unmap(&ws->dummy_ws.base, preamble_bo); for (unsigned i = 0; i < 2; i++) { csc[i]->ib[IB_PREAMBLE] = csc[i]->ib[IB_MAIN]; csc[i]->ib[IB_PREAMBLE].flags |= AMDGPU_IB_FLAG_PREAMBLE; csc[i]->ib[IB_PREAMBLE].va_start = amdgpu_winsys_bo(preamble_bo)->va; csc[i]->ib[IB_PREAMBLE].ib_bytes = preamble_num_dw * 4; csc[i]->ib[IB_MAIN].flags |= AMDGPU_IB_FLAG_PREEMPT; } assert(!cs->preamble_ib_bo); cs->preamble_ib_bo = preamble_bo; amdgpu_cs_add_buffer(rcs, cs->preamble_ib_bo, RADEON_USAGE_READ, 0, RADEON_PRIO_IB1); return true; } static bool amdgpu_cs_validate(struct radeon_cmdbuf *rcs) { return true; } static bool amdgpu_cs_check_space(struct radeon_cmdbuf *rcs, unsigned dw, bool force_chaining) { struct amdgpu_cs *cs = amdgpu_cs(rcs); struct amdgpu_ib *ib = rcs == cs->main.rcs ? &cs->main : &cs->compute_ib; unsigned requested_size = rcs->prev_dw + rcs->current.cdw + dw; unsigned cs_epilog_dw = amdgpu_cs_epilog_dws(cs); unsigned need_byte_size = (dw + cs_epilog_dw) * 4; uint64_t va; uint32_t *new_ptr_ib_size; assert(rcs->current.cdw <= rcs->current.max_dw); /* 125% of the size for IB epilog. */ unsigned safe_byte_size = need_byte_size + need_byte_size / 4; ib->max_check_space_size = MAX2(ib->max_check_space_size, safe_byte_size); /* If force_chaining is true, we can't return. We have to chain. */ if (!force_chaining) { if (requested_size > amdgpu_ib_max_submit_dwords(ib->ib_type)) return false; ib->max_ib_size = MAX2(ib->max_ib_size, requested_size); if (rcs->current.max_dw - rcs->current.cdw >= dw) return true; } if (!amdgpu_cs_has_chaining(cs)) { assert(!force_chaining); return false; } /* Allocate a new chunk */ if (rcs->num_prev >= rcs->max_prev) { unsigned new_max_prev = MAX2(1, 2 * rcs->max_prev); struct radeon_cmdbuf_chunk *new_prev; new_prev = REALLOC(rcs->prev, sizeof(*new_prev) * rcs->max_prev, sizeof(*new_prev) * new_max_prev); if (!new_prev) return false; rcs->prev = new_prev; rcs->max_prev = new_max_prev; } if (!amdgpu_ib_new_buffer(cs->ws, ib, cs)) return false; assert(ib->used_ib_space == 0); va = amdgpu_winsys_bo(ib->big_ib_buffer)->va; /* This space was originally reserved. */ rcs->current.max_dw += cs_epilog_dw; /* Pad with NOPs but leave 4 dwords for INDIRECT_BUFFER. */ uint32_t ib_pad_dw_mask = cs->ws->info.ib_pad_dw_mask[cs->ring_type]; while ((rcs->current.cdw & ib_pad_dw_mask) != ib_pad_dw_mask - 3) radeon_emit(rcs, PKT3_NOP_PAD); radeon_emit(rcs, PKT3(PKT3_INDIRECT_BUFFER_CIK, 2, 0)); radeon_emit(rcs, va); radeon_emit(rcs, va >> 32); new_ptr_ib_size = &rcs->current.buf[rcs->current.cdw++]; assert((rcs->current.cdw & ib_pad_dw_mask) == 0); assert((rcs->current.cdw & 7) == 0); assert(rcs->current.cdw <= rcs->current.max_dw); amdgpu_set_ib_size(rcs, ib); ib->ptr_ib_size = new_ptr_ib_size; ib->ptr_ib_size_inside_ib = true; /* Hook up the new chunk */ rcs->prev[rcs->num_prev].buf = rcs->current.buf; rcs->prev[rcs->num_prev].cdw = rcs->current.cdw; rcs->prev[rcs->num_prev].max_dw = rcs->current.cdw; /* no modifications */ rcs->num_prev++; rcs->prev_dw += rcs->current.cdw; rcs->current.cdw = 0; rcs->current.buf = (uint32_t*)(ib->ib_mapped + ib->used_ib_space); rcs->current.max_dw = ib->big_ib_buffer->size / 4 - cs_epilog_dw; rcs->gpu_address = va; amdgpu_cs_add_buffer(cs->main.rcs, ib->big_ib_buffer, RADEON_USAGE_READ, 0, RADEON_PRIO_IB1); return true; } static unsigned amdgpu_cs_get_buffer_list(struct radeon_cmdbuf *rcs, struct radeon_bo_list_item *list) { struct amdgpu_cs_context *cs = amdgpu_cs(rcs)->csc; int i; if (list) { for (i = 0; i < cs->num_real_buffers; i++) { list[i].bo_size = cs->real_buffers[i].bo->base.size; list[i].vm_address = cs->real_buffers[i].bo->va; list[i].priority_usage = cs->real_buffers[i].u.real.priority_usage; } } return cs->num_real_buffers; } static void add_fence_to_list(struct amdgpu_fence_list *fences, struct amdgpu_fence *fence) { unsigned idx = fences->num++; if (idx >= fences->max) { unsigned size; const unsigned increment = 8; fences->max = idx + increment; size = fences->max * sizeof(fences->list[0]); fences->list = realloc(fences->list, size); /* Clear the newly-allocated elements. */ memset(fences->list + idx, 0, increment * sizeof(fences->list[0])); } amdgpu_fence_reference(&fences->list[idx], (struct pipe_fence_handle*)fence); } static bool is_noop_fence_dependency(struct amdgpu_cs *acs, struct amdgpu_fence *fence) { struct amdgpu_cs_context *cs = acs->csc; /* Detect no-op dependencies only when there is only 1 ring, * because IBs on one ring are always executed one at a time. * * We always want no dependency between back-to-back gfx IBs, because * we need the parallelism between IBs for good performance. */ if ((acs->ring_type == RING_GFX || acs->ws->info.num_rings[acs->ring_type] == 1) && !amdgpu_fence_is_syncobj(fence) && fence->ctx == acs->ctx && fence->fence.ip_type == cs->ib[IB_MAIN].ip_type && fence->fence.ip_instance == cs->ib[IB_MAIN].ip_instance && fence->fence.ring == cs->ib[IB_MAIN].ring) return true; return amdgpu_fence_wait((void *)fence, 0, false); } static void amdgpu_cs_add_fence_dependency(struct radeon_cmdbuf *rws, struct pipe_fence_handle *pfence, unsigned dependency_flags) { struct amdgpu_cs *acs = amdgpu_cs(rws); struct amdgpu_cs_context *cs = acs->csc; struct amdgpu_fence *fence = (struct amdgpu_fence*)pfence; util_queue_fence_wait(&fence->submitted); if (dependency_flags & RADEON_DEPENDENCY_PARALLEL_COMPUTE_ONLY) { /* Syncobjs are not needed here. */ assert(!amdgpu_fence_is_syncobj(fence)); if (acs->ws->info.has_scheduled_fence_dependency && dependency_flags & RADEON_DEPENDENCY_START_FENCE) add_fence_to_list(&cs->compute_start_fence_dependencies, fence); else add_fence_to_list(&cs->compute_fence_dependencies, fence); return; } /* Start fences are not needed here. */ assert(!(dependency_flags & RADEON_DEPENDENCY_START_FENCE)); if (is_noop_fence_dependency(acs, fence)) return; if (amdgpu_fence_is_syncobj(fence)) add_fence_to_list(&cs->syncobj_dependencies, fence); else add_fence_to_list(&cs->fence_dependencies, fence); } static void amdgpu_add_bo_fence_dependencies(struct amdgpu_cs *acs, struct amdgpu_cs_buffer *buffer) { struct amdgpu_cs_context *cs = acs->csc; struct amdgpu_winsys_bo *bo = buffer->bo; unsigned new_num_fences = 0; for (unsigned j = 0; j < bo->num_fences; ++j) { struct amdgpu_fence *bo_fence = (void *)bo->fences[j]; if (is_noop_fence_dependency(acs, bo_fence)) continue; amdgpu_fence_reference(&bo->fences[new_num_fences], bo->fences[j]); new_num_fences++; if (!(buffer->usage & RADEON_USAGE_SYNCHRONIZED)) continue; add_fence_to_list(&cs->fence_dependencies, bo_fence); } for (unsigned j = new_num_fences; j < bo->num_fences; ++j) amdgpu_fence_reference(&bo->fences[j], NULL); bo->num_fences = new_num_fences; } /* Add the given list of fences to the buffer's fence list. * * Must be called with the winsys bo_fence_lock held. */ void amdgpu_add_fences(struct amdgpu_winsys_bo *bo, unsigned num_fences, struct pipe_fence_handle **fences) { if (bo->num_fences + num_fences > bo->max_fences) { unsigned new_max_fences = MAX2(bo->num_fences + num_fences, bo->max_fences * 2); struct pipe_fence_handle **new_fences = REALLOC(bo->fences, bo->num_fences * sizeof(*new_fences), new_max_fences * sizeof(*new_fences)); if (likely(new_fences)) { bo->fences = new_fences; bo->max_fences = new_max_fences; } else { unsigned drop; fprintf(stderr, "amdgpu_add_fences: allocation failure, dropping fence(s)\n"); if (!bo->num_fences) return; bo->num_fences--; /* prefer to keep the most recent fence if possible */ amdgpu_fence_reference(&bo->fences[bo->num_fences], NULL); drop = bo->num_fences + num_fences - bo->max_fences; num_fences -= drop; fences += drop; } } for (unsigned i = 0; i < num_fences; ++i) { bo->fences[bo->num_fences] = NULL; amdgpu_fence_reference(&bo->fences[bo->num_fences], fences[i]); bo->num_fences++; } } static void amdgpu_add_fence_dependencies_bo_list(struct amdgpu_cs *acs, struct pipe_fence_handle *fence, unsigned num_buffers, struct amdgpu_cs_buffer *buffers) { for (unsigned i = 0; i < num_buffers; i++) { struct amdgpu_cs_buffer *buffer = &buffers[i]; struct amdgpu_winsys_bo *bo = buffer->bo; amdgpu_add_bo_fence_dependencies(acs, buffer); p_atomic_inc(&bo->num_active_ioctls); amdgpu_add_fences(bo, 1, &fence); } } /* Since the kernel driver doesn't synchronize execution between different * rings automatically, we have to add fence dependencies manually. */ static void amdgpu_add_fence_dependencies_bo_lists(struct amdgpu_cs *acs) { struct amdgpu_cs_context *cs = acs->csc; amdgpu_add_fence_dependencies_bo_list(acs, cs->fence, cs->num_real_buffers, cs->real_buffers); amdgpu_add_fence_dependencies_bo_list(acs, cs->fence, cs->num_slab_buffers, cs->slab_buffers); amdgpu_add_fence_dependencies_bo_list(acs, cs->fence, cs->num_sparse_buffers, cs->sparse_buffers); } static void amdgpu_cs_add_syncobj_signal(struct radeon_cmdbuf *rws, struct pipe_fence_handle *fence) { struct amdgpu_cs *acs = amdgpu_cs(rws); struct amdgpu_cs_context *cs = acs->csc; assert(amdgpu_fence_is_syncobj((struct amdgpu_fence *)fence)); add_fence_to_list(&cs->syncobj_to_signal, (struct amdgpu_fence*)fence); } /* Add backing of sparse buffers to the buffer list. * * This is done late, during submission, to keep the buffer list short before * submit, and to avoid managing fences for the backing buffers. */ static bool amdgpu_add_sparse_backing_buffers(struct amdgpu_winsys *ws, struct amdgpu_cs_context *cs) { for (unsigned i = 0; i < cs->num_sparse_buffers; ++i) { struct amdgpu_cs_buffer *buffer = &cs->sparse_buffers[i]; struct amdgpu_winsys_bo *bo = buffer->bo; simple_mtx_lock(&bo->lock); list_for_each_entry(struct amdgpu_sparse_backing, backing, &bo->u.sparse.backing, list) { /* We can directly add the buffer here, because we know that each * backing buffer occurs only once. */ int idx = amdgpu_do_add_real_buffer(ws, cs, backing->bo); if (idx < 0) { fprintf(stderr, "%s: failed to add buffer\n", __FUNCTION__); simple_mtx_unlock(&bo->lock); return false; } cs->real_buffers[idx].u.real.priority_usage = buffer->u.real.priority_usage; } simple_mtx_unlock(&bo->lock); } return true; } static void amdgpu_cs_submit_ib(void *job, int thread_index) { struct amdgpu_cs *acs = (struct amdgpu_cs*)job; struct amdgpu_winsys *ws = acs->ws; struct amdgpu_cs_context *cs = acs->cst; int i, r; uint32_t bo_list = 0; uint64_t seq_no = 0; bool has_user_fence = amdgpu_cs_has_user_fence(cs); bool use_bo_list_create = ws->info.drm_minor < 27; struct drm_amdgpu_bo_list_in bo_list_in; unsigned initial_num_real_buffers = cs->num_real_buffers; #if DEBUG /* Prepare the buffer list. */ if (ws->debug_all_bos) { /* The buffer list contains all buffers. This is a slow path that * ensures that no buffer is missing in the BO list. */ unsigned num_handles = 0; struct drm_amdgpu_bo_list_entry *list = alloca(ws->num_buffers * sizeof(struct drm_amdgpu_bo_list_entry)); struct amdgpu_winsys_bo *bo; simple_mtx_lock(&ws->global_bo_list_lock); LIST_FOR_EACH_ENTRY(bo, &ws->global_bo_list, u.real.global_list_item) { list[num_handles].bo_handle = bo->u.real.kms_handle; list[num_handles].bo_priority = 0; ++num_handles; } r = amdgpu_bo_list_create_raw(ws->dev, ws->num_buffers, list, &bo_list); simple_mtx_unlock(&ws->global_bo_list_lock); if (r) { fprintf(stderr, "amdgpu: buffer list creation failed (%d)\n", r); goto cleanup; } } else #endif { if (!amdgpu_add_sparse_backing_buffers(ws, cs)) { fprintf(stderr, "amdgpu: amdgpu_add_sparse_backing_buffers failed\n"); r = -ENOMEM; goto cleanup; } struct drm_amdgpu_bo_list_entry *list = alloca((cs->num_real_buffers + 2) * sizeof(struct drm_amdgpu_bo_list_entry)); unsigned num_handles = 0; for (i = 0; i < cs->num_real_buffers; ++i) { struct amdgpu_cs_buffer *buffer = &cs->real_buffers[i]; assert(buffer->u.real.priority_usage != 0); list[num_handles].bo_handle = buffer->bo->u.real.kms_handle; list[num_handles].bo_priority = (util_last_bit(buffer->u.real.priority_usage) - 1) / 2; ++num_handles; } if (use_bo_list_create) { /* Legacy path creating the buffer list handle and passing it to the CS ioctl. */ r = amdgpu_bo_list_create_raw(ws->dev, num_handles, list, &bo_list); if (r) { fprintf(stderr, "amdgpu: buffer list creation failed (%d)\n", r); goto cleanup; } } else { /* Standard path passing the buffer list via the CS ioctl. */ bo_list_in.operation = ~0; bo_list_in.list_handle = ~0; bo_list_in.bo_number = num_handles; bo_list_in.bo_info_size = sizeof(struct drm_amdgpu_bo_list_entry); bo_list_in.bo_info_ptr = (uint64_t)(uintptr_t)list; } } if (acs->ring_type == RING_GFX) ws->gfx_bo_list_counter += cs->num_real_buffers; if (acs->stop_exec_on_failure && acs->ctx->num_rejected_cs) { r = -ECANCELED; } else { struct drm_amdgpu_cs_chunk chunks[7]; unsigned num_chunks = 0; /* BO list */ if (!use_bo_list_create) { chunks[num_chunks].chunk_id = AMDGPU_CHUNK_ID_BO_HANDLES; chunks[num_chunks].length_dw = sizeof(struct drm_amdgpu_bo_list_in) / 4; chunks[num_chunks].chunk_data = (uintptr_t)&bo_list_in; num_chunks++; } /* Fence dependencies. */ unsigned num_dependencies = cs->fence_dependencies.num; if (num_dependencies) { struct drm_amdgpu_cs_chunk_dep *dep_chunk = alloca(num_dependencies * sizeof(*dep_chunk)); for (unsigned i = 0; i < num_dependencies; i++) { struct amdgpu_fence *fence = (struct amdgpu_fence*)cs->fence_dependencies.list[i]; assert(util_queue_fence_is_signalled(&fence->submitted)); amdgpu_cs_chunk_fence_to_dep(&fence->fence, &dep_chunk[i]); } chunks[num_chunks].chunk_id = AMDGPU_CHUNK_ID_DEPENDENCIES; chunks[num_chunks].length_dw = sizeof(dep_chunk[0]) / 4 * num_dependencies; chunks[num_chunks].chunk_data = (uintptr_t)dep_chunk; num_chunks++; } /* Syncobj dependencies. */ unsigned num_syncobj_dependencies = cs->syncobj_dependencies.num; if (num_syncobj_dependencies) { struct drm_amdgpu_cs_chunk_sem *sem_chunk = alloca(num_syncobj_dependencies * sizeof(sem_chunk[0])); for (unsigned i = 0; i < num_syncobj_dependencies; i++) { struct amdgpu_fence *fence = (struct amdgpu_fence*)cs->syncobj_dependencies.list[i]; if (!amdgpu_fence_is_syncobj(fence)) continue; assert(util_queue_fence_is_signalled(&fence->submitted)); sem_chunk[i].handle = fence->syncobj; } chunks[num_chunks].chunk_id = AMDGPU_CHUNK_ID_SYNCOBJ_IN; chunks[num_chunks].length_dw = sizeof(sem_chunk[0]) / 4 * num_syncobj_dependencies; chunks[num_chunks].chunk_data = (uintptr_t)sem_chunk; num_chunks++; } /* Submit the parallel compute IB first. */ if (cs->ib[IB_PARALLEL_COMPUTE].ib_bytes > 0) { unsigned old_num_chunks = num_chunks; /* Add compute fence dependencies. */ unsigned num_dependencies = cs->compute_fence_dependencies.num; if (num_dependencies) { struct drm_amdgpu_cs_chunk_dep *dep_chunk = alloca(num_dependencies * sizeof(*dep_chunk)); for (unsigned i = 0; i < num_dependencies; i++) { struct amdgpu_fence *fence = (struct amdgpu_fence*)cs->compute_fence_dependencies.list[i]; assert(util_queue_fence_is_signalled(&fence->submitted)); amdgpu_cs_chunk_fence_to_dep(&fence->fence, &dep_chunk[i]); } chunks[num_chunks].chunk_id = AMDGPU_CHUNK_ID_DEPENDENCIES; chunks[num_chunks].length_dw = sizeof(dep_chunk[0]) / 4 * num_dependencies; chunks[num_chunks].chunk_data = (uintptr_t)dep_chunk; num_chunks++; } /* Add compute start fence dependencies. */ unsigned num_start_dependencies = cs->compute_start_fence_dependencies.num; if (num_start_dependencies) { struct drm_amdgpu_cs_chunk_dep *dep_chunk = alloca(num_start_dependencies * sizeof(*dep_chunk)); for (unsigned i = 0; i < num_start_dependencies; i++) { struct amdgpu_fence *fence = (struct amdgpu_fence*)cs->compute_start_fence_dependencies.list[i]; assert(util_queue_fence_is_signalled(&fence->submitted)); amdgpu_cs_chunk_fence_to_dep(&fence->fence, &dep_chunk[i]); } chunks[num_chunks].chunk_id = AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES; chunks[num_chunks].length_dw = sizeof(dep_chunk[0]) / 4 * num_start_dependencies; chunks[num_chunks].chunk_data = (uintptr_t)dep_chunk; num_chunks++; } /* Convert from dwords to bytes. */ cs->ib[IB_PARALLEL_COMPUTE].ib_bytes *= 4; chunks[num_chunks].chunk_id = AMDGPU_CHUNK_ID_IB; chunks[num_chunks].length_dw = sizeof(struct drm_amdgpu_cs_chunk_ib) / 4; chunks[num_chunks].chunk_data = (uintptr_t)&cs->ib[IB_PARALLEL_COMPUTE]; num_chunks++; r = acs->noop ? 0 : amdgpu_cs_submit_raw2(ws->dev, acs->ctx->ctx, bo_list, num_chunks, chunks, NULL); if (r) goto finalize; /* Back off the compute chunks. */ num_chunks = old_num_chunks; } /* Syncobj signals. */ unsigned num_syncobj_to_signal = cs->syncobj_to_signal.num; if (num_syncobj_to_signal) { struct drm_amdgpu_cs_chunk_sem *sem_chunk = alloca(num_syncobj_to_signal * sizeof(sem_chunk[0])); for (unsigned i = 0; i < num_syncobj_to_signal; i++) { struct amdgpu_fence *fence = (struct amdgpu_fence*)cs->syncobj_to_signal.list[i]; assert(amdgpu_fence_is_syncobj(fence)); sem_chunk[i].handle = fence->syncobj; } chunks[num_chunks].chunk_id = AMDGPU_CHUNK_ID_SYNCOBJ_OUT; chunks[num_chunks].length_dw = sizeof(sem_chunk[0]) / 4 * num_syncobj_to_signal; chunks[num_chunks].chunk_data = (uintptr_t)sem_chunk; num_chunks++; } /* Fence */ if (has_user_fence) { chunks[num_chunks].chunk_id = AMDGPU_CHUNK_ID_FENCE; chunks[num_chunks].length_dw = sizeof(struct drm_amdgpu_cs_chunk_fence) / 4; chunks[num_chunks].chunk_data = (uintptr_t)&acs->fence_chunk; num_chunks++; } /* IB */ if (cs->ib[IB_PREAMBLE].ib_bytes) { chunks[num_chunks].chunk_id = AMDGPU_CHUNK_ID_IB; chunks[num_chunks].length_dw = sizeof(struct drm_amdgpu_cs_chunk_ib) / 4; chunks[num_chunks].chunk_data = (uintptr_t)&cs->ib[IB_PREAMBLE]; num_chunks++; } /* IB */ cs->ib[IB_MAIN].ib_bytes *= 4; /* Convert from dwords to bytes. */ chunks[num_chunks].chunk_id = AMDGPU_CHUNK_ID_IB; chunks[num_chunks].length_dw = sizeof(struct drm_amdgpu_cs_chunk_ib) / 4; chunks[num_chunks].chunk_data = (uintptr_t)&cs->ib[IB_MAIN]; num_chunks++; if (cs->secure) { cs->ib[IB_PREAMBLE].flags |= AMDGPU_IB_FLAGS_SECURE; cs->ib[IB_MAIN].flags |= AMDGPU_IB_FLAGS_SECURE; } else { cs->ib[IB_PREAMBLE].flags &= ~AMDGPU_IB_FLAGS_SECURE; cs->ib[IB_MAIN].flags &= ~AMDGPU_IB_FLAGS_SECURE; } assert(num_chunks <= ARRAY_SIZE(chunks)); r = acs->noop ? 0 : amdgpu_cs_submit_raw2(ws->dev, acs->ctx->ctx, bo_list, num_chunks, chunks, &seq_no); } finalize: if (r) { if (r == -ENOMEM) fprintf(stderr, "amdgpu: Not enough memory for command submission.\n"); else if (r == -ECANCELED) fprintf(stderr, "amdgpu: The CS has been cancelled because the context is lost.\n"); else fprintf(stderr, "amdgpu: The CS has been rejected, " "see dmesg for more information (%i).\n", r); acs->ctx->num_rejected_cs++; ws->num_total_rejected_cs++; } else if (!acs->noop) { /* Success. */ uint64_t *user_fence = NULL; /* Need to reserve 4 QWORD for user fence: * QWORD[0]: completed fence * QWORD[1]: preempted fence * QWORD[2]: reset fence * QWORD[3]: preempted then reset **/ if (has_user_fence) user_fence = acs->ctx->user_fence_cpu_address_base + acs->ring_type * 4; amdgpu_fence_submitted(cs->fence, seq_no, user_fence); } /* Cleanup. */ if (bo_list) amdgpu_bo_list_destroy_raw(ws->dev, bo_list); cleanup: /* If there was an error, signal the fence, because it won't be signalled * by the hardware. */ if (r || acs->noop) amdgpu_fence_signalled(cs->fence); cs->error_code = r; /* Only decrement num_active_ioctls for those buffers where we incremented it. */ for (i = 0; i < initial_num_real_buffers; i++) p_atomic_dec(&cs->real_buffers[i].bo->num_active_ioctls); for (i = 0; i < cs->num_slab_buffers; i++) p_atomic_dec(&cs->slab_buffers[i].bo->num_active_ioctls); for (i = 0; i < cs->num_sparse_buffers; i++) p_atomic_dec(&cs->sparse_buffers[i].bo->num_active_ioctls); amdgpu_cs_context_cleanup(ws, cs); } /* Make sure the previous submission is completed. */ void amdgpu_cs_sync_flush(struct radeon_cmdbuf *rcs) { struct amdgpu_cs *cs = amdgpu_cs(rcs); /* Wait for any pending ioctl of this CS to complete. */ util_queue_fence_wait(&cs->flush_completed); } static int amdgpu_cs_flush(struct radeon_cmdbuf *rcs, unsigned flags, struct pipe_fence_handle **fence) { struct amdgpu_cs *cs = amdgpu_cs(rcs); struct amdgpu_winsys *ws = cs->ws; int error_code = 0; uint32_t ib_pad_dw_mask = ws->info.ib_pad_dw_mask[cs->ring_type]; rcs->current.max_dw += amdgpu_cs_epilog_dws(cs); /* Pad the IB according to the mask. */ switch (cs->ring_type) { case RING_DMA: if (ws->info.chip_class <= GFX6) { while (rcs->current.cdw & ib_pad_dw_mask) radeon_emit(rcs, 0xf0000000); /* NOP packet */ } else { while (rcs->current.cdw & ib_pad_dw_mask) radeon_emit(rcs, 0x00000000); /* NOP packet */ } break; case RING_GFX: case RING_COMPUTE: if (ws->info.gfx_ib_pad_with_type2) { while (rcs->current.cdw & ib_pad_dw_mask) radeon_emit(rcs, PKT2_NOP_PAD); } else { while (rcs->current.cdw & ib_pad_dw_mask) radeon_emit(rcs, PKT3_NOP_PAD); } if (cs->ring_type == RING_GFX) ws->gfx_ib_size_counter += (rcs->prev_dw + rcs->current.cdw) * 4; /* Also pad secondary IBs. */ if (cs->compute_ib.ib_mapped) { while (cs->compute_ib.rcs->current.cdw & ib_pad_dw_mask) radeon_emit(cs->compute_ib.rcs, PKT3_NOP_PAD); } break; case RING_UVD: case RING_UVD_ENC: while (rcs->current.cdw & ib_pad_dw_mask) radeon_emit(rcs, 0x80000000); /* type2 nop packet */ break; case RING_VCN_JPEG: if (rcs->current.cdw % 2) assert(0); while (rcs->current.cdw & ib_pad_dw_mask) { radeon_emit(rcs, 0x60000000); /* nop packet */ radeon_emit(rcs, 0x00000000); } break; case RING_VCN_DEC: while (rcs->current.cdw & ib_pad_dw_mask) radeon_emit(rcs, 0x81ff); /* nop packet */ break; default: break; } if (rcs->current.cdw > rcs->current.max_dw) { fprintf(stderr, "amdgpu: command stream overflowed\n"); } /* If the CS is not empty or overflowed.... */ if (likely(radeon_emitted(rcs, 0) && rcs->current.cdw <= rcs->current.max_dw && !(flags & RADEON_FLUSH_NOOP))) { struct amdgpu_cs_context *cur = cs->csc; /* Set IB sizes. */ amdgpu_ib_finalize(ws, rcs, &cs->main); if (cs->compute_ib.ib_mapped) amdgpu_ib_finalize(ws, cs->compute_ib.rcs, &cs->compute_ib); /* Create a fence. */ amdgpu_fence_reference(&cur->fence, NULL); if (cs->next_fence) { /* just move the reference */ cur->fence = cs->next_fence; cs->next_fence = NULL; } else { cur->fence = amdgpu_fence_create(cs->ctx, cur->ib[IB_MAIN].ip_type, cur->ib[IB_MAIN].ip_instance, cur->ib[IB_MAIN].ring); } if (fence) amdgpu_fence_reference(fence, cur->fence); amdgpu_cs_sync_flush(rcs); /* Prepare buffers. * * This fence must be held until the submission is queued to ensure * that the order of fence dependency updates matches the order of * submissions. */ simple_mtx_lock(&ws->bo_fence_lock); amdgpu_add_fence_dependencies_bo_lists(cs); /* Swap command streams. "cst" is going to be submitted. */ cs->csc = cs->cst; cs->cst = cur; /* Submit. */ util_queue_add_job(&ws->cs_queue, cs, &cs->flush_completed, amdgpu_cs_submit_ib, NULL, 0); if (flags & RADEON_FLUSH_TOGGLE_SECURE_SUBMISSION) cs->csc->secure = !cs->cst->secure; else cs->csc->secure = cs->cst->secure; /* The submission has been queued, unlock the fence now. */ simple_mtx_unlock(&ws->bo_fence_lock); if (!(flags & PIPE_FLUSH_ASYNC)) { amdgpu_cs_sync_flush(rcs); error_code = cur->error_code; } } else { if (flags & RADEON_FLUSH_TOGGLE_SECURE_SUBMISSION) cs->csc->secure = !cs->csc->secure; amdgpu_cs_context_cleanup(ws, cs->csc); } amdgpu_get_new_ib(ws, rcs, &cs->main, cs); if (cs->compute_ib.ib_mapped) amdgpu_get_new_ib(ws, cs->compute_ib.rcs, &cs->compute_ib, cs); if (cs->preamble_ib_bo) { amdgpu_cs_add_buffer(rcs, cs->preamble_ib_bo, RADEON_USAGE_READ, 0, RADEON_PRIO_IB1); } rcs->used_gart_kb = 0; rcs->used_vram_kb = 0; if (cs->ring_type == RING_GFX) ws->num_gfx_IBs++; else if (cs->ring_type == RING_DMA) ws->num_sdma_IBs++; return error_code; } static void amdgpu_cs_destroy(struct radeon_cmdbuf *rcs) { struct amdgpu_cs *cs = amdgpu_cs(rcs); if (!cs) return; amdgpu_cs_sync_flush(rcs); util_queue_fence_destroy(&cs->flush_completed); p_atomic_dec(&cs->ws->num_cs); radeon_bo_reference(&cs->ws->dummy_ws.base, &cs->preamble_ib_bo, NULL); radeon_bo_reference(&cs->ws->dummy_ws.base, &cs->main.big_ib_buffer, NULL); FREE(rcs->prev); radeon_bo_reference(&cs->ws->dummy_ws.base, &cs->compute_ib.big_ib_buffer, NULL); if (cs->compute_ib.rcs) FREE(cs->compute_ib.rcs->prev); amdgpu_destroy_cs_context(cs->ws, &cs->csc1); amdgpu_destroy_cs_context(cs->ws, &cs->csc2); amdgpu_fence_reference(&cs->next_fence, NULL); FREE(cs); } static bool amdgpu_bo_is_referenced(struct radeon_cmdbuf *rcs, struct pb_buffer *_buf, enum radeon_bo_usage usage) { struct amdgpu_cs *cs = amdgpu_cs(rcs); struct amdgpu_winsys_bo *bo = (struct amdgpu_winsys_bo*)_buf; return amdgpu_bo_is_referenced_by_cs_with_usage(cs, bo, usage); } void amdgpu_cs_init_functions(struct amdgpu_screen_winsys *ws) { ws->base.ctx_create = amdgpu_ctx_create; ws->base.ctx_destroy = amdgpu_ctx_destroy; ws->base.ctx_query_reset_status = amdgpu_ctx_query_reset_status; ws->base.cs_create = amdgpu_cs_create; ws->base.cs_add_parallel_compute_ib = amdgpu_cs_add_parallel_compute_ib; ws->base.cs_setup_preemption = amdgpu_cs_setup_preemption; ws->base.cs_destroy = amdgpu_cs_destroy; ws->base.cs_add_buffer = amdgpu_cs_add_buffer; ws->base.cs_validate = amdgpu_cs_validate; ws->base.cs_check_space = amdgpu_cs_check_space; ws->base.cs_get_buffer_list = amdgpu_cs_get_buffer_list; ws->base.cs_flush = amdgpu_cs_flush; ws->base.cs_get_next_fence = amdgpu_cs_get_next_fence; ws->base.cs_is_buffer_referenced = amdgpu_bo_is_referenced; ws->base.cs_sync_flush = amdgpu_cs_sync_flush; ws->base.cs_add_fence_dependency = amdgpu_cs_add_fence_dependency; ws->base.cs_add_syncobj_signal = amdgpu_cs_add_syncobj_signal; ws->base.fence_wait = amdgpu_fence_wait_rel_timeout; ws->base.fence_reference = amdgpu_fence_reference; ws->base.fence_import_syncobj = amdgpu_fence_import_syncobj; ws->base.fence_import_sync_file = amdgpu_fence_import_sync_file; ws->base.fence_export_sync_file = amdgpu_fence_export_sync_file; ws->base.export_signalled_sync_file = amdgpu_export_signalled_sync_file; }