/* * Copyright © 2011 Marek Olšák * Copyright © 2015 Advanced Micro Devices, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS, AUTHORS * AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. */ #include "amdgpu_cs.h" #include "util/os_time.h" #include "state_tracker/drm_driver.h" #include #include #include #include #ifndef AMDGPU_GEM_CREATE_VM_ALWAYS_VALID #define AMDGPU_GEM_CREATE_VM_ALWAYS_VALID (1 << 6) #endif #ifndef AMDGPU_VA_RANGE_HIGH #define AMDGPU_VA_RANGE_HIGH 0x2 #endif /* Set to 1 for verbose output showing committed sparse buffer ranges. */ #define DEBUG_SPARSE_COMMITS 0 struct amdgpu_sparse_backing_chunk { uint32_t begin, end; }; static struct pb_buffer * amdgpu_bo_create(struct radeon_winsys *rws, uint64_t size, unsigned alignment, enum radeon_bo_domain domain, enum radeon_bo_flag flags); static bool amdgpu_bo_wait(struct pb_buffer *_buf, uint64_t timeout, enum radeon_bo_usage usage) { struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(_buf); struct amdgpu_winsys *ws = bo->ws; int64_t abs_timeout; if (timeout == 0) { if (p_atomic_read(&bo->num_active_ioctls)) return false; } else { abs_timeout = os_time_get_absolute_timeout(timeout); /* Wait if any ioctl is being submitted with this buffer. */ if (!os_wait_until_zero_abs_timeout(&bo->num_active_ioctls, abs_timeout)) return false; } if (bo->is_shared) { /* We can't use user fences for shared buffers, because user fences * are local to this process only. If we want to wait for all buffer * uses in all processes, we have to use amdgpu_bo_wait_for_idle. */ bool buffer_busy = true; int r; r = amdgpu_bo_wait_for_idle(bo->bo, timeout, &buffer_busy); if (r) fprintf(stderr, "%s: amdgpu_bo_wait_for_idle failed %i\n", __func__, r); return !buffer_busy; } if (timeout == 0) { unsigned idle_fences; bool buffer_idle; simple_mtx_lock(&ws->bo_fence_lock); for (idle_fences = 0; idle_fences < bo->num_fences; ++idle_fences) { if (!amdgpu_fence_wait(bo->fences[idle_fences], 0, false)) break; } /* Release the idle fences to avoid checking them again later. */ for (unsigned i = 0; i < idle_fences; ++i) amdgpu_fence_reference(&bo->fences[i], NULL); memmove(&bo->fences[0], &bo->fences[idle_fences], (bo->num_fences - idle_fences) * sizeof(*bo->fences)); bo->num_fences -= idle_fences; buffer_idle = !bo->num_fences; simple_mtx_unlock(&ws->bo_fence_lock); return buffer_idle; } else { bool buffer_idle = true; simple_mtx_lock(&ws->bo_fence_lock); while (bo->num_fences && buffer_idle) { struct pipe_fence_handle *fence = NULL; bool fence_idle = false; amdgpu_fence_reference(&fence, bo->fences[0]); /* Wait for the fence. */ simple_mtx_unlock(&ws->bo_fence_lock); if (amdgpu_fence_wait(fence, abs_timeout, true)) fence_idle = true; else buffer_idle = false; simple_mtx_lock(&ws->bo_fence_lock); /* Release an idle fence to avoid checking it again later, keeping in * mind that the fence array may have been modified by other threads. */ if (fence_idle && bo->num_fences && bo->fences[0] == fence) { amdgpu_fence_reference(&bo->fences[0], NULL); memmove(&bo->fences[0], &bo->fences[1], (bo->num_fences - 1) * sizeof(*bo->fences)); bo->num_fences--; } amdgpu_fence_reference(&fence, NULL); } simple_mtx_unlock(&ws->bo_fence_lock); return buffer_idle; } } static enum radeon_bo_domain amdgpu_bo_get_initial_domain( struct pb_buffer *buf) { return ((struct amdgpu_winsys_bo*)buf)->initial_domain; } static void amdgpu_bo_remove_fences(struct amdgpu_winsys_bo *bo) { for (unsigned i = 0; i < bo->num_fences; ++i) amdgpu_fence_reference(&bo->fences[i], NULL); FREE(bo->fences); bo->num_fences = 0; bo->max_fences = 0; } void amdgpu_bo_destroy(struct pb_buffer *_buf) { struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(_buf); struct amdgpu_winsys *ws = bo->ws; assert(bo->bo && "must not be called for slab entries"); if (ws->debug_all_bos) { simple_mtx_lock(&ws->global_bo_list_lock); LIST_DEL(&bo->u.real.global_list_item); ws->num_buffers--; simple_mtx_unlock(&ws->global_bo_list_lock); } amdgpu_bo_va_op(bo->bo, 0, bo->base.size, bo->va, 0, AMDGPU_VA_OP_UNMAP); amdgpu_va_range_free(bo->u.real.va_handle); amdgpu_bo_free(bo->bo); amdgpu_bo_remove_fences(bo); if (bo->initial_domain & RADEON_DOMAIN_VRAM) ws->allocated_vram -= align64(bo->base.size, ws->info.gart_page_size); else if (bo->initial_domain & RADEON_DOMAIN_GTT) ws->allocated_gtt -= align64(bo->base.size, ws->info.gart_page_size); if (bo->u.real.map_count >= 1) { if (bo->initial_domain & RADEON_DOMAIN_VRAM) ws->mapped_vram -= bo->base.size; else if (bo->initial_domain & RADEON_DOMAIN_GTT) ws->mapped_gtt -= bo->base.size; ws->num_mapped_buffers--; } FREE(bo); } static void amdgpu_bo_destroy_or_cache(struct pb_buffer *_buf) { struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(_buf); assert(bo->bo); /* slab buffers have a separate vtbl */ if (bo->u.real.use_reusable_pool) pb_cache_add_buffer(&bo->u.real.cache_entry); else amdgpu_bo_destroy(_buf); } static void *amdgpu_bo_map(struct pb_buffer *buf, struct radeon_cmdbuf *rcs, enum pipe_transfer_usage usage) { struct amdgpu_winsys_bo *bo = (struct amdgpu_winsys_bo*)buf; struct amdgpu_winsys_bo *real; struct amdgpu_cs *cs = (struct amdgpu_cs*)rcs; int r; void *cpu = NULL; uint64_t offset = 0; assert(!bo->sparse); /* If it's not unsynchronized bo_map, flush CS if needed and then wait. */ if (!(usage & PIPE_TRANSFER_UNSYNCHRONIZED)) { /* DONTBLOCK doesn't make sense with UNSYNCHRONIZED. */ if (usage & PIPE_TRANSFER_DONTBLOCK) { if (!(usage & PIPE_TRANSFER_WRITE)) { /* Mapping for read. * * Since we are mapping for read, we don't need to wait * if the GPU is using the buffer for read too * (neither one is changing it). * * Only check whether the buffer is being used for write. */ if (cs && amdgpu_bo_is_referenced_by_cs_with_usage(cs, bo, RADEON_USAGE_WRITE)) { cs->flush_cs(cs->flush_data, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL); return NULL; } if (!amdgpu_bo_wait((struct pb_buffer*)bo, 0, RADEON_USAGE_WRITE)) { return NULL; } } else { if (cs && amdgpu_bo_is_referenced_by_cs(cs, bo)) { cs->flush_cs(cs->flush_data, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL); return NULL; } if (!amdgpu_bo_wait((struct pb_buffer*)bo, 0, RADEON_USAGE_READWRITE)) { return NULL; } } } else { uint64_t time = os_time_get_nano(); if (!(usage & PIPE_TRANSFER_WRITE)) { /* Mapping for read. * * Since we are mapping for read, we don't need to wait * if the GPU is using the buffer for read too * (neither one is changing it). * * Only check whether the buffer is being used for write. */ if (cs) { if (amdgpu_bo_is_referenced_by_cs_with_usage(cs, bo, RADEON_USAGE_WRITE)) { cs->flush_cs(cs->flush_data, RADEON_FLUSH_START_NEXT_GFX_IB_NOW, NULL); } else { /* Try to avoid busy-waiting in amdgpu_bo_wait. */ if (p_atomic_read(&bo->num_active_ioctls)) amdgpu_cs_sync_flush(rcs); } } amdgpu_bo_wait((struct pb_buffer*)bo, PIPE_TIMEOUT_INFINITE, RADEON_USAGE_WRITE); } else { /* Mapping for write. */ if (cs) { if (amdgpu_bo_is_referenced_by_cs(cs, bo)) { cs->flush_cs(cs->flush_data, RADEON_FLUSH_START_NEXT_GFX_IB_NOW, NULL); } else { /* Try to avoid busy-waiting in amdgpu_bo_wait. */ if (p_atomic_read(&bo->num_active_ioctls)) amdgpu_cs_sync_flush(rcs); } } amdgpu_bo_wait((struct pb_buffer*)bo, PIPE_TIMEOUT_INFINITE, RADEON_USAGE_READWRITE); } bo->ws->buffer_wait_time += os_time_get_nano() - time; } } /* If the buffer is created from user memory, return the user pointer. */ if (bo->user_ptr) return bo->user_ptr; if (bo->bo) { real = bo; } else { real = bo->u.slab.real; offset = bo->va - real->va; } r = amdgpu_bo_cpu_map(real->bo, &cpu); if (r) { /* Clear the cache and try again. */ pb_cache_release_all_buffers(&real->ws->bo_cache); r = amdgpu_bo_cpu_map(real->bo, &cpu); if (r) return NULL; } if (p_atomic_inc_return(&real->u.real.map_count) == 1) { if (real->initial_domain & RADEON_DOMAIN_VRAM) real->ws->mapped_vram += real->base.size; else if (real->initial_domain & RADEON_DOMAIN_GTT) real->ws->mapped_gtt += real->base.size; real->ws->num_mapped_buffers++; } return (uint8_t*)cpu + offset; } static void amdgpu_bo_unmap(struct pb_buffer *buf) { struct amdgpu_winsys_bo *bo = (struct amdgpu_winsys_bo*)buf; struct amdgpu_winsys_bo *real; assert(!bo->sparse); if (bo->user_ptr) return; real = bo->bo ? bo : bo->u.slab.real; if (p_atomic_dec_zero(&real->u.real.map_count)) { if (real->initial_domain & RADEON_DOMAIN_VRAM) real->ws->mapped_vram -= real->base.size; else if (real->initial_domain & RADEON_DOMAIN_GTT) real->ws->mapped_gtt -= real->base.size; real->ws->num_mapped_buffers--; } amdgpu_bo_cpu_unmap(real->bo); } static const struct pb_vtbl amdgpu_winsys_bo_vtbl = { amdgpu_bo_destroy_or_cache /* other functions are never called */ }; static void amdgpu_add_buffer_to_global_list(struct amdgpu_winsys_bo *bo) { struct amdgpu_winsys *ws = bo->ws; assert(bo->bo); if (ws->debug_all_bos) { simple_mtx_lock(&ws->global_bo_list_lock); LIST_ADDTAIL(&bo->u.real.global_list_item, &ws->global_bo_list); ws->num_buffers++; simple_mtx_unlock(&ws->global_bo_list_lock); } } static struct amdgpu_winsys_bo *amdgpu_create_bo(struct amdgpu_winsys *ws, uint64_t size, unsigned alignment, enum radeon_bo_domain initial_domain, unsigned flags, int heap) { struct amdgpu_bo_alloc_request request = {0}; amdgpu_bo_handle buf_handle; uint64_t va = 0; struct amdgpu_winsys_bo *bo; amdgpu_va_handle va_handle; unsigned va_gap_size; int r; /* VRAM or GTT must be specified, but not both at the same time. */ assert(util_bitcount(initial_domain & RADEON_DOMAIN_VRAM_GTT) == 1); bo = CALLOC_STRUCT(amdgpu_winsys_bo); if (!bo) { return NULL; } if (heap >= 0) { pb_cache_init_entry(&ws->bo_cache, &bo->u.real.cache_entry, &bo->base, heap); } request.alloc_size = size; request.phys_alignment = alignment; if (initial_domain & RADEON_DOMAIN_VRAM) request.preferred_heap |= AMDGPU_GEM_DOMAIN_VRAM; if (initial_domain & RADEON_DOMAIN_GTT) request.preferred_heap |= AMDGPU_GEM_DOMAIN_GTT; /* Since VRAM and GTT have almost the same performance on APUs, we could * just set GTT. However, in order to decrease GTT(RAM) usage, which is * shared with the OS, allow VRAM placements too. The idea is not to use * VRAM usefully, but to use it so that it's not unused and wasted. */ if (!ws->info.has_dedicated_vram) request.preferred_heap |= AMDGPU_GEM_DOMAIN_GTT; if (flags & RADEON_FLAG_NO_CPU_ACCESS) request.flags |= AMDGPU_GEM_CREATE_NO_CPU_ACCESS; if (flags & RADEON_FLAG_GTT_WC) request.flags |= AMDGPU_GEM_CREATE_CPU_GTT_USWC; if (flags & RADEON_FLAG_NO_INTERPROCESS_SHARING && ws->info.has_local_buffers) request.flags |= AMDGPU_GEM_CREATE_VM_ALWAYS_VALID; if (ws->zero_all_vram_allocs && (request.preferred_heap & AMDGPU_GEM_DOMAIN_VRAM)) request.flags |= AMDGPU_GEM_CREATE_VRAM_CLEARED; r = amdgpu_bo_alloc(ws->dev, &request, &buf_handle); if (r) { fprintf(stderr, "amdgpu: Failed to allocate a buffer:\n"); fprintf(stderr, "amdgpu: size : %"PRIu64" bytes\n", size); fprintf(stderr, "amdgpu: alignment : %u bytes\n", alignment); fprintf(stderr, "amdgpu: domains : %u\n", initial_domain); goto error_bo_alloc; } va_gap_size = ws->check_vm ? MAX2(4 * alignment, 64 * 1024) : 0; if (size > ws->info.pte_fragment_size) alignment = MAX2(alignment, ws->info.pte_fragment_size); r = amdgpu_va_range_alloc(ws->dev, amdgpu_gpu_va_range_general, size + va_gap_size, alignment, 0, &va, &va_handle, (flags & RADEON_FLAG_32BIT ? AMDGPU_VA_RANGE_32_BIT : 0) | AMDGPU_VA_RANGE_HIGH); if (r) goto error_va_alloc; unsigned vm_flags = AMDGPU_VM_PAGE_READABLE | AMDGPU_VM_PAGE_EXECUTABLE; if (!(flags & RADEON_FLAG_READ_ONLY)) vm_flags |= AMDGPU_VM_PAGE_WRITEABLE; r = amdgpu_bo_va_op_raw(ws->dev, buf_handle, 0, size, va, vm_flags, AMDGPU_VA_OP_MAP); if (r) goto error_va_map; pipe_reference_init(&bo->base.reference, 1); bo->base.alignment = alignment; bo->base.usage = 0; bo->base.size = size; bo->base.vtbl = &amdgpu_winsys_bo_vtbl; bo->ws = ws; bo->bo = buf_handle; bo->va = va; bo->u.real.va_handle = va_handle; bo->initial_domain = initial_domain; bo->unique_id = __sync_fetch_and_add(&ws->next_bo_unique_id, 1); bo->is_local = !!(request.flags & AMDGPU_GEM_CREATE_VM_ALWAYS_VALID); if (initial_domain & RADEON_DOMAIN_VRAM) ws->allocated_vram += align64(size, ws->info.gart_page_size); else if (initial_domain & RADEON_DOMAIN_GTT) ws->allocated_gtt += align64(size, ws->info.gart_page_size); amdgpu_add_buffer_to_global_list(bo); return bo; error_va_map: amdgpu_va_range_free(va_handle); error_va_alloc: amdgpu_bo_free(buf_handle); error_bo_alloc: FREE(bo); return NULL; } bool amdgpu_bo_can_reclaim(struct pb_buffer *_buf) { struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(_buf); if (amdgpu_bo_is_referenced_by_any_cs(bo)) { return false; } return amdgpu_bo_wait(_buf, 0, RADEON_USAGE_READWRITE); } bool amdgpu_bo_can_reclaim_slab(void *priv, struct pb_slab_entry *entry) { struct amdgpu_winsys_bo *bo = NULL; /* fix container_of */ bo = container_of(entry, bo, u.slab.entry); return amdgpu_bo_can_reclaim(&bo->base); } static void amdgpu_bo_slab_destroy(struct pb_buffer *_buf) { struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(_buf); assert(!bo->bo); pb_slab_free(&bo->ws->bo_slabs, &bo->u.slab.entry); } static const struct pb_vtbl amdgpu_winsys_bo_slab_vtbl = { amdgpu_bo_slab_destroy /* other functions are never called */ }; struct pb_slab *amdgpu_bo_slab_alloc(void *priv, unsigned heap, unsigned entry_size, unsigned group_index) { struct amdgpu_winsys *ws = priv; struct amdgpu_slab *slab = CALLOC_STRUCT(amdgpu_slab); enum radeon_bo_domain domains = radeon_domain_from_heap(heap); enum radeon_bo_flag flags = radeon_flags_from_heap(heap); uint32_t base_id; if (!slab) return NULL; unsigned slab_size = 1 << AMDGPU_SLAB_BO_SIZE_LOG2; slab->buffer = amdgpu_winsys_bo(amdgpu_bo_create(&ws->base, slab_size, slab_size, domains, flags)); if (!slab->buffer) goto fail; assert(slab->buffer->bo); slab->base.num_entries = slab->buffer->base.size / entry_size; slab->base.num_free = slab->base.num_entries; slab->entries = CALLOC(slab->base.num_entries, sizeof(*slab->entries)); if (!slab->entries) goto fail_buffer; LIST_INITHEAD(&slab->base.free); base_id = __sync_fetch_and_add(&ws->next_bo_unique_id, slab->base.num_entries); for (unsigned i = 0; i < slab->base.num_entries; ++i) { struct amdgpu_winsys_bo *bo = &slab->entries[i]; bo->base.alignment = entry_size; bo->base.usage = slab->buffer->base.usage; bo->base.size = entry_size; bo->base.vtbl = &amdgpu_winsys_bo_slab_vtbl; bo->ws = ws; bo->va = slab->buffer->va + i * entry_size; bo->initial_domain = domains; bo->unique_id = base_id + i; bo->u.slab.entry.slab = &slab->base; bo->u.slab.entry.group_index = group_index; bo->u.slab.real = slab->buffer; LIST_ADDTAIL(&bo->u.slab.entry.head, &slab->base.free); } return &slab->base; fail_buffer: amdgpu_winsys_bo_reference(&slab->buffer, NULL); fail: FREE(slab); return NULL; } void amdgpu_bo_slab_free(void *priv, struct pb_slab *pslab) { struct amdgpu_slab *slab = amdgpu_slab(pslab); for (unsigned i = 0; i < slab->base.num_entries; ++i) amdgpu_bo_remove_fences(&slab->entries[i]); FREE(slab->entries); amdgpu_winsys_bo_reference(&slab->buffer, NULL); FREE(slab); } #if DEBUG_SPARSE_COMMITS static void sparse_dump(struct amdgpu_winsys_bo *bo, const char *func) { fprintf(stderr, "%s: %p (size=%"PRIu64", num_va_pages=%u) @ %s\n" "Commitments:\n", __func__, bo, bo->base.size, bo->u.sparse.num_va_pages, func); struct amdgpu_sparse_backing *span_backing = NULL; uint32_t span_first_backing_page = 0; uint32_t span_first_va_page = 0; uint32_t va_page = 0; for (;;) { struct amdgpu_sparse_backing *backing = 0; uint32_t backing_page = 0; if (va_page < bo->u.sparse.num_va_pages) { backing = bo->u.sparse.commitments[va_page].backing; backing_page = bo->u.sparse.commitments[va_page].page; } if (span_backing && (backing != span_backing || backing_page != span_first_backing_page + (va_page - span_first_va_page))) { fprintf(stderr, " %u..%u: backing=%p:%u..%u\n", span_first_va_page, va_page - 1, span_backing, span_first_backing_page, span_first_backing_page + (va_page - span_first_va_page) - 1); span_backing = NULL; } if (va_page >= bo->u.sparse.num_va_pages) break; if (backing && !span_backing) { span_backing = backing; span_first_backing_page = backing_page; span_first_va_page = va_page; } va_page++; } fprintf(stderr, "Backing:\n"); list_for_each_entry(struct amdgpu_sparse_backing, backing, &bo->u.sparse.backing, list) { fprintf(stderr, " %p (size=%"PRIu64")\n", backing, backing->bo->base.size); for (unsigned i = 0; i < backing->num_chunks; ++i) fprintf(stderr, " %u..%u\n", backing->chunks[i].begin, backing->chunks[i].end); } } #endif /* * Attempt to allocate the given number of backing pages. Fewer pages may be * allocated (depending on the fragmentation of existing backing buffers), * which will be reflected by a change to *pnum_pages. */ static struct amdgpu_sparse_backing * sparse_backing_alloc(struct amdgpu_winsys_bo *bo, uint32_t *pstart_page, uint32_t *pnum_pages) { struct amdgpu_sparse_backing *best_backing; unsigned best_idx; uint32_t best_num_pages; best_backing = NULL; best_idx = 0; best_num_pages = 0; /* This is a very simple and inefficient best-fit algorithm. */ list_for_each_entry(struct amdgpu_sparse_backing, backing, &bo->u.sparse.backing, list) { for (unsigned idx = 0; idx < backing->num_chunks; ++idx) { uint32_t cur_num_pages = backing->chunks[idx].end - backing->chunks[idx].begin; if ((best_num_pages < *pnum_pages && cur_num_pages > best_num_pages) || (best_num_pages > *pnum_pages && cur_num_pages < best_num_pages)) { best_backing = backing; best_idx = idx; best_num_pages = cur_num_pages; } } } /* Allocate a new backing buffer if necessary. */ if (!best_backing) { struct pb_buffer *buf; uint64_t size; uint32_t pages; best_backing = CALLOC_STRUCT(amdgpu_sparse_backing); if (!best_backing) return NULL; best_backing->max_chunks = 4; best_backing->chunks = CALLOC(best_backing->max_chunks, sizeof(*best_backing->chunks)); if (!best_backing->chunks) { FREE(best_backing); return NULL; } assert(bo->u.sparse.num_backing_pages < DIV_ROUND_UP(bo->base.size, RADEON_SPARSE_PAGE_SIZE)); size = MIN3(bo->base.size / 16, 8 * 1024 * 1024, bo->base.size - (uint64_t)bo->u.sparse.num_backing_pages * RADEON_SPARSE_PAGE_SIZE); size = MAX2(size, RADEON_SPARSE_PAGE_SIZE); buf = amdgpu_bo_create(&bo->ws->base, size, RADEON_SPARSE_PAGE_SIZE, bo->initial_domain, bo->u.sparse.flags | RADEON_FLAG_NO_SUBALLOC); if (!buf) { FREE(best_backing->chunks); FREE(best_backing); return NULL; } /* We might have gotten a bigger buffer than requested via caching. */ pages = buf->size / RADEON_SPARSE_PAGE_SIZE; best_backing->bo = amdgpu_winsys_bo(buf); best_backing->num_chunks = 1; best_backing->chunks[0].begin = 0; best_backing->chunks[0].end = pages; list_add(&best_backing->list, &bo->u.sparse.backing); bo->u.sparse.num_backing_pages += pages; best_idx = 0; best_num_pages = pages; } *pnum_pages = MIN2(*pnum_pages, best_num_pages); *pstart_page = best_backing->chunks[best_idx].begin; best_backing->chunks[best_idx].begin += *pnum_pages; if (best_backing->chunks[best_idx].begin >= best_backing->chunks[best_idx].end) { memmove(&best_backing->chunks[best_idx], &best_backing->chunks[best_idx + 1], sizeof(*best_backing->chunks) * (best_backing->num_chunks - best_idx - 1)); best_backing->num_chunks--; } return best_backing; } static void sparse_free_backing_buffer(struct amdgpu_winsys_bo *bo, struct amdgpu_sparse_backing *backing) { struct amdgpu_winsys *ws = backing->bo->ws; bo->u.sparse.num_backing_pages -= backing->bo->base.size / RADEON_SPARSE_PAGE_SIZE; simple_mtx_lock(&ws->bo_fence_lock); amdgpu_add_fences(backing->bo, bo->num_fences, bo->fences); simple_mtx_unlock(&ws->bo_fence_lock); list_del(&backing->list); amdgpu_winsys_bo_reference(&backing->bo, NULL); FREE(backing->chunks); FREE(backing); } /* * Return a range of pages from the given backing buffer back into the * free structure. */ static bool sparse_backing_free(struct amdgpu_winsys_bo *bo, struct amdgpu_sparse_backing *backing, uint32_t start_page, uint32_t num_pages) { uint32_t end_page = start_page + num_pages; unsigned low = 0; unsigned high = backing->num_chunks; /* Find the first chunk with begin >= start_page. */ while (low < high) { unsigned mid = low + (high - low) / 2; if (backing->chunks[mid].begin >= start_page) high = mid; else low = mid + 1; } assert(low >= backing->num_chunks || end_page <= backing->chunks[low].begin); assert(low == 0 || backing->chunks[low - 1].end <= start_page); if (low > 0 && backing->chunks[low - 1].end == start_page) { backing->chunks[low - 1].end = end_page; if (low < backing->num_chunks && end_page == backing->chunks[low].begin) { backing->chunks[low - 1].end = backing->chunks[low].end; memmove(&backing->chunks[low], &backing->chunks[low + 1], sizeof(*backing->chunks) * (backing->num_chunks - low - 1)); backing->num_chunks--; } } else if (low < backing->num_chunks && end_page == backing->chunks[low].begin) { backing->chunks[low].begin = start_page; } else { if (backing->num_chunks >= backing->max_chunks) { unsigned new_max_chunks = 2 * backing->max_chunks; struct amdgpu_sparse_backing_chunk *new_chunks = REALLOC(backing->chunks, sizeof(*backing->chunks) * backing->max_chunks, sizeof(*backing->chunks) * new_max_chunks); if (!new_chunks) return false; backing->max_chunks = new_max_chunks; backing->chunks = new_chunks; } memmove(&backing->chunks[low + 1], &backing->chunks[low], sizeof(*backing->chunks) * (backing->num_chunks - low)); backing->chunks[low].begin = start_page; backing->chunks[low].end = end_page; backing->num_chunks++; } if (backing->num_chunks == 1 && backing->chunks[0].begin == 0 && backing->chunks[0].end == backing->bo->base.size / RADEON_SPARSE_PAGE_SIZE) sparse_free_backing_buffer(bo, backing); return true; } static void amdgpu_bo_sparse_destroy(struct pb_buffer *_buf) { struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(_buf); int r; assert(!bo->bo && bo->sparse); r = amdgpu_bo_va_op_raw(bo->ws->dev, NULL, 0, (uint64_t)bo->u.sparse.num_va_pages * RADEON_SPARSE_PAGE_SIZE, bo->va, 0, AMDGPU_VA_OP_CLEAR); if (r) { fprintf(stderr, "amdgpu: clearing PRT VA region on destroy failed (%d)\n", r); } while (!list_empty(&bo->u.sparse.backing)) { struct amdgpu_sparse_backing *dummy = NULL; sparse_free_backing_buffer(bo, container_of(bo->u.sparse.backing.next, dummy, list)); } amdgpu_va_range_free(bo->u.sparse.va_handle); simple_mtx_destroy(&bo->u.sparse.commit_lock); FREE(bo->u.sparse.commitments); FREE(bo); } static const struct pb_vtbl amdgpu_winsys_bo_sparse_vtbl = { amdgpu_bo_sparse_destroy /* other functions are never called */ }; static struct pb_buffer * amdgpu_bo_sparse_create(struct amdgpu_winsys *ws, uint64_t size, enum radeon_bo_domain domain, enum radeon_bo_flag flags) { struct amdgpu_winsys_bo *bo; uint64_t map_size; uint64_t va_gap_size; int r; /* We use 32-bit page numbers; refuse to attempt allocating sparse buffers * that exceed this limit. This is not really a restriction: we don't have * that much virtual address space anyway. */ if (size > (uint64_t)INT32_MAX * RADEON_SPARSE_PAGE_SIZE) return NULL; bo = CALLOC_STRUCT(amdgpu_winsys_bo); if (!bo) return NULL; pipe_reference_init(&bo->base.reference, 1); bo->base.alignment = RADEON_SPARSE_PAGE_SIZE; bo->base.size = size; bo->base.vtbl = &amdgpu_winsys_bo_sparse_vtbl; bo->ws = ws; bo->initial_domain = domain; bo->unique_id = __sync_fetch_and_add(&ws->next_bo_unique_id, 1); bo->sparse = true; bo->u.sparse.flags = flags & ~RADEON_FLAG_SPARSE; bo->u.sparse.num_va_pages = DIV_ROUND_UP(size, RADEON_SPARSE_PAGE_SIZE); bo->u.sparse.commitments = CALLOC(bo->u.sparse.num_va_pages, sizeof(*bo->u.sparse.commitments)); if (!bo->u.sparse.commitments) goto error_alloc_commitments; simple_mtx_init(&bo->u.sparse.commit_lock, mtx_plain); LIST_INITHEAD(&bo->u.sparse.backing); /* For simplicity, we always map a multiple of the page size. */ map_size = align64(size, RADEON_SPARSE_PAGE_SIZE); va_gap_size = ws->check_vm ? 4 * RADEON_SPARSE_PAGE_SIZE : 0; r = amdgpu_va_range_alloc(ws->dev, amdgpu_gpu_va_range_general, map_size + va_gap_size, RADEON_SPARSE_PAGE_SIZE, 0, &bo->va, &bo->u.sparse.va_handle, AMDGPU_VA_RANGE_HIGH); if (r) goto error_va_alloc; r = amdgpu_bo_va_op_raw(bo->ws->dev, NULL, 0, size, bo->va, AMDGPU_VM_PAGE_PRT, AMDGPU_VA_OP_MAP); if (r) goto error_va_map; return &bo->base; error_va_map: amdgpu_va_range_free(bo->u.sparse.va_handle); error_va_alloc: simple_mtx_destroy(&bo->u.sparse.commit_lock); FREE(bo->u.sparse.commitments); error_alloc_commitments: FREE(bo); return NULL; } static bool amdgpu_bo_sparse_commit(struct pb_buffer *buf, uint64_t offset, uint64_t size, bool commit) { struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(buf); struct amdgpu_sparse_commitment *comm; uint32_t va_page, end_va_page; bool ok = true; int r; assert(bo->sparse); assert(offset % RADEON_SPARSE_PAGE_SIZE == 0); assert(offset <= bo->base.size); assert(size <= bo->base.size - offset); assert(size % RADEON_SPARSE_PAGE_SIZE == 0 || offset + size == bo->base.size); comm = bo->u.sparse.commitments; va_page = offset / RADEON_SPARSE_PAGE_SIZE; end_va_page = va_page + DIV_ROUND_UP(size, RADEON_SPARSE_PAGE_SIZE); simple_mtx_lock(&bo->u.sparse.commit_lock); #if DEBUG_SPARSE_COMMITS sparse_dump(bo, __func__); #endif if (commit) { while (va_page < end_va_page) { uint32_t span_va_page; /* Skip pages that are already committed. */ if (comm[va_page].backing) { va_page++; continue; } /* Determine length of uncommitted span. */ span_va_page = va_page; while (va_page < end_va_page && !comm[va_page].backing) va_page++; /* Fill the uncommitted span with chunks of backing memory. */ while (span_va_page < va_page) { struct amdgpu_sparse_backing *backing; uint32_t backing_start, backing_size; backing_size = va_page - span_va_page; backing = sparse_backing_alloc(bo, &backing_start, &backing_size); if (!backing) { ok = false; goto out; } r = amdgpu_bo_va_op_raw(bo->ws->dev, backing->bo->bo, (uint64_t)backing_start * RADEON_SPARSE_PAGE_SIZE, (uint64_t)backing_size * RADEON_SPARSE_PAGE_SIZE, bo->va + (uint64_t)span_va_page * RADEON_SPARSE_PAGE_SIZE, AMDGPU_VM_PAGE_READABLE | AMDGPU_VM_PAGE_WRITEABLE | AMDGPU_VM_PAGE_EXECUTABLE, AMDGPU_VA_OP_REPLACE); if (r) { ok = sparse_backing_free(bo, backing, backing_start, backing_size); assert(ok && "sufficient memory should already be allocated"); ok = false; goto out; } while (backing_size) { comm[span_va_page].backing = backing; comm[span_va_page].page = backing_start; span_va_page++; backing_start++; backing_size--; } } } } else { r = amdgpu_bo_va_op_raw(bo->ws->dev, NULL, 0, (uint64_t)(end_va_page - va_page) * RADEON_SPARSE_PAGE_SIZE, bo->va + (uint64_t)va_page * RADEON_SPARSE_PAGE_SIZE, AMDGPU_VM_PAGE_PRT, AMDGPU_VA_OP_REPLACE); if (r) { ok = false; goto out; } while (va_page < end_va_page) { struct amdgpu_sparse_backing *backing; uint32_t backing_start; uint32_t span_pages; /* Skip pages that are already uncommitted. */ if (!comm[va_page].backing) { va_page++; continue; } /* Group contiguous spans of pages. */ backing = comm[va_page].backing; backing_start = comm[va_page].page; comm[va_page].backing = NULL; span_pages = 1; va_page++; while (va_page < end_va_page && comm[va_page].backing == backing && comm[va_page].page == backing_start + span_pages) { comm[va_page].backing = NULL; va_page++; span_pages++; } if (!sparse_backing_free(bo, backing, backing_start, span_pages)) { /* Couldn't allocate tracking data structures, so we have to leak */ fprintf(stderr, "amdgpu: leaking PRT backing memory\n"); ok = false; } } } out: simple_mtx_unlock(&bo->u.sparse.commit_lock); return ok; } static unsigned eg_tile_split(unsigned tile_split) { switch (tile_split) { case 0: tile_split = 64; break; case 1: tile_split = 128; break; case 2: tile_split = 256; break; case 3: tile_split = 512; break; default: case 4: tile_split = 1024; break; case 5: tile_split = 2048; break; case 6: tile_split = 4096; break; } return tile_split; } static unsigned eg_tile_split_rev(unsigned eg_tile_split) { switch (eg_tile_split) { case 64: return 0; case 128: return 1; case 256: return 2; case 512: return 3; default: case 1024: return 4; case 2048: return 5; case 4096: return 6; } } static void amdgpu_buffer_get_metadata(struct pb_buffer *_buf, struct radeon_bo_metadata *md) { struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(_buf); struct amdgpu_bo_info info = {0}; uint64_t tiling_flags; int r; assert(bo->bo && "must not be called for slab entries"); r = amdgpu_bo_query_info(bo->bo, &info); if (r) return; tiling_flags = info.metadata.tiling_info; if (bo->ws->info.chip_class >= GFX9) { md->u.gfx9.swizzle_mode = AMDGPU_TILING_GET(tiling_flags, SWIZZLE_MODE); } else { md->u.legacy.microtile = RADEON_LAYOUT_LINEAR; md->u.legacy.macrotile = RADEON_LAYOUT_LINEAR; if (AMDGPU_TILING_GET(tiling_flags, ARRAY_MODE) == 4) /* 2D_TILED_THIN1 */ md->u.legacy.macrotile = RADEON_LAYOUT_TILED; else if (AMDGPU_TILING_GET(tiling_flags, ARRAY_MODE) == 2) /* 1D_TILED_THIN1 */ md->u.legacy.microtile = RADEON_LAYOUT_TILED; md->u.legacy.pipe_config = AMDGPU_TILING_GET(tiling_flags, PIPE_CONFIG); md->u.legacy.bankw = 1 << AMDGPU_TILING_GET(tiling_flags, BANK_WIDTH); md->u.legacy.bankh = 1 << AMDGPU_TILING_GET(tiling_flags, BANK_HEIGHT); md->u.legacy.tile_split = eg_tile_split(AMDGPU_TILING_GET(tiling_flags, TILE_SPLIT)); md->u.legacy.mtilea = 1 << AMDGPU_TILING_GET(tiling_flags, MACRO_TILE_ASPECT); md->u.legacy.num_banks = 2 << AMDGPU_TILING_GET(tiling_flags, NUM_BANKS); md->u.legacy.scanout = AMDGPU_TILING_GET(tiling_flags, MICRO_TILE_MODE) == 0; /* DISPLAY */ } md->size_metadata = info.metadata.size_metadata; memcpy(md->metadata, info.metadata.umd_metadata, sizeof(md->metadata)); } static void amdgpu_buffer_set_metadata(struct pb_buffer *_buf, struct radeon_bo_metadata *md) { struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(_buf); struct amdgpu_bo_metadata metadata = {0}; uint64_t tiling_flags = 0; assert(bo->bo && "must not be called for slab entries"); if (bo->ws->info.chip_class >= GFX9) { tiling_flags |= AMDGPU_TILING_SET(SWIZZLE_MODE, md->u.gfx9.swizzle_mode); } else { if (md->u.legacy.macrotile == RADEON_LAYOUT_TILED) tiling_flags |= AMDGPU_TILING_SET(ARRAY_MODE, 4); /* 2D_TILED_THIN1 */ else if (md->u.legacy.microtile == RADEON_LAYOUT_TILED) tiling_flags |= AMDGPU_TILING_SET(ARRAY_MODE, 2); /* 1D_TILED_THIN1 */ else tiling_flags |= AMDGPU_TILING_SET(ARRAY_MODE, 1); /* LINEAR_ALIGNED */ tiling_flags |= AMDGPU_TILING_SET(PIPE_CONFIG, md->u.legacy.pipe_config); tiling_flags |= AMDGPU_TILING_SET(BANK_WIDTH, util_logbase2(md->u.legacy.bankw)); tiling_flags |= AMDGPU_TILING_SET(BANK_HEIGHT, util_logbase2(md->u.legacy.bankh)); if (md->u.legacy.tile_split) tiling_flags |= AMDGPU_TILING_SET(TILE_SPLIT, eg_tile_split_rev(md->u.legacy.tile_split)); tiling_flags |= AMDGPU_TILING_SET(MACRO_TILE_ASPECT, util_logbase2(md->u.legacy.mtilea)); tiling_flags |= AMDGPU_TILING_SET(NUM_BANKS, util_logbase2(md->u.legacy.num_banks)-1); if (md->u.legacy.scanout) tiling_flags |= AMDGPU_TILING_SET(MICRO_TILE_MODE, 0); /* DISPLAY_MICRO_TILING */ else tiling_flags |= AMDGPU_TILING_SET(MICRO_TILE_MODE, 1); /* THIN_MICRO_TILING */ } metadata.tiling_info = tiling_flags; metadata.size_metadata = md->size_metadata; memcpy(metadata.umd_metadata, md->metadata, sizeof(md->metadata)); amdgpu_bo_set_metadata(bo->bo, &metadata); } static struct pb_buffer * amdgpu_bo_create(struct radeon_winsys *rws, uint64_t size, unsigned alignment, enum radeon_bo_domain domain, enum radeon_bo_flag flags) { struct amdgpu_winsys *ws = amdgpu_winsys(rws); struct amdgpu_winsys_bo *bo; int heap = -1; /* VRAM implies WC. This is not optional. */ assert(!(domain & RADEON_DOMAIN_VRAM) || flags & RADEON_FLAG_GTT_WC); /* NO_CPU_ACCESS is valid with VRAM only. */ assert(domain == RADEON_DOMAIN_VRAM || !(flags & RADEON_FLAG_NO_CPU_ACCESS)); /* Sparse buffers must have NO_CPU_ACCESS set. */ assert(!(flags & RADEON_FLAG_SPARSE) || flags & RADEON_FLAG_NO_CPU_ACCESS); /* Sub-allocate small buffers from slabs. */ if (!(flags & (RADEON_FLAG_NO_SUBALLOC | RADEON_FLAG_SPARSE)) && size <= (1 << AMDGPU_SLAB_MAX_SIZE_LOG2) && alignment <= MAX2(1 << AMDGPU_SLAB_MIN_SIZE_LOG2, util_next_power_of_two(size))) { struct pb_slab_entry *entry; int heap = radeon_get_heap_index(domain, flags); if (heap < 0 || heap >= RADEON_MAX_SLAB_HEAPS) goto no_slab; entry = pb_slab_alloc(&ws->bo_slabs, size, heap); if (!entry) { /* Clear the cache and try again. */ pb_cache_release_all_buffers(&ws->bo_cache); entry = pb_slab_alloc(&ws->bo_slabs, size, heap); } if (!entry) return NULL; bo = NULL; bo = container_of(entry, bo, u.slab.entry); pipe_reference_init(&bo->base.reference, 1); return &bo->base; } no_slab: if (flags & RADEON_FLAG_SPARSE) { assert(RADEON_SPARSE_PAGE_SIZE % alignment == 0); return amdgpu_bo_sparse_create(ws, size, domain, flags); } /* This flag is irrelevant for the cache. */ flags &= ~RADEON_FLAG_NO_SUBALLOC; /* Align size to page size. This is the minimum alignment for normal * BOs. Aligning this here helps the cached bufmgr. Especially small BOs, * like constant/uniform buffers, can benefit from better and more reuse. */ size = align64(size, ws->info.gart_page_size); alignment = align(alignment, ws->info.gart_page_size); bool use_reusable_pool = flags & RADEON_FLAG_NO_INTERPROCESS_SHARING; if (use_reusable_pool) { heap = radeon_get_heap_index(domain, flags); assert(heap >= 0 && heap < RADEON_MAX_CACHED_HEAPS); /* Get a buffer from the cache. */ bo = (struct amdgpu_winsys_bo*) pb_cache_reclaim_buffer(&ws->bo_cache, size, alignment, 0, heap); if (bo) return &bo->base; } /* Create a new one. */ bo = amdgpu_create_bo(ws, size, alignment, domain, flags, heap); if (!bo) { /* Clear the cache and try again. */ pb_slabs_reclaim(&ws->bo_slabs); pb_cache_release_all_buffers(&ws->bo_cache); bo = amdgpu_create_bo(ws, size, alignment, domain, flags, heap); if (!bo) return NULL; } bo->u.real.use_reusable_pool = use_reusable_pool; return &bo->base; } static struct pb_buffer *amdgpu_bo_from_handle(struct radeon_winsys *rws, struct winsys_handle *whandle, unsigned *stride, unsigned *offset) { struct amdgpu_winsys *ws = amdgpu_winsys(rws); struct amdgpu_winsys_bo *bo = NULL; enum amdgpu_bo_handle_type type; struct amdgpu_bo_import_result result = {0}; uint64_t va; amdgpu_va_handle va_handle = NULL; struct amdgpu_bo_info info = {0}; enum radeon_bo_domain initial = 0; int r; switch (whandle->type) { case WINSYS_HANDLE_TYPE_SHARED: type = amdgpu_bo_handle_type_gem_flink_name; break; case WINSYS_HANDLE_TYPE_FD: type = amdgpu_bo_handle_type_dma_buf_fd; break; default: return NULL; } r = amdgpu_bo_import(ws->dev, type, whandle->handle, &result); if (r) return NULL; /* Get initial domains. */ r = amdgpu_bo_query_info(result.buf_handle, &info); if (r) goto error; r = amdgpu_va_range_alloc(ws->dev, amdgpu_gpu_va_range_general, result.alloc_size, 1 << 20, 0, &va, &va_handle, AMDGPU_VA_RANGE_HIGH); if (r) goto error; bo = CALLOC_STRUCT(amdgpu_winsys_bo); if (!bo) goto error; r = amdgpu_bo_va_op(result.buf_handle, 0, result.alloc_size, va, 0, AMDGPU_VA_OP_MAP); if (r) goto error; if (info.preferred_heap & AMDGPU_GEM_DOMAIN_VRAM) initial |= RADEON_DOMAIN_VRAM; if (info.preferred_heap & AMDGPU_GEM_DOMAIN_GTT) initial |= RADEON_DOMAIN_GTT; /* Initialize the structure. */ pipe_reference_init(&bo->base.reference, 1); bo->base.alignment = info.phys_alignment; bo->bo = result.buf_handle; bo->base.size = result.alloc_size; bo->base.vtbl = &amdgpu_winsys_bo_vtbl; bo->ws = ws; bo->va = va; bo->u.real.va_handle = va_handle; bo->initial_domain = initial; bo->unique_id = __sync_fetch_and_add(&ws->next_bo_unique_id, 1); bo->is_shared = true; if (stride) *stride = whandle->stride; if (offset) *offset = whandle->offset; if (bo->initial_domain & RADEON_DOMAIN_VRAM) ws->allocated_vram += align64(bo->base.size, ws->info.gart_page_size); else if (bo->initial_domain & RADEON_DOMAIN_GTT) ws->allocated_gtt += align64(bo->base.size, ws->info.gart_page_size); amdgpu_add_buffer_to_global_list(bo); return &bo->base; error: if (bo) FREE(bo); if (va_handle) amdgpu_va_range_free(va_handle); amdgpu_bo_free(result.buf_handle); return NULL; } static bool amdgpu_bo_get_handle(struct pb_buffer *buffer, unsigned stride, unsigned offset, unsigned slice_size, struct winsys_handle *whandle) { struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(buffer); enum amdgpu_bo_handle_type type; int r; /* Don't allow exports of slab entries and sparse buffers. */ if (!bo->bo) return false; bo->u.real.use_reusable_pool = false; switch (whandle->type) { case WINSYS_HANDLE_TYPE_SHARED: type = amdgpu_bo_handle_type_gem_flink_name; break; case WINSYS_HANDLE_TYPE_FD: type = amdgpu_bo_handle_type_dma_buf_fd; break; case WINSYS_HANDLE_TYPE_KMS: type = amdgpu_bo_handle_type_kms; break; default: return false; } r = amdgpu_bo_export(bo->bo, type, &whandle->handle); if (r) return false; whandle->stride = stride; whandle->offset = offset; whandle->offset += slice_size * whandle->layer; bo->is_shared = true; return true; } static struct pb_buffer *amdgpu_bo_from_ptr(struct radeon_winsys *rws, void *pointer, uint64_t size) { struct amdgpu_winsys *ws = amdgpu_winsys(rws); amdgpu_bo_handle buf_handle; struct amdgpu_winsys_bo *bo; uint64_t va; amdgpu_va_handle va_handle; /* Avoid failure when the size is not page aligned */ uint64_t aligned_size = align64(size, ws->info.gart_page_size); bo = CALLOC_STRUCT(amdgpu_winsys_bo); if (!bo) return NULL; if (amdgpu_create_bo_from_user_mem(ws->dev, pointer, aligned_size, &buf_handle)) goto error; if (amdgpu_va_range_alloc(ws->dev, amdgpu_gpu_va_range_general, aligned_size, 1 << 12, 0, &va, &va_handle, AMDGPU_VA_RANGE_HIGH)) goto error_va_alloc; if (amdgpu_bo_va_op(buf_handle, 0, aligned_size, va, 0, AMDGPU_VA_OP_MAP)) goto error_va_map; /* Initialize it. */ pipe_reference_init(&bo->base.reference, 1); bo->bo = buf_handle; bo->base.alignment = 0; bo->base.size = size; bo->base.vtbl = &amdgpu_winsys_bo_vtbl; bo->ws = ws; bo->user_ptr = pointer; bo->va = va; bo->u.real.va_handle = va_handle; bo->initial_domain = RADEON_DOMAIN_GTT; bo->unique_id = __sync_fetch_and_add(&ws->next_bo_unique_id, 1); ws->allocated_gtt += aligned_size; amdgpu_add_buffer_to_global_list(bo); return (struct pb_buffer*)bo; error_va_map: amdgpu_va_range_free(va_handle); error_va_alloc: amdgpu_bo_free(buf_handle); error: FREE(bo); return NULL; } static bool amdgpu_bo_is_user_ptr(struct pb_buffer *buf) { return ((struct amdgpu_winsys_bo*)buf)->user_ptr != NULL; } static bool amdgpu_bo_is_suballocated(struct pb_buffer *buf) { struct amdgpu_winsys_bo *bo = (struct amdgpu_winsys_bo*)buf; return !bo->bo && !bo->sparse; } static uint64_t amdgpu_bo_get_va(struct pb_buffer *buf) { return ((struct amdgpu_winsys_bo*)buf)->va; } void amdgpu_bo_init_functions(struct amdgpu_winsys *ws) { ws->base.buffer_set_metadata = amdgpu_buffer_set_metadata; ws->base.buffer_get_metadata = amdgpu_buffer_get_metadata; ws->base.buffer_map = amdgpu_bo_map; ws->base.buffer_unmap = amdgpu_bo_unmap; ws->base.buffer_wait = amdgpu_bo_wait; ws->base.buffer_create = amdgpu_bo_create; ws->base.buffer_from_handle = amdgpu_bo_from_handle; ws->base.buffer_from_ptr = amdgpu_bo_from_ptr; ws->base.buffer_is_user_ptr = amdgpu_bo_is_user_ptr; ws->base.buffer_is_suballocated = amdgpu_bo_is_suballocated; ws->base.buffer_get_handle = amdgpu_bo_get_handle; ws->base.buffer_commit = amdgpu_bo_sparse_commit; ws->base.buffer_get_virtual_address = amdgpu_bo_get_va; ws->base.buffer_get_initial_domain = amdgpu_bo_get_initial_domain; }