/* * Copyright © 2014-2017 Broadcom * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ /** @file v3d_tiling.c * * Handles information about the VC5 tiling formats, and loading and storing * from them. */ #include #include "v3d_screen.h" #include "v3d_context.h" #include "v3d_tiling.h" #include "broadcom/common/v3d_cpu_tiling.h" /** Return the width in pixels of a 64-byte microtile. */ uint32_t v3d_utile_width(int cpp) { switch (cpp) { case 1: case 2: return 8; case 4: case 8: return 4; case 16: return 2; default: unreachable("unknown cpp"); } } /** Return the height in pixels of a 64-byte microtile. */ uint32_t v3d_utile_height(int cpp) { switch (cpp) { case 1: return 8; case 2: case 4: return 4; case 8: case 16: return 2; default: unreachable("unknown cpp"); } } /** * Returns the byte address for a given pixel within a utile. * * Utiles are 64b blocks of pixels in raster order, with 32bpp being a 4x4 * arrangement. */ static inline uint32_t v3d_get_utile_pixel_offset(uint32_t cpp, uint32_t x, uint32_t y) { uint32_t utile_w = v3d_utile_width(cpp); assert(x < utile_w && y < v3d_utile_height(cpp)); return x * cpp + y * utile_w * cpp; } /** * Returns the byte offset for a given pixel in a LINEARTILE layout. * * LINEARTILE is a single line of utiles in either the X or Y direction. */ static inline uint32_t v3d_get_lt_pixel_offset(uint32_t cpp, uint32_t image_h, uint32_t x, uint32_t y) { uint32_t utile_w = v3d_utile_width(cpp); uint32_t utile_h = v3d_utile_height(cpp); uint32_t utile_index_x = x / utile_w; uint32_t utile_index_y = y / utile_h; assert(utile_index_x == 0 || utile_index_y == 0); return (64 * (utile_index_x + utile_index_y) + v3d_get_utile_pixel_offset(cpp, x & (utile_w - 1), y & (utile_h - 1))); } /** * Returns the byte offset for a given pixel in a UBLINEAR layout. * * UBLINEAR is the layout where pixels are arranged in UIF blocks (2x2 * utiles), and the UIF blocks are in 1 or 2 columns in raster order. */ static inline uint32_t v3d_get_ublinear_pixel_offset(uint32_t cpp, uint32_t x, uint32_t y, int ublinear_number) { uint32_t utile_w = v3d_utile_width(cpp); uint32_t utile_h = v3d_utile_height(cpp); uint32_t ub_w = utile_w * 2; uint32_t ub_h = utile_h * 2; uint32_t ub_x = x / ub_w; uint32_t ub_y = y / ub_h; return (256 * (ub_y * ublinear_number + ub_x) + ((x & utile_w) ? 64 : 0) + ((y & utile_h) ? 128 : 0) + + v3d_get_utile_pixel_offset(cpp, x & (utile_w - 1), y & (utile_h - 1))); } static inline uint32_t v3d_get_ublinear_2_column_pixel_offset(uint32_t cpp, uint32_t image_h, uint32_t x, uint32_t y) { return v3d_get_ublinear_pixel_offset(cpp, x, y, 2); } static inline uint32_t v3d_get_ublinear_1_column_pixel_offset(uint32_t cpp, uint32_t image_h, uint32_t x, uint32_t y) { return v3d_get_ublinear_pixel_offset(cpp, x, y, 1); } /** * Returns the byte offset for a given pixel in a UIF layout. * * UIF is the general VC5 tiling layout shared across 3D, media, and scanout. * It stores pixels in UIF blocks (2x2 utiles), and UIF blocks are stored in * 4x4 groups, and those 4x4 groups are then stored in raster order. */ static inline uint32_t v3d_get_uif_pixel_offset(uint32_t cpp, uint32_t image_h, uint32_t x, uint32_t y, bool do_xor) { uint32_t utile_w = v3d_utile_width(cpp); uint32_t utile_h = v3d_utile_height(cpp); uint32_t mb_width = utile_w * 2; uint32_t mb_height = utile_h * 2; uint32_t log2_mb_width = ffs(mb_width) - 1; uint32_t log2_mb_height = ffs(mb_height) - 1; /* Macroblock X, y */ uint32_t mb_x = x >> log2_mb_width; uint32_t mb_y = y >> log2_mb_height; /* X, y within the macroblock */ uint32_t mb_pixel_x = x - (mb_x << log2_mb_width); uint32_t mb_pixel_y = y - (mb_y << log2_mb_height); if (do_xor && (mb_x / 4) & 1) mb_y ^= 0x10; uint32_t mb_h = align(image_h, 1 << log2_mb_height) >> log2_mb_height; uint32_t mb_id = ((mb_x / 4) * ((mb_h - 1) * 4)) + mb_x + mb_y * 4; uint32_t mb_base_addr = mb_id * 256; bool top = mb_pixel_y < utile_h; bool left = mb_pixel_x < utile_w; /* Docs have this in pixels, we do bytes here. */ uint32_t mb_tile_offset = (!top * 128 + !left * 64); uint32_t utile_x = mb_pixel_x & (utile_w - 1); uint32_t utile_y = mb_pixel_y & (utile_h - 1); uint32_t mb_pixel_address = (mb_base_addr + mb_tile_offset + v3d_get_utile_pixel_offset(cpp, utile_x, utile_y)); return mb_pixel_address; } static inline uint32_t v3d_get_uif_xor_pixel_offset(uint32_t cpp, uint32_t image_h, uint32_t x, uint32_t y) { return v3d_get_uif_pixel_offset(cpp, image_h, x, y, true); } static inline uint32_t v3d_get_uif_no_xor_pixel_offset(uint32_t cpp, uint32_t image_h, uint32_t x, uint32_t y) { return v3d_get_uif_pixel_offset(cpp, image_h, x, y, false); } /* Loads/stores non-utile-aligned boxes by walking over the destination * rectangle, computing the address on the GPU, and storing/loading a pixel at * a time. */ static inline void v3d_move_pixels_unaligned(void *gpu, uint32_t gpu_stride, void *cpu, uint32_t cpu_stride, int cpp, uint32_t image_h, const struct pipe_box *box, uint32_t (*get_pixel_offset)(uint32_t cpp, uint32_t image_h, uint32_t x, uint32_t y), bool is_load) { for (uint32_t y = 0; y < box->height; y++) { void *cpu_row = cpu + y * cpu_stride; for (int x = 0; x < box->width; x++) { uint32_t pixel_offset = get_pixel_offset(cpp, image_h, box->x + x, box->y + y); if (false) { fprintf(stderr, "%3d,%3d -> %d\n", box->x + x, box->y + y, pixel_offset); } if (is_load) { memcpy(cpu_row + x * cpp, gpu + pixel_offset, cpp); } else { memcpy(gpu + pixel_offset, cpu_row + x * cpp, cpp); } } } } /* Breaks the image down into utiles and calls either the fast whole-utile * load/store functions, or the unaligned fallback case. */ static inline void v3d_move_pixels_general_percpp(void *gpu, uint32_t gpu_stride, void *cpu, uint32_t cpu_stride, int cpp, uint32_t image_h, const struct pipe_box *box, uint32_t (*get_pixel_offset)(uint32_t cpp, uint32_t image_h, uint32_t x, uint32_t y), bool is_load) { uint32_t utile_w = v3d_utile_width(cpp); uint32_t utile_h = v3d_utile_height(cpp); uint32_t utile_gpu_stride = utile_w * cpp; uint32_t x1 = box->x; uint32_t y1 = box->y; uint32_t x2 = box->x + box->width; uint32_t y2 = box->y + box->height; uint32_t align_x1 = align(x1, utile_w); uint32_t align_y1 = align(y1, utile_h); uint32_t align_x2 = x2 & ~(utile_w - 1); uint32_t align_y2 = y2 & ~(utile_h - 1); /* Load/store all the whole utiles first. */ for (uint32_t y = align_y1; y < align_y2; y += utile_h) { void *cpu_row = cpu + (y - box->y) * cpu_stride; for (uint32_t x = align_x1; x < align_x2; x += utile_w) { void *utile_gpu = (gpu + get_pixel_offset(cpp, image_h, x, y)); void *utile_cpu = cpu_row + (x - box->x) * cpp; if (is_load) { v3d_load_utile(utile_cpu, cpu_stride, utile_gpu, utile_gpu_stride); } else { v3d_store_utile(utile_gpu, utile_gpu_stride, utile_cpu, cpu_stride); } } } /* If there were no aligned utiles in the middle, load/store the whole * thing unaligned. */ if (align_y2 <= align_y1 || align_x2 <= align_x1) { v3d_move_pixels_unaligned(gpu, gpu_stride, cpu, cpu_stride, cpp, image_h, box, get_pixel_offset, is_load); return; } /* Load/store the partial utiles. */ struct pipe_box partial_boxes[4] = { /* Top */ { .x = x1, .width = x2 - x1, .y = y1, .height = align_y1 - y1, }, /* Bottom */ { .x = x1, .width = x2 - x1, .y = align_y2, .height = y2 - align_y2, }, /* Left */ { .x = x1, .width = align_x1 - x1, .y = align_y1, .height = align_y2 - align_y1, }, /* Right */ { .x = align_x2, .width = x2 - align_x2, .y = align_y1, .height = align_y2 - align_y1, }, }; for (int i = 0; i < ARRAY_SIZE(partial_boxes); i++) { void *partial_cpu = (cpu + (partial_boxes[i].y - y1) * cpu_stride + (partial_boxes[i].x - x1) * cpp); v3d_move_pixels_unaligned(gpu, gpu_stride, partial_cpu, cpu_stride, cpp, image_h, &partial_boxes[i], get_pixel_offset, is_load); } } static inline void v3d_move_pixels_general(void *gpu, uint32_t gpu_stride, void *cpu, uint32_t cpu_stride, int cpp, uint32_t image_h, const struct pipe_box *box, uint32_t (*get_pixel_offset)(uint32_t cpp, uint32_t image_h, uint32_t x, uint32_t y), bool is_load) { switch (cpp) { case 1: v3d_move_pixels_general_percpp(gpu, gpu_stride, cpu, cpu_stride, 1, image_h, box, get_pixel_offset, is_load); break; case 2: v3d_move_pixels_general_percpp(gpu, gpu_stride, cpu, cpu_stride, 2, image_h, box, get_pixel_offset, is_load); break; case 4: v3d_move_pixels_general_percpp(gpu, gpu_stride, cpu, cpu_stride, 4, image_h, box, get_pixel_offset, is_load); break; case 8: v3d_move_pixels_general_percpp(gpu, gpu_stride, cpu, cpu_stride, 8, image_h, box, get_pixel_offset, is_load); break; case 16: v3d_move_pixels_general_percpp(gpu, gpu_stride, cpu, cpu_stride, 16, image_h, box, get_pixel_offset, is_load); break; } } static inline void v3d_move_tiled_image(void *gpu, uint32_t gpu_stride, void *cpu, uint32_t cpu_stride, enum v3d_tiling_mode tiling_format, int cpp, uint32_t image_h, const struct pipe_box *box, bool is_load) { switch (tiling_format) { case VC5_TILING_UIF_XOR: v3d_move_pixels_general(gpu, gpu_stride, cpu, cpu_stride, cpp, image_h, box, v3d_get_uif_xor_pixel_offset, is_load); break; case VC5_TILING_UIF_NO_XOR: v3d_move_pixels_general(gpu, gpu_stride, cpu, cpu_stride, cpp, image_h, box, v3d_get_uif_no_xor_pixel_offset, is_load); break; case VC5_TILING_UBLINEAR_2_COLUMN: v3d_move_pixels_general(gpu, gpu_stride, cpu, cpu_stride, cpp, image_h, box, v3d_get_ublinear_2_column_pixel_offset, is_load); break; case VC5_TILING_UBLINEAR_1_COLUMN: v3d_move_pixels_general(gpu, gpu_stride, cpu, cpu_stride, cpp, image_h, box, v3d_get_ublinear_1_column_pixel_offset, is_load); break; case VC5_TILING_LINEARTILE: v3d_move_pixels_general(gpu, gpu_stride, cpu, cpu_stride, cpp, image_h, box, v3d_get_lt_pixel_offset, is_load); break; default: unreachable("Unsupported tiling format"); break; } } /** * Loads pixel data from the start (microtile-aligned) box in \p src to the * start of \p dst according to the given tiling format. */ void v3d_load_tiled_image(void *dst, uint32_t dst_stride, void *src, uint32_t src_stride, enum v3d_tiling_mode tiling_format, int cpp, uint32_t image_h, const struct pipe_box *box) { v3d_move_tiled_image(src, src_stride, dst, dst_stride, tiling_format, cpp, image_h, box, true); } /** * Stores pixel data from the start of \p src into a (microtile-aligned) box in * \p dst according to the given tiling format. */ void v3d_store_tiled_image(void *dst, uint32_t dst_stride, void *src, uint32_t src_stride, enum v3d_tiling_mode tiling_format, int cpp, uint32_t image_h, const struct pipe_box *box) { v3d_move_tiled_image(dst, dst_stride, src, src_stride, tiling_format, cpp, image_h, box, false); }