/* * Copyright 2013 Advanced Micro Devices, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "si_build_pm4.h" #include "util/u_memory.h" #include "util/u_suballoc.h" static void si_set_streamout_enable(struct si_context *sctx, bool enable); static inline void si_so_target_reference(struct si_streamout_target **dst, struct pipe_stream_output_target *src) { pipe_so_target_reference((struct pipe_stream_output_target **)dst, src); } static struct pipe_stream_output_target *si_create_so_target(struct pipe_context *ctx, struct pipe_resource *buffer, unsigned buffer_offset, unsigned buffer_size) { struct si_context *sctx = (struct si_context *)ctx; struct si_streamout_target *t; struct si_resource *buf = si_resource(buffer); t = CALLOC_STRUCT(si_streamout_target); if (!t) { return NULL; } unsigned buf_filled_size_size = sctx->screen->use_ngg_streamout ? 8 : 4; u_suballocator_alloc(&sctx->allocator_zeroed_memory, buf_filled_size_size, 4, &t->buf_filled_size_offset, (struct pipe_resource **)&t->buf_filled_size); if (!t->buf_filled_size) { FREE(t); return NULL; } t->b.reference.count = 1; t->b.context = ctx; pipe_resource_reference(&t->b.buffer, buffer); t->b.buffer_offset = buffer_offset; t->b.buffer_size = buffer_size; util_range_add(&buf->b.b, &buf->valid_buffer_range, buffer_offset, buffer_offset + buffer_size); return &t->b; } static void si_so_target_destroy(struct pipe_context *ctx, struct pipe_stream_output_target *target) { struct si_streamout_target *t = (struct si_streamout_target *)target; pipe_resource_reference(&t->b.buffer, NULL); si_resource_reference(&t->buf_filled_size, NULL); FREE(t); } void si_streamout_buffers_dirty(struct si_context *sctx) { if (!sctx->streamout.enabled_mask) return; si_mark_atom_dirty(sctx, &sctx->atoms.s.streamout_begin); si_set_streamout_enable(sctx, true); } static void si_set_streamout_targets(struct pipe_context *ctx, unsigned num_targets, struct pipe_stream_output_target **targets, const unsigned *offsets) { struct si_context *sctx = (struct si_context *)ctx; unsigned old_num_targets = sctx->streamout.num_targets; unsigned i; bool wait_now = false; /* We are going to unbind the buffers. Mark which caches need to be flushed. */ if (sctx->streamout.num_targets && sctx->streamout.begin_emitted) { /* Since streamout uses vector writes which go through TC L2 * and most other clients can use TC L2 as well, we don't need * to flush it. * * The only cases which requires flushing it is VGT DMA index * fetching (on <= GFX7) and indirect draw data, which are rare * cases. Thus, flag the TC L2 dirtiness in the resource and * handle it at draw call time. */ for (i = 0; i < sctx->streamout.num_targets; i++) if (sctx->streamout.targets[i]) si_resource(sctx->streamout.targets[i]->b.buffer)->TC_L2_dirty = true; /* Invalidate the scalar cache in case a streamout buffer is * going to be used as a constant buffer. * * Invalidate vL1, because streamout bypasses it (done by * setting GLC=1 in the store instruction), but vL1 in other * CUs can contain outdated data of streamout buffers. * * VS_PARTIAL_FLUSH is required if the buffers are going to be * used as an input immediately. */ sctx->flags |= SI_CONTEXT_INV_SCACHE | SI_CONTEXT_INV_VCACHE; /* The BUFFER_FILLED_SIZE is written using a PS_DONE event. */ if (sctx->screen->use_ngg_streamout) { sctx->flags |= SI_CONTEXT_PS_PARTIAL_FLUSH; /* Wait now. This is needed to make sure that GDS is not * busy at the end of IBs. * * Also, the next streamout operation will overwrite GDS, * so we need to make sure that it's idle. */ wait_now = true; } else { sctx->flags |= SI_CONTEXT_VS_PARTIAL_FLUSH; } } /* All readers of the streamout targets need to be finished before we can * start writing to the targets. */ if (num_targets) { if (sctx->screen->use_ngg_streamout) si_allocate_gds(sctx); sctx->flags |= SI_CONTEXT_PS_PARTIAL_FLUSH | SI_CONTEXT_CS_PARTIAL_FLUSH; } /* Streamout buffers must be bound in 2 places: * 1) in VGT by setting the VGT_STRMOUT registers * 2) as shader resources */ /* Stop streamout. */ if (sctx->streamout.num_targets && sctx->streamout.begin_emitted) si_emit_streamout_end(sctx); /* Set the new targets. */ unsigned enabled_mask = 0, append_bitmask = 0; for (i = 0; i < num_targets; i++) { si_so_target_reference(&sctx->streamout.targets[i], targets[i]); if (!targets[i]) continue; si_context_add_resource_size(sctx, targets[i]->buffer); enabled_mask |= 1 << i; if (offsets[i] == ((unsigned)-1)) append_bitmask |= 1 << i; } for (; i < sctx->streamout.num_targets; i++) si_so_target_reference(&sctx->streamout.targets[i], NULL); sctx->streamout.enabled_mask = enabled_mask; sctx->streamout.num_targets = num_targets; sctx->streamout.append_bitmask = append_bitmask; /* Update dirty state bits. */ if (num_targets) { si_streamout_buffers_dirty(sctx); } else { si_set_atom_dirty(sctx, &sctx->atoms.s.streamout_begin, false); si_set_streamout_enable(sctx, false); } /* Set the shader resources.*/ for (i = 0; i < num_targets; i++) { if (targets[i]) { struct pipe_shader_buffer sbuf; sbuf.buffer = targets[i]->buffer; if (sctx->screen->use_ngg_streamout) { sbuf.buffer_offset = targets[i]->buffer_offset; sbuf.buffer_size = targets[i]->buffer_size; } else { sbuf.buffer_offset = 0; sbuf.buffer_size = targets[i]->buffer_offset + targets[i]->buffer_size; } si_set_internal_shader_buffer(sctx, SI_VS_STREAMOUT_BUF0 + i, &sbuf); si_resource(targets[i]->buffer)->bind_history |= PIPE_BIND_STREAM_OUTPUT; } else { si_set_internal_shader_buffer(sctx, SI_VS_STREAMOUT_BUF0 + i, NULL); } } for (; i < old_num_targets; i++) si_set_internal_shader_buffer(sctx, SI_VS_STREAMOUT_BUF0 + i, NULL); if (wait_now) sctx->emit_cache_flush(sctx, &sctx->gfx_cs); } static void gfx10_emit_streamout_begin(struct si_context *sctx) { struct si_streamout_target **t = sctx->streamout.targets; struct radeon_cmdbuf *cs = &sctx->gfx_cs; unsigned last_target = 0; for (unsigned i = 0; i < sctx->streamout.num_targets; i++) { if (t[i]) last_target = i; } radeon_begin(cs); for (unsigned i = 0; i < sctx->streamout.num_targets; i++) { if (!t[i]) continue; t[i]->stride_in_dw = sctx->streamout.stride_in_dw[i]; bool append = sctx->streamout.append_bitmask & (1 << i); uint64_t va = 0; if (append) { radeon_add_to_buffer_list(sctx, &sctx->gfx_cs, t[i]->buf_filled_size, RADEON_USAGE_READ, RADEON_PRIO_SO_FILLED_SIZE); va = t[i]->buf_filled_size->gpu_address + t[i]->buf_filled_size_offset; } radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, 0)); radeon_emit(cs, S_411_SRC_SEL(append ? V_411_SRC_ADDR_TC_L2 : V_411_DATA) | S_411_DST_SEL(V_411_GDS) | S_411_CP_SYNC(i == last_target)); radeon_emit(cs, va); radeon_emit(cs, va >> 32); radeon_emit(cs, 4 * i); /* destination in GDS */ radeon_emit(cs, 0); radeon_emit(cs, S_414_BYTE_COUNT_GFX9(4) | S_414_DISABLE_WR_CONFIRM_GFX9(i != last_target)); } radeon_end(); sctx->streamout.begin_emitted = true; } static void gfx10_emit_streamout_end(struct si_context *sctx) { struct si_streamout_target **t = sctx->streamout.targets; for (unsigned i = 0; i < sctx->streamout.num_targets; i++) { if (!t[i]) continue; uint64_t va = t[i]->buf_filled_size->gpu_address + t[i]->buf_filled_size_offset; si_cp_release_mem(sctx, &sctx->gfx_cs, V_028A90_PS_DONE, 0, EOP_DST_SEL_TC_L2, EOP_INT_SEL_SEND_DATA_AFTER_WR_CONFIRM, EOP_DATA_SEL_GDS, t[i]->buf_filled_size, va, EOP_DATA_GDS(i, 1), 0); t[i]->buf_filled_size_valid = true; } sctx->streamout.begin_emitted = false; } static void si_flush_vgt_streamout(struct si_context *sctx) { struct radeon_cmdbuf *cs = &sctx->gfx_cs; unsigned reg_strmout_cntl; radeon_begin(cs); /* The register is at different places on different ASICs. */ if (sctx->chip_class >= GFX7) { reg_strmout_cntl = R_0300FC_CP_STRMOUT_CNTL; radeon_set_uconfig_reg(cs, reg_strmout_cntl, 0); } else { reg_strmout_cntl = R_0084FC_CP_STRMOUT_CNTL; radeon_set_config_reg(cs, reg_strmout_cntl, 0); } radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_SO_VGTSTREAMOUT_FLUSH) | EVENT_INDEX(0)); radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, 0)); radeon_emit(cs, WAIT_REG_MEM_EQUAL); /* wait until the register is equal to the reference value */ radeon_emit(cs, reg_strmout_cntl >> 2); /* register */ radeon_emit(cs, 0); radeon_emit(cs, S_0084FC_OFFSET_UPDATE_DONE(1)); /* reference value */ radeon_emit(cs, S_0084FC_OFFSET_UPDATE_DONE(1)); /* mask */ radeon_emit(cs, 4); /* poll interval */ radeon_end(); } static void si_emit_streamout_begin(struct si_context *sctx) { struct radeon_cmdbuf *cs = &sctx->gfx_cs; struct si_streamout_target **t = sctx->streamout.targets; uint16_t *stride_in_dw = sctx->streamout.stride_in_dw; unsigned i; si_flush_vgt_streamout(sctx); radeon_begin(cs); for (i = 0; i < sctx->streamout.num_targets; i++) { if (!t[i]) continue; t[i]->stride_in_dw = stride_in_dw[i]; /* AMD GCN binds streamout buffers as shader resources. * VGT only counts primitives and tells the shader * through SGPRs what to do. */ radeon_set_context_reg_seq(cs, R_028AD0_VGT_STRMOUT_BUFFER_SIZE_0 + 16 * i, 2); radeon_emit(cs, (t[i]->b.buffer_offset + t[i]->b.buffer_size) >> 2); /* BUFFER_SIZE (in DW) */ radeon_emit(cs, stride_in_dw[i]); /* VTX_STRIDE (in DW) */ if (sctx->streamout.append_bitmask & (1 << i) && t[i]->buf_filled_size_valid) { uint64_t va = t[i]->buf_filled_size->gpu_address + t[i]->buf_filled_size_offset; /* Append. */ radeon_emit(cs, PKT3(PKT3_STRMOUT_BUFFER_UPDATE, 4, 0)); radeon_emit(cs, STRMOUT_SELECT_BUFFER(i) | STRMOUT_OFFSET_SOURCE(STRMOUT_OFFSET_FROM_MEM)); /* control */ radeon_emit(cs, 0); /* unused */ radeon_emit(cs, 0); /* unused */ radeon_emit(cs, va); /* src address lo */ radeon_emit(cs, va >> 32); /* src address hi */ radeon_add_to_buffer_list(sctx, &sctx->gfx_cs, t[i]->buf_filled_size, RADEON_USAGE_READ, RADEON_PRIO_SO_FILLED_SIZE); } else { /* Start from the beginning. */ radeon_emit(cs, PKT3(PKT3_STRMOUT_BUFFER_UPDATE, 4, 0)); radeon_emit(cs, STRMOUT_SELECT_BUFFER(i) | STRMOUT_OFFSET_SOURCE(STRMOUT_OFFSET_FROM_PACKET)); /* control */ radeon_emit(cs, 0); /* unused */ radeon_emit(cs, 0); /* unused */ radeon_emit(cs, t[i]->b.buffer_offset >> 2); /* buffer offset in DW */ radeon_emit(cs, 0); /* unused */ } } radeon_end(); sctx->streamout.begin_emitted = true; } void si_emit_streamout_end(struct si_context *sctx) { if (sctx->screen->use_ngg_streamout) { gfx10_emit_streamout_end(sctx); return; } struct radeon_cmdbuf *cs = &sctx->gfx_cs; struct si_streamout_target **t = sctx->streamout.targets; unsigned i; uint64_t va; si_flush_vgt_streamout(sctx); radeon_begin(cs); for (i = 0; i < sctx->streamout.num_targets; i++) { if (!t[i]) continue; va = t[i]->buf_filled_size->gpu_address + t[i]->buf_filled_size_offset; radeon_emit(cs, PKT3(PKT3_STRMOUT_BUFFER_UPDATE, 4, 0)); radeon_emit(cs, STRMOUT_SELECT_BUFFER(i) | STRMOUT_OFFSET_SOURCE(STRMOUT_OFFSET_NONE) | STRMOUT_STORE_BUFFER_FILLED_SIZE); /* control */ radeon_emit(cs, va); /* dst address lo */ radeon_emit(cs, va >> 32); /* dst address hi */ radeon_emit(cs, 0); /* unused */ radeon_emit(cs, 0); /* unused */ radeon_add_to_buffer_list(sctx, &sctx->gfx_cs, t[i]->buf_filled_size, RADEON_USAGE_WRITE, RADEON_PRIO_SO_FILLED_SIZE); /* Zero the buffer size. The counters (primitives generated, * primitives emitted) may be enabled even if there is not * buffer bound. This ensures that the primitives-emitted query * won't increment. */ radeon_set_context_reg(cs, R_028AD0_VGT_STRMOUT_BUFFER_SIZE_0 + 16 * i, 0); t[i]->buf_filled_size_valid = true; } radeon_end_update_context_roll(sctx); sctx->streamout.begin_emitted = false; } /* STREAMOUT CONFIG DERIVED STATE * * Streamout must be enabled for the PRIMITIVES_GENERATED query to work. * The buffer mask is an independent state, so no writes occur if there * are no buffers bound. */ static void si_emit_streamout_enable(struct si_context *sctx) { assert(!sctx->screen->use_ngg_streamout); radeon_begin(&sctx->gfx_cs); radeon_set_context_reg_seq(&sctx->gfx_cs, R_028B94_VGT_STRMOUT_CONFIG, 2); radeon_emit(&sctx->gfx_cs, S_028B94_STREAMOUT_0_EN(si_get_strmout_en(sctx)) | S_028B94_RAST_STREAM(0) | S_028B94_STREAMOUT_1_EN(si_get_strmout_en(sctx)) | S_028B94_STREAMOUT_2_EN(si_get_strmout_en(sctx)) | S_028B94_STREAMOUT_3_EN(si_get_strmout_en(sctx))); radeon_emit(&sctx->gfx_cs, sctx->streamout.hw_enabled_mask & sctx->streamout.enabled_stream_buffers_mask); radeon_end(); } static void si_set_streamout_enable(struct si_context *sctx, bool enable) { bool old_strmout_en = si_get_strmout_en(sctx); unsigned old_hw_enabled_mask = sctx->streamout.hw_enabled_mask; sctx->streamout.streamout_enabled = enable; sctx->streamout.hw_enabled_mask = sctx->streamout.enabled_mask | (sctx->streamout.enabled_mask << 4) | (sctx->streamout.enabled_mask << 8) | (sctx->streamout.enabled_mask << 12); if (!sctx->screen->use_ngg_streamout && ((old_strmout_en != si_get_strmout_en(sctx)) || (old_hw_enabled_mask != sctx->streamout.hw_enabled_mask))) si_mark_atom_dirty(sctx, &sctx->atoms.s.streamout_enable); } void si_update_prims_generated_query_state(struct si_context *sctx, unsigned type, int diff) { if (!sctx->screen->use_ngg_streamout && type == PIPE_QUERY_PRIMITIVES_GENERATED) { bool old_strmout_en = si_get_strmout_en(sctx); sctx->streamout.num_prims_gen_queries += diff; assert(sctx->streamout.num_prims_gen_queries >= 0); sctx->streamout.prims_gen_query_enabled = sctx->streamout.num_prims_gen_queries != 0; if (old_strmout_en != si_get_strmout_en(sctx)) si_mark_atom_dirty(sctx, &sctx->atoms.s.streamout_enable); if (si_update_ngg(sctx)) { si_shader_change_notify(sctx); sctx->do_update_shaders = true; } } } void si_init_streamout_functions(struct si_context *sctx) { sctx->b.create_stream_output_target = si_create_so_target; sctx->b.stream_output_target_destroy = si_so_target_destroy; sctx->b.set_stream_output_targets = si_set_streamout_targets; if (sctx->screen->use_ngg_streamout) { sctx->atoms.s.streamout_begin.emit = gfx10_emit_streamout_begin; } else { sctx->atoms.s.streamout_begin.emit = si_emit_streamout_begin; sctx->atoms.s.streamout_enable.emit = si_emit_streamout_enable; } }