/* * Copyright 2018 Advanced Micro Devices, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * */ #include "si_pipe.h" #include "util/format/u_format.h" #include "util/format_srgb.h" /* Note: Compute shaders always use SI_COMPUTE_DST_CACHE_POLICY for dst * and L2_STREAM for src. */ static enum si_cache_policy get_cache_policy(struct si_context *sctx, enum si_coherency coher, uint64_t size) { if ((sctx->chip_class >= GFX9 && (coher == SI_COHERENCY_CB_META || coher == SI_COHERENCY_CP)) || (sctx->chip_class >= GFX7 && coher == SI_COHERENCY_SHADER)) return size <= 256 * 1024 ? L2_LRU : L2_STREAM; return L2_BYPASS; } unsigned si_get_flush_flags(struct si_context *sctx, enum si_coherency coher, enum si_cache_policy cache_policy) { switch (coher) { default: case SI_COHERENCY_NONE: case SI_COHERENCY_CP: return 0; case SI_COHERENCY_SHADER: return SI_CONTEXT_INV_SCACHE | SI_CONTEXT_INV_VCACHE | (cache_policy == L2_BYPASS ? SI_CONTEXT_INV_L2 : 0); case SI_COHERENCY_CB_META: return SI_CONTEXT_FLUSH_AND_INV_CB; } } static void si_compute_internal_begin(struct si_context *sctx) { sctx->flags &= ~SI_CONTEXT_START_PIPELINE_STATS; sctx->flags |= SI_CONTEXT_STOP_PIPELINE_STATS; sctx->render_cond_force_off = true; } static void si_compute_internal_end(struct si_context *sctx) { sctx->flags &= ~SI_CONTEXT_STOP_PIPELINE_STATS; sctx->flags |= SI_CONTEXT_START_PIPELINE_STATS; sctx->render_cond_force_off = false; } static void si_compute_clear_12bytes_buffer(struct si_context *sctx, struct pipe_resource *dst, unsigned dst_offset, unsigned size, const uint32_t *clear_value, enum si_coherency coher) { struct pipe_context *ctx = &sctx->b; assert(dst_offset % 4 == 0); assert(size % 4 == 0); unsigned size_12 = DIV_ROUND_UP(size, 12); unsigned data[4] = {0}; memcpy(data, clear_value, 12); si_compute_internal_begin(sctx); sctx->flags |= SI_CONTEXT_PS_PARTIAL_FLUSH | SI_CONTEXT_CS_PARTIAL_FLUSH | si_get_flush_flags(sctx, coher, SI_COMPUTE_DST_CACHE_POLICY); struct pipe_shader_buffer saved_sb = {0}; si_get_shader_buffers(sctx, PIPE_SHADER_COMPUTE, 0, 1, &saved_sb); unsigned saved_writable_mask = 0; if (sctx->const_and_shader_buffers[PIPE_SHADER_COMPUTE].writable_mask & (1u << si_get_shaderbuf_slot(0))) saved_writable_mask = 1; struct pipe_constant_buffer saved_cb = {}; si_get_pipe_constant_buffer(sctx, PIPE_SHADER_COMPUTE, 0, &saved_cb); void *saved_cs = sctx->cs_shader_state.program; struct pipe_constant_buffer cb = {}; cb.buffer_size = sizeof(data); cb.user_buffer = data; ctx->set_constant_buffer(ctx, PIPE_SHADER_COMPUTE, 0, &cb); struct pipe_shader_buffer sb = {0}; sb.buffer = dst; sb.buffer_offset = dst_offset; sb.buffer_size = size; ctx->set_shader_buffers(ctx, PIPE_SHADER_COMPUTE, 0, 1, &sb, 0x1); struct pipe_grid_info info = {0}; if (!sctx->cs_clear_12bytes_buffer) sctx->cs_clear_12bytes_buffer = si_clear_12bytes_buffer_shader(ctx); ctx->bind_compute_state(ctx, sctx->cs_clear_12bytes_buffer); info.block[0] = 64; info.last_block[0] = size_12 % 64; info.block[1] = 1; info.block[2] = 1; info.grid[0] = DIV_ROUND_UP(size_12, 64); info.grid[1] = 1; info.grid[2] = 1; ctx->launch_grid(ctx, &info); ctx->bind_compute_state(ctx, saved_cs); ctx->set_shader_buffers(ctx, PIPE_SHADER_COMPUTE, 0, 1, &saved_sb, saved_writable_mask); ctx->set_constant_buffer(ctx, PIPE_SHADER_COMPUTE, 0, &saved_cb); si_compute_internal_end(sctx); } static void si_compute_do_clear_or_copy(struct si_context *sctx, struct pipe_resource *dst, unsigned dst_offset, struct pipe_resource *src, unsigned src_offset, unsigned size, const uint32_t *clear_value, unsigned clear_value_size, enum si_coherency coher) { struct pipe_context *ctx = &sctx->b; assert(src_offset % 4 == 0); assert(dst_offset % 4 == 0); assert(size % 4 == 0); assert(dst->target != PIPE_BUFFER || dst_offset + size <= dst->width0); assert(!src || src_offset + size <= src->width0); si_compute_internal_begin(sctx); sctx->flags |= SI_CONTEXT_PS_PARTIAL_FLUSH | SI_CONTEXT_CS_PARTIAL_FLUSH | si_get_flush_flags(sctx, coher, SI_COMPUTE_DST_CACHE_POLICY); /* Save states. */ void *saved_cs = sctx->cs_shader_state.program; struct pipe_shader_buffer saved_sb[2] = {}; si_get_shader_buffers(sctx, PIPE_SHADER_COMPUTE, 0, src ? 2 : 1, saved_sb); unsigned saved_writable_mask = 0; for (unsigned i = 0; i < (src ? 2 : 1); i++) { if (sctx->const_and_shader_buffers[PIPE_SHADER_COMPUTE].writable_mask & (1u << si_get_shaderbuf_slot(i))) saved_writable_mask |= 1 << i; } /* The memory accesses are coalesced, meaning that the 1st instruction writes * the 1st contiguous block of data for the whole wave, the 2nd instruction * writes the 2nd contiguous block of data, etc. */ unsigned dwords_per_thread = src ? SI_COMPUTE_COPY_DW_PER_THREAD : SI_COMPUTE_CLEAR_DW_PER_THREAD; unsigned instructions_per_thread = MAX2(1, dwords_per_thread / 4); unsigned dwords_per_instruction = dwords_per_thread / instructions_per_thread; unsigned wave_size = sctx->screen->compute_wave_size; unsigned dwords_per_wave = dwords_per_thread * wave_size; unsigned num_dwords = size / 4; unsigned num_instructions = DIV_ROUND_UP(num_dwords, dwords_per_instruction); struct pipe_grid_info info = {}; info.block[0] = MIN2(wave_size, num_instructions); info.block[1] = 1; info.block[2] = 1; info.grid[0] = DIV_ROUND_UP(num_dwords, dwords_per_wave); info.grid[1] = 1; info.grid[2] = 1; struct pipe_shader_buffer sb[2] = {}; sb[0].buffer = dst; sb[0].buffer_offset = dst_offset; sb[0].buffer_size = size; bool shader_dst_stream_policy = SI_COMPUTE_DST_CACHE_POLICY != L2_LRU; if (src) { sb[1].buffer = src; sb[1].buffer_offset = src_offset; sb[1].buffer_size = size; ctx->set_shader_buffers(ctx, PIPE_SHADER_COMPUTE, 0, 2, sb, 0x1); if (!sctx->cs_copy_buffer) { sctx->cs_copy_buffer = si_create_dma_compute_shader(&sctx->b, SI_COMPUTE_COPY_DW_PER_THREAD, shader_dst_stream_policy, true); } ctx->bind_compute_state(ctx, sctx->cs_copy_buffer); } else { assert(clear_value_size >= 4 && clear_value_size <= 16 && util_is_power_of_two_or_zero(clear_value_size)); for (unsigned i = 0; i < 4; i++) sctx->cs_user_data[i] = clear_value[i % (clear_value_size / 4)]; ctx->set_shader_buffers(ctx, PIPE_SHADER_COMPUTE, 0, 1, sb, 0x1); if (!sctx->cs_clear_buffer) { sctx->cs_clear_buffer = si_create_dma_compute_shader(&sctx->b, SI_COMPUTE_CLEAR_DW_PER_THREAD, shader_dst_stream_policy, false); } ctx->bind_compute_state(ctx, sctx->cs_clear_buffer); } ctx->launch_grid(ctx, &info); enum si_cache_policy cache_policy = get_cache_policy(sctx, coher, size); sctx->flags |= SI_CONTEXT_CS_PARTIAL_FLUSH | (cache_policy == L2_BYPASS ? SI_CONTEXT_WB_L2 : 0); if (cache_policy != L2_BYPASS) si_resource(dst)->TC_L2_dirty = true; /* Restore states. */ ctx->bind_compute_state(ctx, saved_cs); ctx->set_shader_buffers(ctx, PIPE_SHADER_COMPUTE, 0, src ? 2 : 1, saved_sb, saved_writable_mask); si_compute_internal_end(sctx); } void si_clear_buffer(struct si_context *sctx, struct pipe_resource *dst, uint64_t offset, uint64_t size, uint32_t *clear_value, uint32_t clear_value_size, enum si_coherency coher, bool force_cpdma) { if (!size) return; ASSERTED unsigned clear_alignment = MIN2(clear_value_size, 4); assert(clear_value_size != 3 && clear_value_size != 6); /* 12 is allowed. */ assert(offset % clear_alignment == 0); assert(size % clear_alignment == 0); assert(size < (UINT_MAX & ~0xf)); /* TODO: test 64-bit sizes in all codepaths */ /* Reduce a large clear value size if possible. */ if (clear_value_size > 4) { bool clear_dword_duplicated = true; /* See if we can lower large fills to dword fills. */ for (unsigned i = 1; i < clear_value_size / 4; i++) { if (clear_value[0] != clear_value[i]) { clear_dword_duplicated = false; break; } } if (clear_dword_duplicated) clear_value_size = 4; } /* Expand a small clear value size. */ uint32_t tmp_clear_value; if (clear_value_size <= 2) { if (clear_value_size == 1) { tmp_clear_value = *(uint8_t*)clear_value; tmp_clear_value |= (tmp_clear_value << 8) | (tmp_clear_value << 16) | (tmp_clear_value << 24); } else { tmp_clear_value = *(uint16_t*)clear_value; tmp_clear_value |= tmp_clear_value << 16; } clear_value = &tmp_clear_value; clear_value_size = 4; } if (clear_value_size == 12) { si_compute_clear_12bytes_buffer(sctx, dst, offset, size, clear_value, coher); return; } uint64_t aligned_size = size & ~3ull; if (aligned_size >= 4) { /* Before GFX9, CP DMA was very slow when clearing GTT, so never * use CP DMA clears on those chips, because we can't be certain * about buffer placements. */ if (clear_value_size > 4 || (!force_cpdma && clear_value_size == 4 && offset % 4 == 0 && (size > 32*1024 || sctx->chip_class <= GFX8))) { si_compute_do_clear_or_copy(sctx, dst, offset, NULL, 0, aligned_size, clear_value, clear_value_size, coher); } else { assert(clear_value_size == 4); si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, dst, offset, aligned_size, *clear_value, 0, coher, get_cache_policy(sctx, coher, size)); } offset += aligned_size; size -= aligned_size; } /* Handle non-dword alignment. */ if (size) { assert(dst); assert(dst->target == PIPE_BUFFER); assert(size < 4); pipe_buffer_write(&sctx->b, dst, offset, size, clear_value); } } static void si_pipe_clear_buffer(struct pipe_context *ctx, struct pipe_resource *dst, unsigned offset, unsigned size, const void *clear_value, int clear_value_size) { si_clear_buffer((struct si_context*)ctx, dst, offset, size, (uint32_t*)clear_value, clear_value_size, SI_COHERENCY_SHADER, false); } void si_copy_buffer(struct si_context *sctx, struct pipe_resource *dst, struct pipe_resource *src, uint64_t dst_offset, uint64_t src_offset, unsigned size) { if (!size) return; enum si_coherency coher = SI_COHERENCY_SHADER; enum si_cache_policy cache_policy = get_cache_policy(sctx, coher, size); /* Only use compute for VRAM copies on dGPUs. */ if (sctx->screen->info.has_dedicated_vram && si_resource(dst)->domains & RADEON_DOMAIN_VRAM && si_resource(src)->domains & RADEON_DOMAIN_VRAM && size > 32 * 1024 && dst_offset % 4 == 0 && src_offset % 4 == 0 && size % 4 == 0) { si_compute_do_clear_or_copy(sctx, dst, dst_offset, src, src_offset, size, NULL, 0, coher); } else { si_cp_dma_copy_buffer(sctx, dst, src, dst_offset, src_offset, size, 0, coher, cache_policy); } } void si_compute_copy_image(struct si_context *sctx, struct pipe_resource *dst, unsigned dst_level, struct pipe_resource *src, unsigned src_level, unsigned dstx, unsigned dsty, unsigned dstz, const struct pipe_box *src_box) { struct pipe_context *ctx = &sctx->b; unsigned width = src_box->width; unsigned height = src_box->height; unsigned depth = src_box->depth; unsigned data[] = {src_box->x, src_box->y, src_box->z, 0, dstx, dsty, dstz, 0}; if (width == 0 || height == 0) return; si_compute_internal_begin(sctx); sctx->flags |= SI_CONTEXT_CS_PARTIAL_FLUSH | si_get_flush_flags(sctx, SI_COHERENCY_SHADER, L2_STREAM); /* src and dst have the same number of samples. */ si_make_CB_shader_coherent(sctx, src->nr_samples, true, /* Only src can have DCC.*/ ((struct si_texture*)src)->surface.u.gfx9.dcc.pipe_aligned); struct pipe_constant_buffer saved_cb = {}; si_get_pipe_constant_buffer(sctx, PIPE_SHADER_COMPUTE, 0, &saved_cb); struct si_images *images = &sctx->images[PIPE_SHADER_COMPUTE]; struct pipe_image_view saved_image[2] = {0}; util_copy_image_view(&saved_image[0], &images->views[0]); util_copy_image_view(&saved_image[1], &images->views[1]); void *saved_cs = sctx->cs_shader_state.program; struct pipe_constant_buffer cb = {}; cb.buffer_size = sizeof(data); cb.user_buffer = data; ctx->set_constant_buffer(ctx, PIPE_SHADER_COMPUTE, 0, &cb); struct pipe_image_view image[2] = {0}; image[0].resource = src; image[0].shader_access = image[0].access = PIPE_IMAGE_ACCESS_READ; image[0].format = util_format_linear(src->format); image[0].u.tex.level = src_level; image[0].u.tex.first_layer = 0; image[0].u.tex.last_layer = src->target == PIPE_TEXTURE_3D ? u_minify(src->depth0, src_level) - 1 : (unsigned)(src->array_size - 1); image[1].resource = dst; image[1].shader_access = image[1].access = PIPE_IMAGE_ACCESS_WRITE; image[1].format = util_format_linear(dst->format); image[1].u.tex.level = dst_level; image[1].u.tex.first_layer = 0; image[1].u.tex.last_layer = dst->target == PIPE_TEXTURE_3D ? u_minify(dst->depth0, dst_level) - 1 : (unsigned)(dst->array_size - 1); if (src->format == PIPE_FORMAT_R9G9B9E5_FLOAT) image[0].format = image[1].format = PIPE_FORMAT_R32_UINT; /* SNORM8 blitting has precision issues on some chips. Use the SINT * equivalent instead, which doesn't force DCC decompression. * Note that some chips avoid this issue by using SDMA. */ if (util_format_is_snorm8(dst->format)) { image[0].format = image[1].format = util_format_snorm8_to_sint8(dst->format); } ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 2, image); struct pipe_grid_info info = {0}; if (dst->target == PIPE_TEXTURE_1D_ARRAY && src->target == PIPE_TEXTURE_1D_ARRAY) { if (!sctx->cs_copy_image_1d_array) sctx->cs_copy_image_1d_array = si_create_copy_image_compute_shader_1d_array(ctx); ctx->bind_compute_state(ctx, sctx->cs_copy_image_1d_array); info.block[0] = 64; info.last_block[0] = width % 64; info.block[1] = 1; info.block[2] = 1; info.grid[0] = DIV_ROUND_UP(width, 64); info.grid[1] = depth; info.grid[2] = 1; } else { if (!sctx->cs_copy_image) sctx->cs_copy_image = si_create_copy_image_compute_shader(ctx); ctx->bind_compute_state(ctx, sctx->cs_copy_image); info.block[0] = 8; info.last_block[0] = width % 8; info.block[1] = 8; info.last_block[1] = height % 8; info.block[2] = 1; info.grid[0] = DIV_ROUND_UP(width, 8); info.grid[1] = DIV_ROUND_UP(height, 8); info.grid[2] = depth; } ctx->launch_grid(ctx, &info); sctx->flags |= SI_CONTEXT_CS_PARTIAL_FLUSH | (sctx->chip_class <= GFX8 ? SI_CONTEXT_WB_L2 : 0) | si_get_flush_flags(sctx, SI_COHERENCY_SHADER, L2_STREAM); ctx->bind_compute_state(ctx, saved_cs); ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 2, saved_image); ctx->set_constant_buffer(ctx, PIPE_SHADER_COMPUTE, 0, &saved_cb); si_compute_internal_end(sctx); } void si_retile_dcc(struct si_context *sctx, struct si_texture *tex) { struct pipe_context *ctx = &sctx->b; sctx->flags |= SI_CONTEXT_PS_PARTIAL_FLUSH | SI_CONTEXT_CS_PARTIAL_FLUSH | si_get_flush_flags(sctx, SI_COHERENCY_CB_META, L2_LRU) | si_get_flush_flags(sctx, SI_COHERENCY_SHADER, L2_LRU); sctx->emit_cache_flush(sctx); /* Save states. */ void *saved_cs = sctx->cs_shader_state.program; struct pipe_image_view saved_img[3] = {}; for (unsigned i = 0; i < 3; i++) { util_copy_image_view(&saved_img[i], &sctx->images[PIPE_SHADER_COMPUTE].views[i]); } /* Set images. */ bool use_uint16 = tex->surface.u.gfx9.dcc_retile_use_uint16; unsigned num_elements = tex->surface.u.gfx9.dcc_retile_num_elements; struct pipe_image_view img[3]; assert(tex->surface.dcc_retile_map_offset && tex->surface.dcc_retile_map_offset <= UINT_MAX); assert(tex->surface.dcc_offset && tex->surface.dcc_offset <= UINT_MAX); assert(tex->surface.display_dcc_offset && tex->surface.display_dcc_offset <= UINT_MAX); for (unsigned i = 0; i < 3; i++) { img[i].resource = &tex->buffer.b.b; img[i].access = i == 2 ? PIPE_IMAGE_ACCESS_WRITE : PIPE_IMAGE_ACCESS_READ; img[i].shader_access = SI_IMAGE_ACCESS_AS_BUFFER; } img[0].format = use_uint16 ? PIPE_FORMAT_R16G16B16A16_UINT : PIPE_FORMAT_R32G32B32A32_UINT; img[0].u.buf.offset = tex->surface.dcc_retile_map_offset; img[0].u.buf.size = num_elements * (use_uint16 ? 2 : 4); img[1].format = PIPE_FORMAT_R8_UINT; img[1].u.buf.offset = tex->surface.dcc_offset; img[1].u.buf.size = tex->surface.dcc_size; img[2].format = PIPE_FORMAT_R8_UINT; img[2].u.buf.offset = tex->surface.display_dcc_offset; img[2].u.buf.size = tex->surface.u.gfx9.display_dcc_size; ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 3, img); /* Bind the compute shader. */ if (!sctx->cs_dcc_retile) sctx->cs_dcc_retile = si_create_dcc_retile_cs(ctx); ctx->bind_compute_state(ctx, sctx->cs_dcc_retile); /* Dispatch compute. */ /* img[0] has 4 channels per element containing 2 pairs of DCC offsets. */ unsigned num_threads = num_elements / 4; struct pipe_grid_info info = {}; info.block[0] = 64; info.block[1] = 1; info.block[2] = 1; info.grid[0] = DIV_ROUND_UP(num_threads, 64); /* includes the partial block */ info.grid[1] = 1; info.grid[2] = 1; info.last_block[0] = num_threads % 64; ctx->launch_grid(ctx, &info); /* Don't flush caches or wait. The driver will wait at the end of this IB, * and L2 will be flushed by the kernel fence. */ /* Restore states. */ ctx->bind_compute_state(ctx, saved_cs); ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 3, saved_img); } /* Expand FMASK to make it identity, so that image stores can ignore it. */ void si_compute_expand_fmask(struct pipe_context *ctx, struct pipe_resource *tex) { struct si_context *sctx = (struct si_context *)ctx; bool is_array = tex->target == PIPE_TEXTURE_2D_ARRAY; unsigned log_fragments = util_logbase2(tex->nr_storage_samples); unsigned log_samples = util_logbase2(tex->nr_samples); assert(tex->nr_samples >= 2); /* EQAA FMASK expansion is unimplemented. */ if (tex->nr_samples != tex->nr_storage_samples) return; si_compute_internal_begin(sctx); /* Flush caches and sync engines. */ sctx->flags |= SI_CONTEXT_CS_PARTIAL_FLUSH | si_get_flush_flags(sctx, SI_COHERENCY_SHADER, L2_STREAM); si_make_CB_shader_coherent(sctx, tex->nr_samples, true, true /* DCC is not possible with image stores */); /* Save states. */ void *saved_cs = sctx->cs_shader_state.program; struct pipe_image_view saved_image = {0}; util_copy_image_view(&saved_image, &sctx->images[PIPE_SHADER_COMPUTE].views[0]); /* Bind the image. */ struct pipe_image_view image = {0}; image.resource = tex; /* Don't set WRITE so as not to trigger FMASK expansion, causing * an infinite loop. */ image.shader_access = image.access = PIPE_IMAGE_ACCESS_READ; image.format = util_format_linear(tex->format); if (is_array) image.u.tex.last_layer = tex->array_size - 1; ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 1, &image); /* Bind the shader. */ void **shader = &sctx->cs_fmask_expand[log_samples - 1][is_array]; if (!*shader) *shader = si_create_fmask_expand_cs(ctx, tex->nr_samples, is_array); ctx->bind_compute_state(ctx, *shader); /* Dispatch compute. */ struct pipe_grid_info info = {0}; info.block[0] = 8; info.last_block[0] = tex->width0 % 8; info.block[1] = 8; info.last_block[1] = tex->height0 % 8; info.block[2] = 1; info.grid[0] = DIV_ROUND_UP(tex->width0, 8); info.grid[1] = DIV_ROUND_UP(tex->height0, 8); info.grid[2] = is_array ? tex->array_size : 1; ctx->launch_grid(ctx, &info); /* Flush caches and sync engines. */ sctx->flags |= SI_CONTEXT_CS_PARTIAL_FLUSH | (sctx->chip_class <= GFX8 ? SI_CONTEXT_WB_L2 : 0) | si_get_flush_flags(sctx, SI_COHERENCY_SHADER, L2_STREAM); /* Restore previous states. */ ctx->bind_compute_state(ctx, saved_cs); ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 1, &saved_image); si_compute_internal_end(sctx); /* Array of fully expanded FMASK values, arranged by [log2(fragments)][log2(samples)-1]. */ #define INVALID 0 /* never used */ static const uint64_t fmask_expand_values[][4] = { /* samples */ /* 2 (8 bpp) 4 (8 bpp) 8 (8-32bpp) 16 (16-64bpp) fragments */ {0x02020202, 0x0E0E0E0E, 0xFEFEFEFE, 0xFFFEFFFE}, /* 1 */ {0x02020202, 0xA4A4A4A4, 0xAAA4AAA4, 0xAAAAAAA4}, /* 2 */ {INVALID, 0xE4E4E4E4, 0x44443210, 0x4444444444443210}, /* 4 */ {INVALID, INVALID, 0x76543210, 0x8888888876543210}, /* 8 */ }; /* Clear FMASK to identity. */ struct si_texture *stex = (struct si_texture*)tex; si_clear_buffer(sctx, tex, stex->surface.fmask_offset, stex->surface.fmask_size, (uint32_t*)&fmask_expand_values[log_fragments][log_samples - 1], 4, SI_COHERENCY_SHADER, false); } void si_init_compute_blit_functions(struct si_context *sctx) { sctx->b.clear_buffer = si_pipe_clear_buffer; } /* Clear a region of a color surface to a constant value. */ void si_compute_clear_render_target(struct pipe_context *ctx, struct pipe_surface *dstsurf, const union pipe_color_union *color, unsigned dstx, unsigned dsty, unsigned width, unsigned height, bool render_condition_enabled) { struct si_context *sctx = (struct si_context *)ctx; unsigned num_layers = dstsurf->u.tex.last_layer - dstsurf->u.tex.first_layer + 1; unsigned data[4 + sizeof(color->ui)] = {dstx, dsty, dstsurf->u.tex.first_layer, 0}; if (width == 0 || height == 0) return; if (util_format_is_srgb(dstsurf->format)) { union pipe_color_union color_srgb; for (int i = 0; i < 3; i++) color_srgb.f[i] = util_format_linear_to_srgb_float(color->f[i]); color_srgb.f[3] = color->f[3]; memcpy(data + 4, color_srgb.ui, sizeof(color->ui)); } else { memcpy(data + 4, color->ui, sizeof(color->ui)); } si_compute_internal_begin(sctx); sctx->render_cond_force_off = !render_condition_enabled; sctx->flags |= SI_CONTEXT_CS_PARTIAL_FLUSH | si_get_flush_flags(sctx, SI_COHERENCY_SHADER, L2_STREAM); si_make_CB_shader_coherent(sctx, dstsurf->texture->nr_samples, true, true /* DCC is not possible with image stores */); struct pipe_constant_buffer saved_cb = {}; si_get_pipe_constant_buffer(sctx, PIPE_SHADER_COMPUTE, 0, &saved_cb); struct si_images *images = &sctx->images[PIPE_SHADER_COMPUTE]; struct pipe_image_view saved_image = {0}; util_copy_image_view(&saved_image, &images->views[0]); void *saved_cs = sctx->cs_shader_state.program; struct pipe_constant_buffer cb = {}; cb.buffer_size = sizeof(data); cb.user_buffer = data; ctx->set_constant_buffer(ctx, PIPE_SHADER_COMPUTE, 0, &cb); struct pipe_image_view image = {0}; image.resource = dstsurf->texture; image.shader_access = image.access = PIPE_IMAGE_ACCESS_WRITE; image.format = util_format_linear(dstsurf->format); image.u.tex.level = dstsurf->u.tex.level; image.u.tex.first_layer = 0; /* 3D images ignore first_layer (BASE_ARRAY) */ image.u.tex.last_layer = dstsurf->u.tex.last_layer; ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 1, &image); struct pipe_grid_info info = {0}; if (dstsurf->texture->target != PIPE_TEXTURE_1D_ARRAY) { if (!sctx->cs_clear_render_target) sctx->cs_clear_render_target = si_clear_render_target_shader(ctx); ctx->bind_compute_state(ctx, sctx->cs_clear_render_target); info.block[0] = 8; info.last_block[0] = width % 8; info.block[1] = 8; info.last_block[1] = height % 8; info.block[2] = 1; info.grid[0] = DIV_ROUND_UP(width, 8); info.grid[1] = DIV_ROUND_UP(height, 8); info.grid[2] = num_layers; } else { if (!sctx->cs_clear_render_target_1d_array) sctx->cs_clear_render_target_1d_array = si_clear_render_target_shader_1d_array(ctx); ctx->bind_compute_state(ctx, sctx->cs_clear_render_target_1d_array); info.block[0] = 64; info.last_block[0] = width % 64; info.block[1] = 1; info.block[2] = 1; info.grid[0] = DIV_ROUND_UP(width, 64); info.grid[1] = num_layers; info.grid[2] = 1; } ctx->launch_grid(ctx, &info); sctx->flags |= SI_CONTEXT_CS_PARTIAL_FLUSH | (sctx->chip_class <= GFX8 ? SI_CONTEXT_WB_L2 : 0) | si_get_flush_flags(sctx, SI_COHERENCY_SHADER, L2_STREAM); ctx->bind_compute_state(ctx, saved_cs); ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 1, &saved_image); ctx->set_constant_buffer(ctx, PIPE_SHADER_COMPUTE, 0, &saved_cb); si_compute_internal_end(sctx); }