/* * Copyright 2010 Jerome Glisse * Copyright 2015 Advanced Micro Devices, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "si_compute.h" #include "si_pipe.h" #include "util/format/u_format.h" #include "util/u_log.h" #include "util/u_surface.h" enum { SI_COPY = SI_SAVE_FRAMEBUFFER | SI_SAVE_TEXTURES | SI_SAVE_FRAGMENT_STATE | SI_DISABLE_RENDER_COND, SI_BLIT = SI_SAVE_FRAMEBUFFER | SI_SAVE_TEXTURES | SI_SAVE_FRAGMENT_STATE, SI_DECOMPRESS = SI_SAVE_FRAMEBUFFER | SI_SAVE_FRAGMENT_STATE | SI_DISABLE_RENDER_COND, SI_COLOR_RESOLVE = SI_SAVE_FRAMEBUFFER | SI_SAVE_FRAGMENT_STATE }; void si_blitter_begin(struct si_context *sctx, enum si_blitter_op op) { util_blitter_save_vertex_shader(sctx->blitter, sctx->shader.vs.cso); util_blitter_save_tessctrl_shader(sctx->blitter, sctx->shader.tcs.cso); util_blitter_save_tesseval_shader(sctx->blitter, sctx->shader.tes.cso); util_blitter_save_geometry_shader(sctx->blitter, sctx->shader.gs.cso); util_blitter_save_so_targets(sctx->blitter, sctx->streamout.num_targets, (struct pipe_stream_output_target **)sctx->streamout.targets); util_blitter_save_rasterizer(sctx->blitter, sctx->queued.named.rasterizer); if (op & SI_SAVE_FRAGMENT_STATE) { util_blitter_save_blend(sctx->blitter, sctx->queued.named.blend); util_blitter_save_depth_stencil_alpha(sctx->blitter, sctx->queued.named.dsa); util_blitter_save_stencil_ref(sctx->blitter, &sctx->stencil_ref.state); util_blitter_save_fragment_shader(sctx->blitter, sctx->shader.ps.cso); util_blitter_save_sample_mask(sctx->blitter, sctx->sample_mask); util_blitter_save_scissor(sctx->blitter, &sctx->scissors[0]); util_blitter_save_window_rectangles(sctx->blitter, sctx->window_rectangles_include, sctx->num_window_rectangles, sctx->window_rectangles); } if (op & SI_SAVE_FRAMEBUFFER) util_blitter_save_framebuffer(sctx->blitter, &sctx->framebuffer.state); if (op & SI_SAVE_TEXTURES) { util_blitter_save_fragment_sampler_states( sctx->blitter, 2, (void **)sctx->samplers[PIPE_SHADER_FRAGMENT].sampler_states); util_blitter_save_fragment_sampler_views(sctx->blitter, 2, sctx->samplers[PIPE_SHADER_FRAGMENT].views); } if (op & SI_DISABLE_RENDER_COND) sctx->render_cond_enabled = false; if (sctx->screen->dpbb_allowed) { sctx->dpbb_force_off = true; si_mark_atom_dirty(sctx, &sctx->atoms.s.dpbb_state); } sctx->blitter_running = true; } void si_blitter_end(struct si_context *sctx) { sctx->blitter_running = false; if (sctx->screen->dpbb_allowed) { sctx->dpbb_force_off = false; si_mark_atom_dirty(sctx, &sctx->atoms.s.dpbb_state); } sctx->render_cond_enabled = sctx->render_cond; /* Restore shader pointers because the VS blit shader changed all * non-global VS user SGPRs. */ sctx->shader_pointers_dirty |= SI_DESCS_SHADER_MASK(VERTEX); sctx->vertex_buffer_pointer_dirty = sctx->vb_descriptors_buffer != NULL && sctx->num_vertex_elements > sctx->screen->num_vbos_in_user_sgprs; sctx->vertex_buffer_user_sgprs_dirty = sctx->num_vertex_elements > 0 && sctx->screen->num_vbos_in_user_sgprs; si_mark_atom_dirty(sctx, &sctx->atoms.s.shader_pointers); } static unsigned u_max_sample(struct pipe_resource *r) { return r->nr_samples ? r->nr_samples - 1 : 0; } static unsigned si_blit_dbcb_copy(struct si_context *sctx, struct si_texture *src, struct si_texture *dst, unsigned planes, unsigned level_mask, unsigned first_layer, unsigned last_layer, unsigned first_sample, unsigned last_sample) { struct pipe_surface surf_tmpl = {{0}}; unsigned layer, sample, checked_last_layer, max_layer; unsigned fully_copied_levels = 0; if (planes & PIPE_MASK_Z) sctx->dbcb_depth_copy_enabled = true; if (planes & PIPE_MASK_S) sctx->dbcb_stencil_copy_enabled = true; si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state); assert(sctx->dbcb_depth_copy_enabled || sctx->dbcb_stencil_copy_enabled); sctx->decompression_enabled = true; while (level_mask) { unsigned level = u_bit_scan(&level_mask); /* The smaller the mipmap level, the less layers there are * as far as 3D textures are concerned. */ max_layer = util_max_layer(&src->buffer.b.b, level); checked_last_layer = MIN2(last_layer, max_layer); surf_tmpl.u.tex.level = level; for (layer = first_layer; layer <= checked_last_layer; layer++) { struct pipe_surface *zsurf, *cbsurf; surf_tmpl.format = src->buffer.b.b.format; surf_tmpl.u.tex.first_layer = layer; surf_tmpl.u.tex.last_layer = layer; zsurf = sctx->b.create_surface(&sctx->b, &src->buffer.b.b, &surf_tmpl); surf_tmpl.format = dst->buffer.b.b.format; cbsurf = sctx->b.create_surface(&sctx->b, &dst->buffer.b.b, &surf_tmpl); for (sample = first_sample; sample <= last_sample; sample++) { if (sample != sctx->dbcb_copy_sample) { sctx->dbcb_copy_sample = sample; si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state); } si_blitter_begin(sctx, SI_DECOMPRESS); util_blitter_custom_depth_stencil(sctx->blitter, zsurf, cbsurf, 1 << sample, sctx->custom_dsa_flush, 1.0f); si_blitter_end(sctx); } pipe_surface_reference(&zsurf, NULL); pipe_surface_reference(&cbsurf, NULL); } if (first_layer == 0 && last_layer >= max_layer && first_sample == 0 && last_sample >= u_max_sample(&src->buffer.b.b)) fully_copied_levels |= 1u << level; } sctx->decompression_enabled = false; sctx->dbcb_depth_copy_enabled = false; sctx->dbcb_stencil_copy_enabled = false; si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state); return fully_copied_levels; } /* Helper function for si_blit_decompress_zs_in_place. */ static void si_blit_decompress_zs_planes_in_place(struct si_context *sctx, struct si_texture *texture, unsigned planes, unsigned level_mask, unsigned first_layer, unsigned last_layer) { struct pipe_surface *zsurf, surf_tmpl = {{0}}; unsigned layer, max_layer, checked_last_layer; unsigned fully_decompressed_mask = 0; if (!level_mask) return; if (planes & PIPE_MASK_S) sctx->db_flush_stencil_inplace = true; if (planes & PIPE_MASK_Z) sctx->db_flush_depth_inplace = true; si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state); surf_tmpl.format = texture->buffer.b.b.format; sctx->decompression_enabled = true; while (level_mask) { unsigned level = u_bit_scan(&level_mask); surf_tmpl.u.tex.level = level; /* The smaller the mipmap level, the less layers there are * as far as 3D textures are concerned. */ max_layer = util_max_layer(&texture->buffer.b.b, level); checked_last_layer = MIN2(last_layer, max_layer); for (layer = first_layer; layer <= checked_last_layer; layer++) { surf_tmpl.u.tex.first_layer = layer; surf_tmpl.u.tex.last_layer = layer; zsurf = sctx->b.create_surface(&sctx->b, &texture->buffer.b.b, &surf_tmpl); si_blitter_begin(sctx, SI_DECOMPRESS); util_blitter_custom_depth_stencil(sctx->blitter, zsurf, NULL, ~0, sctx->custom_dsa_flush, 1.0f); si_blitter_end(sctx); pipe_surface_reference(&zsurf, NULL); } /* The texture will always be dirty if some layers aren't flushed. * I don't think this case occurs often though. */ if (first_layer == 0 && last_layer >= max_layer) { fully_decompressed_mask |= 1u << level; } } if (planes & PIPE_MASK_Z) texture->dirty_level_mask &= ~fully_decompressed_mask; if (planes & PIPE_MASK_S) texture->stencil_dirty_level_mask &= ~fully_decompressed_mask; sctx->decompression_enabled = false; sctx->db_flush_depth_inplace = false; sctx->db_flush_stencil_inplace = false; si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state); } /* Helper function of si_flush_depth_texture: decompress the given levels * of Z and/or S planes in place. */ static void si_blit_decompress_zs_in_place(struct si_context *sctx, struct si_texture *texture, unsigned levels_z, unsigned levels_s, unsigned first_layer, unsigned last_layer) { unsigned both = levels_z & levels_s; /* First, do combined Z & S decompresses for levels that need it. */ if (both) { si_blit_decompress_zs_planes_in_place(sctx, texture, PIPE_MASK_Z | PIPE_MASK_S, both, first_layer, last_layer); levels_z &= ~both; levels_s &= ~both; } /* Now do separate Z and S decompresses. */ if (levels_z) { si_blit_decompress_zs_planes_in_place(sctx, texture, PIPE_MASK_Z, levels_z, first_layer, last_layer); } if (levels_s) { si_blit_decompress_zs_planes_in_place(sctx, texture, PIPE_MASK_S, levels_s, first_layer, last_layer); } } static void si_decompress_depth(struct si_context *sctx, struct si_texture *tex, unsigned required_planes, unsigned first_level, unsigned last_level, unsigned first_layer, unsigned last_layer) { unsigned inplace_planes = 0; unsigned copy_planes = 0; unsigned level_mask = u_bit_consecutive(first_level, last_level - first_level + 1); unsigned levels_z = 0; unsigned levels_s = 0; if (required_planes & PIPE_MASK_Z) { levels_z = level_mask & tex->dirty_level_mask; if (levels_z) { if (si_can_sample_zs(tex, false)) inplace_planes |= PIPE_MASK_Z; else copy_planes |= PIPE_MASK_Z; } } if (required_planes & PIPE_MASK_S) { levels_s = level_mask & tex->stencil_dirty_level_mask; if (levels_s) { if (si_can_sample_zs(tex, true)) inplace_planes |= PIPE_MASK_S; else copy_planes |= PIPE_MASK_S; } } if (unlikely(sctx->log)) u_log_printf(sctx->log, "\n------------------------------------------------\n" "Decompress Depth (levels %u - %u, levels Z: 0x%x S: 0x%x)\n\n", first_level, last_level, levels_z, levels_s); /* We may have to allocate the flushed texture here when called from * si_decompress_subresource. */ if (copy_planes && (tex->flushed_depth_texture || si_init_flushed_depth_texture(&sctx->b, &tex->buffer.b.b))) { struct si_texture *dst = tex->flushed_depth_texture; unsigned fully_copied_levels; unsigned levels = 0; assert(tex->flushed_depth_texture); if (util_format_is_depth_and_stencil(dst->buffer.b.b.format)) copy_planes = PIPE_MASK_Z | PIPE_MASK_S; if (copy_planes & PIPE_MASK_Z) { levels |= levels_z; levels_z = 0; } if (copy_planes & PIPE_MASK_S) { levels |= levels_s; levels_s = 0; } fully_copied_levels = si_blit_dbcb_copy(sctx, tex, dst, copy_planes, levels, first_layer, last_layer, 0, u_max_sample(&tex->buffer.b.b)); if (copy_planes & PIPE_MASK_Z) tex->dirty_level_mask &= ~fully_copied_levels; if (copy_planes & PIPE_MASK_S) tex->stencil_dirty_level_mask &= ~fully_copied_levels; } if (inplace_planes) { bool has_htile = si_htile_enabled(tex, first_level, inplace_planes); bool tc_compat_htile = vi_tc_compat_htile_enabled(tex, first_level, inplace_planes); /* Don't decompress if there is no HTILE or when HTILE is * TC-compatible. */ if (has_htile && !tc_compat_htile) { si_blit_decompress_zs_in_place(sctx, tex, levels_z, levels_s, first_layer, last_layer); } else { /* This is only a cache flush. * * Only clear the mask that we are flushing, because * si_make_DB_shader_coherent() treats different levels * and depth and stencil differently. */ if (inplace_planes & PIPE_MASK_Z) tex->dirty_level_mask &= ~levels_z; if (inplace_planes & PIPE_MASK_S) tex->stencil_dirty_level_mask &= ~levels_s; } /* We just had to completely decompress Z/S for texturing. Enable * TC-compatible HTILE on the next clear, so that the decompression * doesn't have to be done for this texture ever again. * * TC-compatible HTILE might slightly reduce Z/S performance, but * the decompression is much worse. */ if (has_htile && !tc_compat_htile && /* We can only transition the whole buffer in one clear, so no mipmapping: */ tex->buffer.b.b.last_level == 0 && tex->surface.flags & RADEON_SURF_TC_COMPATIBLE_HTILE && (inplace_planes & PIPE_MASK_Z || !tex->htile_stencil_disabled)) tex->enable_tc_compatible_htile_next_clear = true; /* Only in-place decompression needs to flush DB caches, or * when we don't decompress but TC-compatible planes are dirty. */ si_make_DB_shader_coherent(sctx, tex->buffer.b.b.nr_samples, inplace_planes & PIPE_MASK_S, tc_compat_htile); } /* set_framebuffer_state takes care of coherency for single-sample. * The DB->CB copy uses CB for the final writes. */ if (copy_planes && tex->buffer.b.b.nr_samples > 1) si_make_CB_shader_coherent(sctx, tex->buffer.b.b.nr_samples, false, true /* no DCC */); } static void si_decompress_sampler_depth_textures(struct si_context *sctx, struct si_samplers *textures) { unsigned i; unsigned mask = textures->needs_depth_decompress_mask; while (mask) { struct pipe_sampler_view *view; struct si_sampler_view *sview; struct si_texture *tex; i = u_bit_scan(&mask); view = textures->views[i]; assert(view); sview = (struct si_sampler_view *)view; tex = (struct si_texture *)view->texture; assert(tex->db_compatible); si_decompress_depth(sctx, tex, sview->is_stencil_sampler ? PIPE_MASK_S : PIPE_MASK_Z, view->u.tex.first_level, view->u.tex.last_level, 0, util_max_layer(&tex->buffer.b.b, view->u.tex.first_level)); } } static void si_blit_decompress_color(struct si_context *sctx, struct si_texture *tex, unsigned first_level, unsigned last_level, unsigned first_layer, unsigned last_layer, bool need_dcc_decompress, bool need_fmask_expand) { void *custom_blend; unsigned layer, checked_last_layer, max_layer; unsigned level_mask = u_bit_consecutive(first_level, last_level - first_level + 1); if (!need_dcc_decompress) level_mask &= tex->dirty_level_mask; if (!level_mask) goto expand_fmask; if (unlikely(sctx->log)) u_log_printf(sctx->log, "\n------------------------------------------------\n" "Decompress Color (levels %u - %u, mask 0x%x)\n\n", first_level, last_level, level_mask); if (need_dcc_decompress) { assert(sctx->chip_class == GFX8 || tex->buffer.b.b.nr_storage_samples >= 2); custom_blend = sctx->custom_blend_dcc_decompress; assert(vi_dcc_enabled(tex, first_level)); /* disable levels without DCC */ for (int i = first_level; i <= last_level; i++) { if (!vi_dcc_enabled(tex, i)) level_mask &= ~(1 << i); } } else if (tex->surface.fmask_size) { custom_blend = sctx->custom_blend_fmask_decompress; } else { custom_blend = sctx->custom_blend_eliminate_fastclear; } sctx->decompression_enabled = true; while (level_mask) { unsigned level = u_bit_scan(&level_mask); /* The smaller the mipmap level, the less layers there are * as far as 3D textures are concerned. */ max_layer = util_max_layer(&tex->buffer.b.b, level); checked_last_layer = MIN2(last_layer, max_layer); for (layer = first_layer; layer <= checked_last_layer; layer++) { struct pipe_surface *cbsurf, surf_tmpl; surf_tmpl.format = tex->buffer.b.b.format; surf_tmpl.u.tex.level = level; surf_tmpl.u.tex.first_layer = layer; surf_tmpl.u.tex.last_layer = layer; cbsurf = sctx->b.create_surface(&sctx->b, &tex->buffer.b.b, &surf_tmpl); /* Required before and after FMASK and DCC_DECOMPRESS. */ if (custom_blend == sctx->custom_blend_fmask_decompress || custom_blend == sctx->custom_blend_dcc_decompress) sctx->flags |= SI_CONTEXT_FLUSH_AND_INV_CB; si_blitter_begin(sctx, SI_DECOMPRESS); util_blitter_custom_color(sctx->blitter, cbsurf, custom_blend); si_blitter_end(sctx); if (custom_blend == sctx->custom_blend_fmask_decompress || custom_blend == sctx->custom_blend_dcc_decompress) sctx->flags |= SI_CONTEXT_FLUSH_AND_INV_CB; /* When running FMASK decompresion with DCC, we need to run the "eliminate fast clear" pass * separately because FMASK decompression doesn't eliminate DCC fast clear. This makes * render->texture transitions more expensive. It can be disabled by * allow_dcc_msaa_clear_to_reg_for_bpp. * * TODO: When we get here, change the compression to TC-compatible on the next clear * to disable both the FMASK decompression and fast clear elimination passes. */ if (sctx->screen->allow_dcc_msaa_clear_to_reg_for_bpp[util_logbase2(tex->surface.bpe)] && custom_blend == sctx->custom_blend_fmask_decompress && vi_dcc_enabled(tex, level)) { si_blitter_begin(sctx, SI_DECOMPRESS); util_blitter_custom_color(sctx->blitter, cbsurf, sctx->custom_blend_eliminate_fastclear); si_blitter_end(sctx); } pipe_surface_reference(&cbsurf, NULL); } /* The texture will always be dirty if some layers aren't flushed. * I don't think this case occurs often though. */ if (first_layer == 0 && last_layer >= max_layer) { tex->dirty_level_mask &= ~(1 << level); } } sctx->decompression_enabled = false; si_make_CB_shader_coherent(sctx, tex->buffer.b.b.nr_samples, vi_dcc_enabled(tex, first_level), tex->surface.u.gfx9.color.dcc.pipe_aligned); expand_fmask: if (need_fmask_expand && tex->surface.fmask_offset && !tex->fmask_is_identity) { si_compute_expand_fmask(&sctx->b, &tex->buffer.b.b); tex->fmask_is_identity = true; } } static void si_decompress_color_texture(struct si_context *sctx, struct si_texture *tex, unsigned first_level, unsigned last_level, bool need_fmask_expand) { /* CMASK or DCC can be discarded and we can still end up here. */ if (!tex->cmask_buffer && !tex->surface.fmask_size && !vi_dcc_enabled(tex, first_level)) return; si_blit_decompress_color(sctx, tex, first_level, last_level, 0, util_max_layer(&tex->buffer.b.b, first_level), false, need_fmask_expand); } static void si_decompress_sampler_color_textures(struct si_context *sctx, struct si_samplers *textures) { unsigned i; unsigned mask = textures->needs_color_decompress_mask; while (mask) { struct pipe_sampler_view *view; struct si_texture *tex; i = u_bit_scan(&mask); view = textures->views[i]; assert(view); tex = (struct si_texture *)view->texture; si_decompress_color_texture(sctx, tex, view->u.tex.first_level, view->u.tex.last_level, false); } } static void si_decompress_image_color_textures(struct si_context *sctx, struct si_images *images) { unsigned i; unsigned mask = images->needs_color_decompress_mask; while (mask) { const struct pipe_image_view *view; struct si_texture *tex; i = u_bit_scan(&mask); view = &images->views[i]; assert(view->resource->target != PIPE_BUFFER); tex = (struct si_texture *)view->resource; si_decompress_color_texture(sctx, tex, view->u.tex.level, view->u.tex.level, view->access & PIPE_IMAGE_ACCESS_WRITE); } } static void si_check_render_feedback_texture(struct si_context *sctx, struct si_texture *tex, unsigned first_level, unsigned last_level, unsigned first_layer, unsigned last_layer) { bool render_feedback = false; if (!vi_dcc_enabled(tex, first_level)) return; for (unsigned j = 0; j < sctx->framebuffer.state.nr_cbufs; ++j) { struct si_surface *surf; if (!sctx->framebuffer.state.cbufs[j]) continue; surf = (struct si_surface *)sctx->framebuffer.state.cbufs[j]; if (tex == (struct si_texture *)surf->base.texture && surf->base.u.tex.level >= first_level && surf->base.u.tex.level <= last_level && surf->base.u.tex.first_layer <= last_layer && surf->base.u.tex.last_layer >= first_layer) { render_feedback = true; break; } } if (render_feedback) si_texture_disable_dcc(sctx, tex); } static void si_check_render_feedback_textures(struct si_context *sctx, struct si_samplers *textures, uint32_t in_use_mask) { uint32_t mask = textures->enabled_mask & in_use_mask; while (mask) { const struct pipe_sampler_view *view; struct si_texture *tex; unsigned i = u_bit_scan(&mask); view = textures->views[i]; if (view->texture->target == PIPE_BUFFER) continue; tex = (struct si_texture *)view->texture; si_check_render_feedback_texture(sctx, tex, view->u.tex.first_level, view->u.tex.last_level, view->u.tex.first_layer, view->u.tex.last_layer); } } static void si_check_render_feedback_images(struct si_context *sctx, struct si_images *images, uint32_t in_use_mask) { uint32_t mask = images->enabled_mask & in_use_mask; while (mask) { const struct pipe_image_view *view; struct si_texture *tex; unsigned i = u_bit_scan(&mask); view = &images->views[i]; if (view->resource->target == PIPE_BUFFER) continue; tex = (struct si_texture *)view->resource; si_check_render_feedback_texture(sctx, tex, view->u.tex.level, view->u.tex.level, view->u.tex.first_layer, view->u.tex.last_layer); } } static void si_check_render_feedback_resident_textures(struct si_context *sctx) { util_dynarray_foreach (&sctx->resident_tex_handles, struct si_texture_handle *, tex_handle) { struct pipe_sampler_view *view; struct si_texture *tex; view = (*tex_handle)->view; if (view->texture->target == PIPE_BUFFER) continue; tex = (struct si_texture *)view->texture; si_check_render_feedback_texture(sctx, tex, view->u.tex.first_level, view->u.tex.last_level, view->u.tex.first_layer, view->u.tex.last_layer); } } static void si_check_render_feedback_resident_images(struct si_context *sctx) { util_dynarray_foreach (&sctx->resident_img_handles, struct si_image_handle *, img_handle) { struct pipe_image_view *view; struct si_texture *tex; view = &(*img_handle)->view; if (view->resource->target == PIPE_BUFFER) continue; tex = (struct si_texture *)view->resource; si_check_render_feedback_texture(sctx, tex, view->u.tex.level, view->u.tex.level, view->u.tex.first_layer, view->u.tex.last_layer); } } static void si_check_render_feedback(struct si_context *sctx) { if (!sctx->need_check_render_feedback) return; /* There is no render feedback if color writes are disabled. * (e.g. a pixel shader with image stores) */ if (!si_get_total_colormask(sctx)) return; for (int i = 0; i < SI_NUM_GRAPHICS_SHADERS; ++i) { if (!sctx->shaders[i].cso) continue; struct si_shader_info *info = &sctx->shaders[i].cso->info; si_check_render_feedback_images(sctx, &sctx->images[i], u_bit_consecutive(0, info->base.num_images)); si_check_render_feedback_textures(sctx, &sctx->samplers[i], info->base.textures_used[0]); } si_check_render_feedback_resident_images(sctx); si_check_render_feedback_resident_textures(sctx); sctx->need_check_render_feedback = false; } static void si_decompress_resident_textures(struct si_context *sctx) { util_dynarray_foreach (&sctx->resident_tex_needs_color_decompress, struct si_texture_handle *, tex_handle) { struct pipe_sampler_view *view = (*tex_handle)->view; struct si_texture *tex = (struct si_texture *)view->texture; si_decompress_color_texture(sctx, tex, view->u.tex.first_level, view->u.tex.last_level, false); } util_dynarray_foreach (&sctx->resident_tex_needs_depth_decompress, struct si_texture_handle *, tex_handle) { struct pipe_sampler_view *view = (*tex_handle)->view; struct si_sampler_view *sview = (struct si_sampler_view *)view; struct si_texture *tex = (struct si_texture *)view->texture; si_decompress_depth(sctx, tex, sview->is_stencil_sampler ? PIPE_MASK_S : PIPE_MASK_Z, view->u.tex.first_level, view->u.tex.last_level, 0, util_max_layer(&tex->buffer.b.b, view->u.tex.first_level)); } } static void si_decompress_resident_images(struct si_context *sctx) { util_dynarray_foreach (&sctx->resident_img_needs_color_decompress, struct si_image_handle *, img_handle) { struct pipe_image_view *view = &(*img_handle)->view; struct si_texture *tex = (struct si_texture *)view->resource; si_decompress_color_texture(sctx, tex, view->u.tex.level, view->u.tex.level, view->access & PIPE_IMAGE_ACCESS_WRITE); } } void si_decompress_textures(struct si_context *sctx, unsigned shader_mask) { unsigned compressed_colortex_counter, mask; if (sctx->blitter_running) return; /* Update the compressed_colortex_mask if necessary. */ compressed_colortex_counter = p_atomic_read(&sctx->screen->compressed_colortex_counter); if (compressed_colortex_counter != sctx->last_compressed_colortex_counter) { sctx->last_compressed_colortex_counter = compressed_colortex_counter; si_update_needs_color_decompress_masks(sctx); } /* Decompress color & depth textures if needed. */ mask = sctx->shader_needs_decompress_mask & shader_mask; while (mask) { unsigned i = u_bit_scan(&mask); if (sctx->samplers[i].needs_depth_decompress_mask) { si_decompress_sampler_depth_textures(sctx, &sctx->samplers[i]); } if (sctx->samplers[i].needs_color_decompress_mask) { si_decompress_sampler_color_textures(sctx, &sctx->samplers[i]); } if (sctx->images[i].needs_color_decompress_mask) { si_decompress_image_color_textures(sctx, &sctx->images[i]); } } if (shader_mask & u_bit_consecutive(0, SI_NUM_GRAPHICS_SHADERS)) { if (sctx->uses_bindless_samplers) si_decompress_resident_textures(sctx); if (sctx->uses_bindless_images) si_decompress_resident_images(sctx); if (sctx->ps_uses_fbfetch) { struct pipe_surface *cb0 = sctx->framebuffer.state.cbufs[0]; si_decompress_color_texture(sctx, (struct si_texture *)cb0->texture, cb0->u.tex.first_layer, cb0->u.tex.last_layer, false); } si_check_render_feedback(sctx); } else if (shader_mask & (1 << PIPE_SHADER_COMPUTE)) { if (sctx->cs_shader_state.program->sel.info.uses_bindless_samplers) si_decompress_resident_textures(sctx); if (sctx->cs_shader_state.program->sel.info.uses_bindless_images) si_decompress_resident_images(sctx); } } /* Helper for decompressing a portion of a color or depth resource before * blitting if any decompression is needed. * The driver doesn't decompress resources automatically while u_blitter is * rendering. */ void si_decompress_subresource(struct pipe_context *ctx, struct pipe_resource *tex, unsigned planes, unsigned level, unsigned first_layer, unsigned last_layer) { struct si_context *sctx = (struct si_context *)ctx; struct si_texture *stex = (struct si_texture *)tex; if (stex->db_compatible) { planes &= PIPE_MASK_Z | PIPE_MASK_S; if (!stex->surface.has_stencil) planes &= ~PIPE_MASK_S; /* If we've rendered into the framebuffer and it's a blitting * source, make sure the decompression pass is invoked * by dirtying the framebuffer. */ if (sctx->framebuffer.state.zsbuf && sctx->framebuffer.state.zsbuf->u.tex.level == level && sctx->framebuffer.state.zsbuf->texture == tex) si_update_fb_dirtiness_after_rendering(sctx); si_decompress_depth(sctx, stex, planes, level, level, first_layer, last_layer); } else if (stex->surface.fmask_size || stex->cmask_buffer || vi_dcc_enabled(stex, level)) { /* If we've rendered into the framebuffer and it's a blitting * source, make sure the decompression pass is invoked * by dirtying the framebuffer. */ for (unsigned i = 0; i < sctx->framebuffer.state.nr_cbufs; i++) { if (sctx->framebuffer.state.cbufs[i] && sctx->framebuffer.state.cbufs[i]->u.tex.level == level && sctx->framebuffer.state.cbufs[i]->texture == tex) { si_update_fb_dirtiness_after_rendering(sctx); break; } } si_blit_decompress_color(sctx, stex, level, level, first_layer, last_layer, false, false); } } struct texture_orig_info { unsigned format; unsigned width0; unsigned height0; unsigned npix_x; unsigned npix_y; unsigned npix0_x; unsigned npix0_y; }; static void si_use_compute_copy_for_float_formats(struct si_context *sctx, struct pipe_resource *texture, unsigned level) { struct si_texture *tex = (struct si_texture *)texture; /* If we are uploading into FP16 or R11G11B10_FLOAT via a blit, CB clobbers NaNs, * so in order to preserve them exactly, we have to use the compute blit. * The compute blit is used only when the destination doesn't have DCC, so * disable it here, which is kinda a hack. * If we are uploading into 32-bit floats with DCC via a blit, NaNs will also get * lost so we need to disable DCC as well. * * This makes KHR-GL45.texture_view.view_classes pass on gfx9. */ if (vi_dcc_enabled(tex, level) && util_format_is_float(texture->format) && sctx->chip_class < GFX10) { si_texture_disable_dcc(sctx, tex); } } void si_resource_copy_region(struct pipe_context *ctx, struct pipe_resource *dst, unsigned dst_level, unsigned dstx, unsigned dsty, unsigned dstz, struct pipe_resource *src, unsigned src_level, const struct pipe_box *src_box) { struct si_context *sctx = (struct si_context *)ctx; struct si_texture *ssrc = (struct si_texture *)src; struct si_texture *sdst = (struct si_texture *)dst; struct pipe_surface *dst_view, dst_templ; struct pipe_sampler_view src_templ, *src_view; unsigned dst_width, dst_height, src_width0, src_height0; unsigned dst_width0, dst_height0, src_force_level = 0; struct pipe_box sbox, dstbox; /* Handle buffers first. */ if (dst->target == PIPE_BUFFER && src->target == PIPE_BUFFER) { si_copy_buffer(sctx, dst, src, dstx, src_box->x, src_box->width, SI_OP_SYNC_BEFORE_AFTER); return; } si_use_compute_copy_for_float_formats(sctx, dst, dst_level); if (!util_format_is_compressed(src->format) && !util_format_is_compressed(dst->format) && !util_format_is_depth_or_stencil(src->format) && src->nr_samples <= 1 && /* DCC compression from image store is enabled for GFX10+. */ (!vi_dcc_enabled(sdst, dst_level) || sctx->chip_class >= GFX10) && !(dst->target != src->target && (src->target == PIPE_TEXTURE_1D_ARRAY || dst->target == PIPE_TEXTURE_1D_ARRAY))) { si_compute_copy_image(sctx, dst, dst_level, src, src_level, dstx, dsty, dstz, src_box, false, SI_OP_SYNC_BEFORE_AFTER); return; } assert(u_max_sample(dst) == u_max_sample(src)); /* The driver doesn't decompress resources automatically while * u_blitter is rendering. */ si_decompress_subresource(ctx, src, PIPE_MASK_RGBAZS, src_level, src_box->z, src_box->z + src_box->depth - 1); dst_width = u_minify(dst->width0, dst_level); dst_height = u_minify(dst->height0, dst_level); dst_width0 = dst->width0; dst_height0 = dst->height0; src_width0 = src->width0; src_height0 = src->height0; util_blitter_default_dst_texture(&dst_templ, dst, dst_level, dstz); util_blitter_default_src_texture(sctx->blitter, &src_templ, src, src_level); if (util_format_is_compressed(src->format) || util_format_is_compressed(dst->format)) { unsigned blocksize = ssrc->surface.bpe; if (blocksize == 8) src_templ.format = PIPE_FORMAT_R16G16B16A16_UINT; /* 64-bit block */ else src_templ.format = PIPE_FORMAT_R32G32B32A32_UINT; /* 128-bit block */ dst_templ.format = src_templ.format; dst_width = util_format_get_nblocksx(dst->format, dst_width); dst_height = util_format_get_nblocksy(dst->format, dst_height); dst_width0 = util_format_get_nblocksx(dst->format, dst_width0); dst_height0 = util_format_get_nblocksy(dst->format, dst_height0); src_width0 = util_format_get_nblocksx(src->format, src_width0); src_height0 = util_format_get_nblocksy(src->format, src_height0); dstx = util_format_get_nblocksx(dst->format, dstx); dsty = util_format_get_nblocksy(dst->format, dsty); sbox.x = util_format_get_nblocksx(src->format, src_box->x); sbox.y = util_format_get_nblocksy(src->format, src_box->y); sbox.z = src_box->z; sbox.width = util_format_get_nblocksx(src->format, src_box->width); sbox.height = util_format_get_nblocksy(src->format, src_box->height); sbox.depth = src_box->depth; src_box = &sbox; src_force_level = src_level; } else if (!util_blitter_is_copy_supported(sctx->blitter, dst, src)) { if (util_format_is_subsampled_422(src->format)) { src_templ.format = PIPE_FORMAT_R8G8B8A8_UINT; dst_templ.format = PIPE_FORMAT_R8G8B8A8_UINT; dst_width = util_format_get_nblocksx(dst->format, dst_width); dst_width0 = util_format_get_nblocksx(dst->format, dst_width0); src_width0 = util_format_get_nblocksx(src->format, src_width0); dstx = util_format_get_nblocksx(dst->format, dstx); sbox = *src_box; sbox.x = util_format_get_nblocksx(src->format, src_box->x); sbox.width = util_format_get_nblocksx(src->format, src_box->width); src_box = &sbox; } else { unsigned blocksize = ssrc->surface.bpe; switch (blocksize) { case 1: dst_templ.format = PIPE_FORMAT_R8_UNORM; src_templ.format = PIPE_FORMAT_R8_UNORM; break; case 2: dst_templ.format = PIPE_FORMAT_R8G8_UNORM; src_templ.format = PIPE_FORMAT_R8G8_UNORM; break; case 4: dst_templ.format = PIPE_FORMAT_R8G8B8A8_UNORM; src_templ.format = PIPE_FORMAT_R8G8B8A8_UNORM; break; case 8: dst_templ.format = PIPE_FORMAT_R16G16B16A16_UINT; src_templ.format = PIPE_FORMAT_R16G16B16A16_UINT; break; case 16: dst_templ.format = PIPE_FORMAT_R32G32B32A32_UINT; src_templ.format = PIPE_FORMAT_R32G32B32A32_UINT; break; default: fprintf(stderr, "Unhandled format %s with blocksize %u\n", util_format_short_name(src->format), blocksize); assert(0); } } } /* SNORM8 blitting has precision issues on some chips. Use the SINT * equivalent instead, which doesn't force DCC decompression. */ if (util_format_is_snorm8(dst_templ.format)) { dst_templ.format = src_templ.format = util_format_snorm8_to_sint8(dst_templ.format); } vi_disable_dcc_if_incompatible_format(sctx, dst, dst_level, dst_templ.format); vi_disable_dcc_if_incompatible_format(sctx, src, src_level, src_templ.format); /* Initialize the surface. */ dst_view = si_create_surface_custom(ctx, dst, &dst_templ, dst_width0, dst_height0, dst_width, dst_height); /* Initialize the sampler view. */ src_view = si_create_sampler_view_custom(ctx, src, &src_templ, src_width0, src_height0, src_force_level); u_box_3d(dstx, dsty, dstz, abs(src_box->width), abs(src_box->height), abs(src_box->depth), &dstbox); /* Copy. */ si_blitter_begin(sctx, SI_COPY); util_blitter_blit_generic(sctx->blitter, dst_view, &dstbox, src_view, src_box, src_width0, src_height0, PIPE_MASK_RGBAZS, PIPE_TEX_FILTER_NEAREST, NULL, false); si_blitter_end(sctx); pipe_surface_reference(&dst_view, NULL); pipe_sampler_view_reference(&src_view, NULL); } static void si_do_CB_resolve(struct si_context *sctx, const struct pipe_blit_info *info, struct pipe_resource *dst, unsigned dst_level, unsigned dst_z, enum pipe_format format) { /* Required before and after CB_RESOLVE. */ sctx->flags |= SI_CONTEXT_FLUSH_AND_INV_CB; si_blitter_begin( sctx, SI_COLOR_RESOLVE | (info->render_condition_enable ? 0 : SI_DISABLE_RENDER_COND)); util_blitter_custom_resolve_color(sctx->blitter, dst, dst_level, dst_z, info->src.resource, info->src.box.z, ~0, sctx->custom_blend_resolve, format); si_blitter_end(sctx); /* Flush caches for possible texturing. */ si_make_CB_shader_coherent(sctx, 1, false, true /* no DCC */); } static bool resolve_formats_compatible(enum pipe_format src, enum pipe_format dst, bool src_swaps_rgb_to_bgr, bool *need_rgb_to_bgr) { *need_rgb_to_bgr = false; if (src_swaps_rgb_to_bgr) { /* We must only check the swapped format. */ enum pipe_format swapped_src = util_format_rgb_to_bgr(src); assert(swapped_src); return util_is_format_compatible(util_format_description(swapped_src), util_format_description(dst)); } if (util_is_format_compatible(util_format_description(src), util_format_description(dst))) return true; enum pipe_format swapped_src = util_format_rgb_to_bgr(src); *need_rgb_to_bgr = util_is_format_compatible(util_format_description(swapped_src), util_format_description(dst)); return *need_rgb_to_bgr; } static bool do_hardware_msaa_resolve(struct pipe_context *ctx, const struct pipe_blit_info *info) { struct si_context *sctx = (struct si_context *)ctx; struct si_texture *src = (struct si_texture *)info->src.resource; struct si_texture *dst = (struct si_texture *)info->dst.resource; ASSERTED struct si_texture *stmp; unsigned dst_width = u_minify(info->dst.resource->width0, info->dst.level); unsigned dst_height = u_minify(info->dst.resource->height0, info->dst.level); enum pipe_format format = info->src.format; struct pipe_resource *tmp, templ; struct pipe_blit_info blit; /* Check basic requirements for hw resolve. */ if (!(info->src.resource->nr_samples > 1 && info->dst.resource->nr_samples <= 1 && !util_format_is_pure_integer(format) && !util_format_is_depth_or_stencil(format) && util_max_layer(info->src.resource, 0) == 0)) return false; /* Hardware MSAA resolve doesn't work if SPI format = NORM16_ABGR and * the format is R16G16. Use R16A16, which does work. */ if (format == PIPE_FORMAT_R16G16_UNORM) format = PIPE_FORMAT_R16A16_UNORM; if (format == PIPE_FORMAT_R16G16_SNORM) format = PIPE_FORMAT_R16A16_SNORM; bool need_rgb_to_bgr = false; /* Check the remaining requirements for hw resolve. */ if (util_max_layer(info->dst.resource, info->dst.level) == 0 && !info->scissor_enable && (info->mask & PIPE_MASK_RGBA) == PIPE_MASK_RGBA && resolve_formats_compatible(info->src.format, info->dst.format, src->swap_rgb_to_bgr, &need_rgb_to_bgr) && dst_width == info->src.resource->width0 && dst_height == info->src.resource->height0 && info->dst.box.x == 0 && info->dst.box.y == 0 && info->dst.box.width == dst_width && info->dst.box.height == dst_height && info->dst.box.depth == 1 && info->src.box.x == 0 && info->src.box.y == 0 && info->src.box.width == dst_width && info->src.box.height == dst_height && info->src.box.depth == 1 && !dst->surface.is_linear && (!dst->cmask_buffer || !dst->dirty_level_mask)) { /* dst cannot be fast-cleared */ /* Check the remaining constraints. */ if (src->surface.micro_tile_mode != dst->surface.micro_tile_mode || need_rgb_to_bgr) { /* The next fast clear will switch to this mode to * get direct hw resolve next time if the mode is * different now. * * TODO-GFX10: This does not work in GFX10 because MSAA * is restricted to 64KB_R_X and 64KB_Z_X swizzle modes. * In some cases we could change the swizzle of the * destination texture instead, but the more general * solution is to implement compute shader resolve. */ if (src->surface.micro_tile_mode != dst->surface.micro_tile_mode) src->last_msaa_resolve_target_micro_mode = dst->surface.micro_tile_mode; if (need_rgb_to_bgr) src->swap_rgb_to_bgr_on_next_clear = true; goto resolve_to_temp; } /* Resolving into a surface with DCC is unsupported. Since * it's being overwritten anyway, clear it to uncompressed. * This is still the fastest codepath even with this clear. */ if (vi_dcc_enabled(dst, info->dst.level)) { struct si_clear_info clear_info; if (!vi_dcc_get_clear_info(sctx, dst, info->dst.level, DCC_UNCOMPRESSED, &clear_info)) goto resolve_to_temp; si_execute_clears(sctx, &clear_info, 1, SI_CLEAR_TYPE_DCC); dst->dirty_level_mask &= ~(1 << info->dst.level); } /* Resolve directly from src to dst. */ si_do_CB_resolve(sctx, info, info->dst.resource, info->dst.level, info->dst.box.z, format); return true; } resolve_to_temp: /* Shader-based resolve is VERY SLOW. Instead, resolve into * a temporary texture and blit. */ memset(&templ, 0, sizeof(templ)); templ.target = PIPE_TEXTURE_2D; templ.format = info->src.resource->format; templ.width0 = info->src.resource->width0; templ.height0 = info->src.resource->height0; templ.depth0 = 1; templ.array_size = 1; templ.usage = PIPE_USAGE_DEFAULT; templ.flags = SI_RESOURCE_FLAG_FORCE_MSAA_TILING | SI_RESOURCE_FLAG_FORCE_MICRO_TILE_MODE | SI_RESOURCE_FLAG_MICRO_TILE_MODE_SET(src->surface.micro_tile_mode) | SI_RESOURCE_FLAG_DISABLE_DCC | SI_RESOURCE_FLAG_DRIVER_INTERNAL; /* The src and dst microtile modes must be the same. */ if (sctx->chip_class <= GFX8 && src->surface.micro_tile_mode == RADEON_MICRO_MODE_DISPLAY) templ.bind = PIPE_BIND_SCANOUT; else templ.bind = 0; tmp = ctx->screen->resource_create(ctx->screen, &templ); if (!tmp) return false; stmp = (struct si_texture *)tmp; /* Match the channel order of src. */ stmp->swap_rgb_to_bgr = src->swap_rgb_to_bgr; assert(!stmp->surface.is_linear); assert(src->surface.micro_tile_mode == stmp->surface.micro_tile_mode); /* resolve */ si_do_CB_resolve(sctx, info, tmp, 0, 0, format); /* blit */ blit = *info; blit.src.resource = tmp; blit.src.box.z = 0; si_blitter_begin(sctx, SI_BLIT | (info->render_condition_enable ? 0 : SI_DISABLE_RENDER_COND)); util_blitter_blit(sctx->blitter, &blit); si_blitter_end(sctx); pipe_resource_reference(&tmp, NULL); return true; } static void si_blit(struct pipe_context *ctx, const struct pipe_blit_info *info) { struct si_context *sctx = (struct si_context *)ctx; if (do_hardware_msaa_resolve(ctx, info)) { return; } if (unlikely(sctx->thread_trace_enabled)) sctx->sqtt_next_event = EventCmdCopyImage; /* Using compute for copying to a linear texture in GTT is much faster than * going through RBs (render backends). This improves DRI PRIME performance. */ if (util_can_blit_via_copy_region(info, false)) { si_resource_copy_region(ctx, info->dst.resource, info->dst.level, info->dst.box.x, info->dst.box.y, info->dst.box.z, info->src.resource, info->src.level, &info->src.box); return; } assert(util_blitter_is_blit_supported(sctx->blitter, info)); /* The driver doesn't decompress resources automatically while * u_blitter is rendering. */ vi_disable_dcc_if_incompatible_format(sctx, info->src.resource, info->src.level, info->src.format); vi_disable_dcc_if_incompatible_format(sctx, info->dst.resource, info->dst.level, info->dst.format); si_decompress_subresource(ctx, info->src.resource, PIPE_MASK_RGBAZS, info->src.level, info->src.box.z, info->src.box.z + info->src.box.depth - 1); if (unlikely(sctx->thread_trace_enabled)) sctx->sqtt_next_event = EventCmdBlitImage; si_blitter_begin(sctx, SI_BLIT | (info->render_condition_enable ? 0 : SI_DISABLE_RENDER_COND)); util_blitter_blit(sctx->blitter, info); si_blitter_end(sctx); } static bool si_generate_mipmap(struct pipe_context *ctx, struct pipe_resource *tex, enum pipe_format format, unsigned base_level, unsigned last_level, unsigned first_layer, unsigned last_layer) { struct si_context *sctx = (struct si_context *)ctx; struct si_texture *stex = (struct si_texture *)tex; if (!util_blitter_is_copy_supported(sctx->blitter, tex, tex)) return false; /* The driver doesn't decompress resources automatically while * u_blitter is rendering. */ vi_disable_dcc_if_incompatible_format(sctx, tex, base_level, format); si_decompress_subresource(ctx, tex, PIPE_MASK_RGBAZS, base_level, first_layer, last_layer); /* Clear dirty_level_mask for the levels that will be overwritten. */ assert(base_level < last_level); stex->dirty_level_mask &= ~u_bit_consecutive(base_level + 1, last_level - base_level); sctx->generate_mipmap_for_depth = stex->is_depth; si_blitter_begin(sctx, SI_BLIT | SI_DISABLE_RENDER_COND); util_blitter_generate_mipmap(sctx->blitter, tex, format, base_level, last_level, first_layer, last_layer); si_blitter_end(sctx); sctx->generate_mipmap_for_depth = false; return true; } static void si_flush_resource(struct pipe_context *ctx, struct pipe_resource *res) { struct si_context *sctx = (struct si_context *)ctx; struct si_texture *tex = (struct si_texture *)res; assert(res->target != PIPE_BUFFER); if (!tex->is_depth && (tex->cmask_buffer || vi_dcc_enabled(tex, 0))) { si_blit_decompress_color(sctx, tex, 0, res->last_level, 0, util_max_layer(res, 0), false, false); if (tex->surface.display_dcc_offset && tex->displayable_dcc_dirty) { si_retile_dcc(sctx, tex); tex->displayable_dcc_dirty = false; } } } void si_flush_implicit_resources(struct si_context *sctx) { hash_table_foreach(sctx->dirty_implicit_resources, entry) { si_flush_resource(&sctx->b, entry->data); pipe_resource_reference((struct pipe_resource **)&entry->data, NULL); } _mesa_hash_table_clear(sctx->dirty_implicit_resources, NULL); } void si_decompress_dcc(struct si_context *sctx, struct si_texture *tex) { assert(!tex->is_depth); /* If graphics is disabled, we can't decompress DCC, but it shouldn't * be compressed either. The caller should simply discard it. */ if (!tex->surface.meta_offset || !sctx->has_graphics) return; if (sctx->chip_class == GFX8 || tex->buffer.b.b.nr_storage_samples >= 2) { si_blit_decompress_color(sctx, tex, 0, tex->buffer.b.b.last_level, 0, util_max_layer(&tex->buffer.b.b, 0), true, false); } else { struct pipe_resource *ptex = &tex->buffer.b.b; assert(ptex->nr_storage_samples <= 1); /* DCC decompression using a compute shader. */ for (unsigned level = 0; level < tex->surface.num_meta_levels; level++) { struct pipe_box box; u_box_3d(0, 0, 0, u_minify(ptex->width0, level), u_minify(ptex->height0, level), util_num_layers(ptex, level), &box); si_compute_copy_image(sctx, ptex, level, ptex, level, 0, 0, 0, &box, true, /* Sync before the first copy and after the last copy */ (level == 0 ? SI_OP_SYNC_BEFORE : 0) | (level == tex->surface.num_meta_levels - 1 ? SI_OP_SYNC_AFTER : 0)); } /* Now clear DCC metadata to uncompressed. * * This uses SI_COMPUTE_CLEAR_METHOD to avoid a failure when running this * deqp caselist on gfx10: * dEQP-GLES31.functional.image_load_store.2d.format_reinterpret.rgba32f_rgba32ui * dEQP-GLES31.functional.image_load_store.2d.format_reinterpret.rgba32f_rgba32i */ uint32_t clear_value = DCC_UNCOMPRESSED; si_clear_buffer(sctx, ptex, tex->surface.meta_offset, tex->surface.meta_size, &clear_value, 4, SI_OP_SYNC_AFTER, SI_COHERENCY_CB_META, SI_COMPUTE_CLEAR_METHOD); si_mark_display_dcc_dirty(sctx, tex); /* Clearing DCC metadata requires flushing L2 and invalidating L2 metadata to make * the metadata visible to L2 caches. This is because clear_buffer uses plain stores * that can go to different L2 channels than where L2 metadata caches expect them. * This is not done for fast clears because plain stores are visible to CB/DB. Only * L2 metadata caches have the problem. */ sctx->flags |= SI_CONTEXT_WB_L2 | SI_CONTEXT_INV_L2_METADATA; } } void si_init_blit_functions(struct si_context *sctx) { sctx->b.resource_copy_region = si_resource_copy_region; if (sctx->has_graphics) { sctx->b.blit = si_blit; sctx->b.flush_resource = si_flush_resource; sctx->b.generate_mipmap = si_generate_mipmap; } }