/* * Copyright 2010 Jerome Glisse * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "r600_sq.h" #include "r600_opcodes.h" #include "r600_formats.h" #include "r600_shader.h" #include "r600d.h" #include #include "util/u_dump.h" #include "util/u_memory.h" #include "util/u_math.h" #include "pipe/p_shader_tokens.h" #include "sb/sb_public.h" #define NUM_OF_CYCLES 3 #define NUM_OF_COMPONENTS 4 static inline unsigned int r600_bytecode_get_num_operands( struct r600_bytecode *bc, struct r600_bytecode_alu *alu) { return r600_isa_alu(alu->op)->src_count; } int r700_bytecode_alu_build(struct r600_bytecode *bc, struct r600_bytecode_alu *alu, unsigned id); static struct r600_bytecode_cf *r600_bytecode_cf(void) { struct r600_bytecode_cf *cf = CALLOC_STRUCT(r600_bytecode_cf); if (cf == NULL) return NULL; LIST_INITHEAD(&cf->list); LIST_INITHEAD(&cf->alu); LIST_INITHEAD(&cf->vtx); LIST_INITHEAD(&cf->tex); return cf; } static struct r600_bytecode_alu *r600_bytecode_alu(void) { struct r600_bytecode_alu *alu = CALLOC_STRUCT(r600_bytecode_alu); if (alu == NULL) return NULL; LIST_INITHEAD(&alu->list); return alu; } static struct r600_bytecode_vtx *r600_bytecode_vtx(void) { struct r600_bytecode_vtx *vtx = CALLOC_STRUCT(r600_bytecode_vtx); if (vtx == NULL) return NULL; LIST_INITHEAD(&vtx->list); return vtx; } static struct r600_bytecode_tex *r600_bytecode_tex(void) { struct r600_bytecode_tex *tex = CALLOC_STRUCT(r600_bytecode_tex); if (tex == NULL) return NULL; LIST_INITHEAD(&tex->list); return tex; } static unsigned stack_entry_size(enum radeon_family chip) { /* Wavefront size: * 64: R600/RV670/RV770/Cypress/R740/Barts/Turks/Caicos/ * Aruba/Sumo/Sumo2/redwood/juniper * 32: R630/R730/R710/Palm/Cedar * 16: R610/Rs780 * * Stack row size: * Wavefront Size 16 32 48 64 * Columns per Row (R6xx/R7xx/R8xx only) 8 8 4 4 * Columns per Row (R9xx+) 8 4 4 4 */ switch (chip) { /* FIXME: are some chips missing here? */ /* wavefront size 16 */ case CHIP_RV610: case CHIP_RS780: case CHIP_RV620: case CHIP_RS880: /* wavefront size 32 */ case CHIP_RV630: case CHIP_RV635: case CHIP_RV730: case CHIP_RV710: case CHIP_PALM: case CHIP_CEDAR: return 8; /* wavefront size 64 */ default: return 4; } } void r600_bytecode_init(struct r600_bytecode *bc, enum chip_class chip_class, enum radeon_family family, bool has_compressed_msaa_texturing) { static unsigned next_shader_id = 0; bc->debug_id = ++next_shader_id; if ((chip_class == R600) && (family != CHIP_RV670 && family != CHIP_RS780 && family != CHIP_RS880)) { bc->ar_handling = AR_HANDLE_RV6XX; bc->r6xx_nop_after_rel_dst = 1; } else { bc->ar_handling = AR_HANDLE_NORMAL; bc->r6xx_nop_after_rel_dst = 0; } LIST_INITHEAD(&bc->cf); bc->chip_class = chip_class; bc->has_compressed_msaa_texturing = has_compressed_msaa_texturing; bc->stack.entry_size = stack_entry_size(family); } int r600_bytecode_add_cf(struct r600_bytecode *bc) { struct r600_bytecode_cf *cf = r600_bytecode_cf(); if (cf == NULL) return -ENOMEM; LIST_ADDTAIL(&cf->list, &bc->cf); if (bc->cf_last) { cf->id = bc->cf_last->id + 2; if (bc->cf_last->eg_alu_extended) { /* take into account extended alu size */ cf->id += 2; bc->ndw += 2; } } bc->cf_last = cf; bc->ncf++; bc->ndw += 2; bc->force_add_cf = 0; bc->ar_loaded = 0; return 0; } int r600_bytecode_add_output(struct r600_bytecode *bc, const struct r600_bytecode_output *output) { int r; if (output->gpr >= bc->ngpr) bc->ngpr = output->gpr + 1; if (bc->cf_last && (bc->cf_last->op == output->op || (bc->cf_last->op == CF_OP_EXPORT && output->op == CF_OP_EXPORT_DONE)) && output->type == bc->cf_last->output.type && output->elem_size == bc->cf_last->output.elem_size && output->swizzle_x == bc->cf_last->output.swizzle_x && output->swizzle_y == bc->cf_last->output.swizzle_y && output->swizzle_z == bc->cf_last->output.swizzle_z && output->swizzle_w == bc->cf_last->output.swizzle_w && output->comp_mask == bc->cf_last->output.comp_mask && (output->burst_count + bc->cf_last->output.burst_count) <= 16) { if ((output->gpr + output->burst_count) == bc->cf_last->output.gpr && (output->array_base + output->burst_count) == bc->cf_last->output.array_base) { bc->cf_last->op = bc->cf_last->output.op = output->op; bc->cf_last->output.gpr = output->gpr; bc->cf_last->output.array_base = output->array_base; bc->cf_last->output.burst_count += output->burst_count; return 0; } else if (output->gpr == (bc->cf_last->output.gpr + bc->cf_last->output.burst_count) && output->array_base == (bc->cf_last->output.array_base + bc->cf_last->output.burst_count)) { bc->cf_last->op = bc->cf_last->output.op = output->op; bc->cf_last->output.burst_count += output->burst_count; return 0; } } r = r600_bytecode_add_cf(bc); if (r) return r; bc->cf_last->op = output->op; memcpy(&bc->cf_last->output, output, sizeof(struct r600_bytecode_output)); bc->cf_last->barrier = 1; return 0; } /* alu instructions that can ony exits once per group */ static int is_alu_once_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu) { return r600_isa_alu(alu->op)->flags & (AF_KILL | AF_PRED); } static int is_alu_reduction_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu) { return (r600_isa_alu(alu->op)->flags & AF_REPL) && (r600_isa_alu_slots(bc->isa->hw_class, alu->op) == AF_4V); } static int is_alu_mova_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu) { return r600_isa_alu(alu->op)->flags & AF_MOVA; } static int alu_uses_rel(struct r600_bytecode *bc, struct r600_bytecode_alu *alu) { unsigned num_src = r600_bytecode_get_num_operands(bc, alu); unsigned src; if (alu->dst.rel) { return 1; } for (src = 0; src < num_src; ++src) { if (alu->src[src].rel) { return 1; } } return 0; } static int is_alu_vec_unit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu) { unsigned slots = r600_isa_alu_slots(bc->isa->hw_class, alu->op); return !(slots & AF_S); } static int is_alu_trans_unit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu) { unsigned slots = r600_isa_alu_slots(bc->isa->hw_class, alu->op); return !(slots & AF_V); } /* alu instructions that can execute on any unit */ static int is_alu_any_unit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu) { unsigned slots = r600_isa_alu_slots(bc->isa->hw_class, alu->op); return slots == AF_VS; } static int is_nop_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu) { return alu->op == ALU_OP0_NOP; } static int assign_alu_units(struct r600_bytecode *bc, struct r600_bytecode_alu *alu_first, struct r600_bytecode_alu *assignment[5]) { struct r600_bytecode_alu *alu; unsigned i, chan, trans; int max_slots = bc->chip_class == CAYMAN ? 4 : 5; for (i = 0; i < max_slots; i++) assignment[i] = NULL; for (alu = alu_first; alu; alu = LIST_ENTRY(struct r600_bytecode_alu, alu->list.next, list)) { chan = alu->dst.chan; if (max_slots == 4) trans = 0; else if (is_alu_trans_unit_inst(bc, alu)) trans = 1; else if (is_alu_vec_unit_inst(bc, alu)) trans = 0; else if (assignment[chan]) trans = 1; /* Assume ALU_INST_PREFER_VECTOR. */ else trans = 0; if (trans) { if (assignment[4]) { assert(0); /* ALU.Trans has already been allocated. */ return -1; } assignment[4] = alu; } else { if (assignment[chan]) { assert(0); /* ALU.chan has already been allocated. */ return -1; } assignment[chan] = alu; } if (alu->last) break; } return 0; } struct alu_bank_swizzle { int hw_gpr[NUM_OF_CYCLES][NUM_OF_COMPONENTS]; int hw_cfile_addr[4]; int hw_cfile_elem[4]; }; static const unsigned cycle_for_bank_swizzle_vec[][3] = { [SQ_ALU_VEC_012] = { 0, 1, 2 }, [SQ_ALU_VEC_021] = { 0, 2, 1 }, [SQ_ALU_VEC_120] = { 1, 2, 0 }, [SQ_ALU_VEC_102] = { 1, 0, 2 }, [SQ_ALU_VEC_201] = { 2, 0, 1 }, [SQ_ALU_VEC_210] = { 2, 1, 0 } }; static const unsigned cycle_for_bank_swizzle_scl[][3] = { [SQ_ALU_SCL_210] = { 2, 1, 0 }, [SQ_ALU_SCL_122] = { 1, 2, 2 }, [SQ_ALU_SCL_212] = { 2, 1, 2 }, [SQ_ALU_SCL_221] = { 2, 2, 1 } }; static void init_bank_swizzle(struct alu_bank_swizzle *bs) { int i, cycle, component; /* set up gpr use */ for (cycle = 0; cycle < NUM_OF_CYCLES; cycle++) for (component = 0; component < NUM_OF_COMPONENTS; component++) bs->hw_gpr[cycle][component] = -1; for (i = 0; i < 4; i++) bs->hw_cfile_addr[i] = -1; for (i = 0; i < 4; i++) bs->hw_cfile_elem[i] = -1; } static int reserve_gpr(struct alu_bank_swizzle *bs, unsigned sel, unsigned chan, unsigned cycle) { if (bs->hw_gpr[cycle][chan] == -1) bs->hw_gpr[cycle][chan] = sel; else if (bs->hw_gpr[cycle][chan] != (int)sel) { /* Another scalar operation has already used the GPR read port for the channel. */ return -1; } return 0; } static int reserve_cfile(struct r600_bytecode *bc, struct alu_bank_swizzle *bs, unsigned sel, unsigned chan) { int res, num_res = 4; if (bc->chip_class >= R700) { num_res = 2; chan /= 2; } for (res = 0; res < num_res; ++res) { if (bs->hw_cfile_addr[res] == -1) { bs->hw_cfile_addr[res] = sel; bs->hw_cfile_elem[res] = chan; return 0; } else if (bs->hw_cfile_addr[res] == sel && bs->hw_cfile_elem[res] == chan) return 0; /* Read for this scalar element already reserved, nothing to do here. */ } /* All cfile read ports are used, cannot reference vector element. */ return -1; } static int is_gpr(unsigned sel) { return (sel <= 127); } /* CB constants start at 512, and get translated to a kcache index when ALU * clauses are constructed. Note that we handle kcache constants the same way * as (the now gone) cfile constants, is that really required? */ static int is_cfile(unsigned sel) { return (sel > 255 && sel < 512) || (sel > 511 && sel < 4607) || /* Kcache before translation. */ (sel > 127 && sel < 192); /* Kcache after translation. */ } static int is_const(int sel) { return is_cfile(sel) || (sel >= V_SQ_ALU_SRC_0 && sel <= V_SQ_ALU_SRC_LITERAL); } static int check_vector(struct r600_bytecode *bc, struct r600_bytecode_alu *alu, struct alu_bank_swizzle *bs, int bank_swizzle) { int r, src, num_src, sel, elem, cycle; num_src = r600_bytecode_get_num_operands(bc, alu); for (src = 0; src < num_src; src++) { sel = alu->src[src].sel; elem = alu->src[src].chan; if (is_gpr(sel)) { cycle = cycle_for_bank_swizzle_vec[bank_swizzle][src]; if (src == 1 && sel == alu->src[0].sel && elem == alu->src[0].chan) /* Nothing to do; special-case optimization, * second source uses first source’s reservation. */ continue; else { r = reserve_gpr(bs, sel, elem, cycle); if (r) return r; } } else if (is_cfile(sel)) { r = reserve_cfile(bc, bs, (alu->src[src].kc_bank<<16) + sel, elem); if (r) return r; } /* No restrictions on PV, PS, literal or special constants. */ } return 0; } static int check_scalar(struct r600_bytecode *bc, struct r600_bytecode_alu *alu, struct alu_bank_swizzle *bs, int bank_swizzle) { int r, src, num_src, const_count, sel, elem, cycle; num_src = r600_bytecode_get_num_operands(bc, alu); for (const_count = 0, src = 0; src < num_src; ++src) { sel = alu->src[src].sel; elem = alu->src[src].chan; if (is_const(sel)) { /* Any constant, including literal and inline constants. */ if (const_count >= 2) /* More than two references to a constant in * transcendental operation. */ return -1; else const_count++; } if (is_cfile(sel)) { r = reserve_cfile(bc, bs, (alu->src[src].kc_bank<<16) + sel, elem); if (r) return r; } } for (src = 0; src < num_src; ++src) { sel = alu->src[src].sel; elem = alu->src[src].chan; if (is_gpr(sel)) { cycle = cycle_for_bank_swizzle_scl[bank_swizzle][src]; if (cycle < const_count) /* Cycle for GPR load conflicts with * constant load in transcendental operation. */ return -1; r = reserve_gpr(bs, sel, elem, cycle); if (r) return r; } /* PV PS restrictions */ if (const_count && (sel == 254 || sel == 255)) { cycle = cycle_for_bank_swizzle_scl[bank_swizzle][src]; if (cycle < const_count) return -1; } } return 0; } static int check_and_set_bank_swizzle(struct r600_bytecode *bc, struct r600_bytecode_alu *slots[5]) { struct alu_bank_swizzle bs; int bank_swizzle[5]; int i, r = 0, forced = 1; boolean scalar_only = bc->chip_class == CAYMAN ? false : true; int max_slots = bc->chip_class == CAYMAN ? 4 : 5; for (i = 0; i < max_slots; i++) { if (slots[i]) { if (slots[i]->bank_swizzle_force) { slots[i]->bank_swizzle = slots[i]->bank_swizzle_force; } else { forced = 0; } } if (i < 4 && slots[i]) scalar_only = false; } if (forced) return 0; /* Just check every possible combination of bank swizzle. * Not very efficent, but works on the first try in most of the cases. */ for (i = 0; i < 4; i++) if (!slots[i] || !slots[i]->bank_swizzle_force) bank_swizzle[i] = SQ_ALU_VEC_012; else bank_swizzle[i] = slots[i]->bank_swizzle; bank_swizzle[4] = SQ_ALU_SCL_210; while(bank_swizzle[4] <= SQ_ALU_SCL_221) { init_bank_swizzle(&bs); if (scalar_only == false) { for (i = 0; i < 4; i++) { if (slots[i]) { r = check_vector(bc, slots[i], &bs, bank_swizzle[i]); if (r) break; } } } else r = 0; if (!r && max_slots == 5 && slots[4]) { r = check_scalar(bc, slots[4], &bs, bank_swizzle[4]); } if (!r) { for (i = 0; i < max_slots; i++) { if (slots[i]) slots[i]->bank_swizzle = bank_swizzle[i]; } return 0; } if (scalar_only) { bank_swizzle[4]++; } else { for (i = 0; i < max_slots; i++) { if (!slots[i] || !slots[i]->bank_swizzle_force) { bank_swizzle[i]++; if (bank_swizzle[i] <= SQ_ALU_VEC_210) break; else if (i < max_slots - 1) bank_swizzle[i] = SQ_ALU_VEC_012; else return -1; } } } } /* Couldn't find a working swizzle. */ return -1; } static int replace_gpr_with_pv_ps(struct r600_bytecode *bc, struct r600_bytecode_alu *slots[5], struct r600_bytecode_alu *alu_prev) { struct r600_bytecode_alu *prev[5]; int gpr[5], chan[5]; int i, j, r, src, num_src; int max_slots = bc->chip_class == CAYMAN ? 4 : 5; r = assign_alu_units(bc, alu_prev, prev); if (r) return r; for (i = 0; i < max_slots; ++i) { if (prev[i] && (prev[i]->dst.write || prev[i]->is_op3) && !prev[i]->dst.rel) { gpr[i] = prev[i]->dst.sel; /* cube writes more than PV.X */ if (is_alu_reduction_inst(bc, prev[i])) chan[i] = 0; else chan[i] = prev[i]->dst.chan; } else gpr[i] = -1; } for (i = 0; i < max_slots; ++i) { struct r600_bytecode_alu *alu = slots[i]; if(!alu) continue; num_src = r600_bytecode_get_num_operands(bc, alu); for (src = 0; src < num_src; ++src) { if (!is_gpr(alu->src[src].sel) || alu->src[src].rel) continue; if (bc->chip_class < CAYMAN) { if (alu->src[src].sel == gpr[4] && alu->src[src].chan == chan[4] && alu_prev->pred_sel == alu->pred_sel) { alu->src[src].sel = V_SQ_ALU_SRC_PS; alu->src[src].chan = 0; continue; } } for (j = 0; j < 4; ++j) { if (alu->src[src].sel == gpr[j] && alu->src[src].chan == j && alu_prev->pred_sel == alu->pred_sel) { alu->src[src].sel = V_SQ_ALU_SRC_PV; alu->src[src].chan = chan[j]; break; } } } } return 0; } void r600_bytecode_special_constants(uint32_t value, unsigned *sel, unsigned *neg) { switch(value) { case 0: *sel = V_SQ_ALU_SRC_0; break; case 1: *sel = V_SQ_ALU_SRC_1_INT; break; case -1: *sel = V_SQ_ALU_SRC_M_1_INT; break; case 0x3F800000: /* 1.0f */ *sel = V_SQ_ALU_SRC_1; break; case 0x3F000000: /* 0.5f */ *sel = V_SQ_ALU_SRC_0_5; break; case 0xBF800000: /* -1.0f */ *sel = V_SQ_ALU_SRC_1; *neg ^= 1; break; case 0xBF000000: /* -0.5f */ *sel = V_SQ_ALU_SRC_0_5; *neg ^= 1; break; default: *sel = V_SQ_ALU_SRC_LITERAL; break; } } /* compute how many literal are needed */ static int r600_bytecode_alu_nliterals(struct r600_bytecode *bc, struct r600_bytecode_alu *alu, uint32_t literal[4], unsigned *nliteral) { unsigned num_src = r600_bytecode_get_num_operands(bc, alu); unsigned i, j; for (i = 0; i < num_src; ++i) { if (alu->src[i].sel == V_SQ_ALU_SRC_LITERAL) { uint32_t value = alu->src[i].value; unsigned found = 0; for (j = 0; j < *nliteral; ++j) { if (literal[j] == value) { found = 1; break; } } if (!found) { if (*nliteral >= 4) return -EINVAL; literal[(*nliteral)++] = value; } } } return 0; } static void r600_bytecode_alu_adjust_literals(struct r600_bytecode *bc, struct r600_bytecode_alu *alu, uint32_t literal[4], unsigned nliteral) { unsigned num_src = r600_bytecode_get_num_operands(bc, alu); unsigned i, j; for (i = 0; i < num_src; ++i) { if (alu->src[i].sel == V_SQ_ALU_SRC_LITERAL) { uint32_t value = alu->src[i].value; for (j = 0; j < nliteral; ++j) { if (literal[j] == value) { alu->src[i].chan = j; break; } } } } } static int merge_inst_groups(struct r600_bytecode *bc, struct r600_bytecode_alu *slots[5], struct r600_bytecode_alu *alu_prev) { struct r600_bytecode_alu *prev[5]; struct r600_bytecode_alu *result[5] = { NULL }; uint32_t literal[4], prev_literal[4]; unsigned nliteral = 0, prev_nliteral = 0; int i, j, r, src, num_src; int num_once_inst = 0; int have_mova = 0, have_rel = 0; int max_slots = bc->chip_class == CAYMAN ? 4 : 5; r = assign_alu_units(bc, alu_prev, prev); if (r) return r; for (i = 0; i < max_slots; ++i) { if (prev[i]) { if (prev[i]->pred_sel) return 0; if (is_alu_once_inst(bc, prev[i])) return 0; } if (slots[i]) { if (slots[i]->pred_sel) return 0; if (is_alu_once_inst(bc, slots[i])) return 0; } } for (i = 0; i < max_slots; ++i) { struct r600_bytecode_alu *alu; if (num_once_inst > 0) return 0; /* check number of literals */ if (prev[i]) { if (r600_bytecode_alu_nliterals(bc, prev[i], literal, &nliteral)) return 0; if (r600_bytecode_alu_nliterals(bc, prev[i], prev_literal, &prev_nliteral)) return 0; if (is_alu_mova_inst(bc, prev[i])) { if (have_rel) return 0; have_mova = 1; } if (alu_uses_rel(bc, prev[i])) { if (have_mova) { return 0; } have_rel = 1; } num_once_inst += is_alu_once_inst(bc, prev[i]); } if (slots[i] && r600_bytecode_alu_nliterals(bc, slots[i], literal, &nliteral)) return 0; /* Let's check used slots. */ if (prev[i] && !slots[i]) { result[i] = prev[i]; continue; } else if (prev[i] && slots[i]) { if (max_slots == 5 && result[4] == NULL && prev[4] == NULL && slots[4] == NULL) { /* Trans unit is still free try to use it. */ if (is_alu_any_unit_inst(bc, slots[i])) { result[i] = prev[i]; result[4] = slots[i]; } else if (is_alu_any_unit_inst(bc, prev[i])) { if (slots[i]->dst.sel == prev[i]->dst.sel && (slots[i]->dst.write == 1 || slots[i]->is_op3) && (prev[i]->dst.write == 1 || prev[i]->is_op3)) return 0; result[i] = slots[i]; result[4] = prev[i]; } else return 0; } else return 0; } else if(!slots[i]) { continue; } else { if (max_slots == 5 && slots[i] && prev[4] && slots[i]->dst.sel == prev[4]->dst.sel && slots[i]->dst.chan == prev[4]->dst.chan && (slots[i]->dst.write == 1 || slots[i]->is_op3) && (prev[4]->dst.write == 1 || prev[4]->is_op3)) return 0; result[i] = slots[i]; } alu = slots[i]; num_once_inst += is_alu_once_inst(bc, alu); /* don't reschedule NOPs */ if (is_nop_inst(bc, alu)) return 0; if (is_alu_mova_inst(bc, alu)) { if (have_rel) { return 0; } have_mova = 1; } if (alu_uses_rel(bc, alu)) { if (have_mova) { return 0; } have_rel = 1; } /* Let's check source gprs */ num_src = r600_bytecode_get_num_operands(bc, alu); for (src = 0; src < num_src; ++src) { /* Constants don't matter. */ if (!is_gpr(alu->src[src].sel)) continue; for (j = 0; j < max_slots; ++j) { if (!prev[j] || !(prev[j]->dst.write || prev[j]->is_op3)) continue; /* If it's relative then we can't determin which gpr is really used. */ if (prev[j]->dst.chan == alu->src[src].chan && (prev[j]->dst.sel == alu->src[src].sel || prev[j]->dst.rel || alu->src[src].rel)) return 0; } } } /* more than one PRED_ or KILL_ ? */ if (num_once_inst > 1) return 0; /* check if the result can still be swizzlet */ r = check_and_set_bank_swizzle(bc, result); if (r) return 0; /* looks like everything worked out right, apply the changes */ /* undo adding previus literals */ bc->cf_last->ndw -= align(prev_nliteral, 2); /* sort instructions */ for (i = 0; i < max_slots; ++i) { slots[i] = result[i]; if (result[i]) { LIST_DEL(&result[i]->list); result[i]->last = 0; LIST_ADDTAIL(&result[i]->list, &bc->cf_last->alu); } } /* determine new last instruction */ LIST_ENTRY(struct r600_bytecode_alu, bc->cf_last->alu.prev, list)->last = 1; /* determine new first instruction */ for (i = 0; i < max_slots; ++i) { if (result[i]) { bc->cf_last->curr_bs_head = result[i]; break; } } bc->cf_last->prev_bs_head = bc->cf_last->prev2_bs_head; bc->cf_last->prev2_bs_head = NULL; return 0; } /* we'll keep kcache sets sorted by bank & addr */ static int r600_bytecode_alloc_kcache_line(struct r600_bytecode *bc, struct r600_bytecode_kcache *kcache, unsigned bank, unsigned line) { int i, kcache_banks = bc->chip_class >= EVERGREEN ? 4 : 2; for (i = 0; i < kcache_banks; i++) { if (kcache[i].mode) { int d; if (kcache[i].bank < bank) continue; if ((kcache[i].bank == bank && kcache[i].addr > line+1) || kcache[i].bank > bank) { /* try to insert new line */ if (kcache[kcache_banks-1].mode) { /* all sets are in use */ return -ENOMEM; } memmove(&kcache[i+1],&kcache[i], (kcache_banks-i-1)*sizeof(struct r600_bytecode_kcache)); kcache[i].mode = V_SQ_CF_KCACHE_LOCK_1; kcache[i].bank = bank; kcache[i].addr = line; return 0; } d = line - kcache[i].addr; if (d == -1) { kcache[i].addr--; if (kcache[i].mode == V_SQ_CF_KCACHE_LOCK_2) { /* we are prepending the line to the current set, * discarding the existing second line, * so we'll have to insert line+2 after it */ line += 2; continue; } else if (kcache[i].mode == V_SQ_CF_KCACHE_LOCK_1) { kcache[i].mode = V_SQ_CF_KCACHE_LOCK_2; return 0; } else { /* V_SQ_CF_KCACHE_LOCK_LOOP_INDEX is not supported */ return -ENOMEM; } } else if (d == 1) { kcache[i].mode = V_SQ_CF_KCACHE_LOCK_2; return 0; } else if (d == 0) return 0; } else { /* free kcache set - use it */ kcache[i].mode = V_SQ_CF_KCACHE_LOCK_1; kcache[i].bank = bank; kcache[i].addr = line; return 0; } } return -ENOMEM; } static int r600_bytecode_alloc_inst_kcache_lines(struct r600_bytecode *bc, struct r600_bytecode_kcache *kcache, struct r600_bytecode_alu *alu) { int i, r; for (i = 0; i < 3; i++) { unsigned bank, line, sel = alu->src[i].sel; if (sel < 512) continue; bank = alu->src[i].kc_bank; line = (sel-512)>>4; if ((r = r600_bytecode_alloc_kcache_line(bc, kcache, bank, line))) return r; } return 0; } static int r600_bytecode_assign_kcache_banks(struct r600_bytecode *bc, struct r600_bytecode_alu *alu, struct r600_bytecode_kcache * kcache) { int i, j; /* Alter the src operands to refer to the kcache. */ for (i = 0; i < 3; ++i) { static const unsigned int base[] = {128, 160, 256, 288}; unsigned int line, sel = alu->src[i].sel, found = 0; if (sel < 512) continue; sel -= 512; line = sel>>4; for (j = 0; j < 4 && !found; ++j) { switch (kcache[j].mode) { case V_SQ_CF_KCACHE_NOP: case V_SQ_CF_KCACHE_LOCK_LOOP_INDEX: R600_ERR("unexpected kcache line mode\n"); return -ENOMEM; default: if (kcache[j].bank == alu->src[i].kc_bank && kcache[j].addr <= line && line < kcache[j].addr + kcache[j].mode) { alu->src[i].sel = sel - (kcache[j].addr<<4); alu->src[i].sel += base[j]; found=1; } } } } return 0; } static int r600_bytecode_alloc_kcache_lines(struct r600_bytecode *bc, struct r600_bytecode_alu *alu, unsigned type) { struct r600_bytecode_kcache kcache_sets[4]; struct r600_bytecode_kcache *kcache = kcache_sets; int r; memcpy(kcache, bc->cf_last->kcache, 4 * sizeof(struct r600_bytecode_kcache)); if ((r = r600_bytecode_alloc_inst_kcache_lines(bc, kcache, alu))) { /* can't alloc, need to start new clause */ if ((r = r600_bytecode_add_cf(bc))) { return r; } bc->cf_last->op = type; /* retry with the new clause */ kcache = bc->cf_last->kcache; if ((r = r600_bytecode_alloc_inst_kcache_lines(bc, kcache, alu))) { /* can't alloc again- should never happen */ return r; } } else { /* update kcache sets */ memcpy(bc->cf_last->kcache, kcache, 4 * sizeof(struct r600_bytecode_kcache)); } /* if we actually used more than 2 kcache sets - use ALU_EXTENDED on eg+ */ if (kcache[2].mode != V_SQ_CF_KCACHE_NOP) { if (bc->chip_class < EVERGREEN) return -ENOMEM; bc->cf_last->eg_alu_extended = 1; } return 0; } static int insert_nop_r6xx(struct r600_bytecode *bc) { struct r600_bytecode_alu alu; int r, i; for (i = 0; i < 4; i++) { memset(&alu, 0, sizeof(alu)); alu.op = ALU_OP0_NOP; alu.src[0].chan = i; alu.dst.chan = i; alu.last = (i == 3); r = r600_bytecode_add_alu(bc, &alu); if (r) return r; } return 0; } /* load AR register from gpr (bc->ar_reg) with MOVA_INT */ static int load_ar_r6xx(struct r600_bytecode *bc) { struct r600_bytecode_alu alu; int r; if (bc->ar_loaded) return 0; /* hack to avoid making MOVA the last instruction in the clause */ if ((bc->cf_last->ndw>>1) >= 110) bc->force_add_cf = 1; memset(&alu, 0, sizeof(alu)); alu.op = ALU_OP1_MOVA_GPR_INT; alu.src[0].sel = bc->ar_reg; alu.src[0].chan = bc->ar_chan; alu.last = 1; alu.index_mode = INDEX_MODE_LOOP; r = r600_bytecode_add_alu(bc, &alu); if (r) return r; /* no requirement to set uses waterfall on MOVA_GPR_INT */ bc->ar_loaded = 1; return 0; } /* load AR register from gpr (bc->ar_reg) with MOVA_INT */ static int load_ar(struct r600_bytecode *bc) { struct r600_bytecode_alu alu; int r; if (bc->ar_handling) return load_ar_r6xx(bc); if (bc->ar_loaded) return 0; /* hack to avoid making MOVA the last instruction in the clause */ if ((bc->cf_last->ndw>>1) >= 110) bc->force_add_cf = 1; memset(&alu, 0, sizeof(alu)); alu.op = ALU_OP1_MOVA_INT; alu.src[0].sel = bc->ar_reg; alu.src[0].chan = bc->ar_chan; alu.last = 1; r = r600_bytecode_add_alu(bc, &alu); if (r) return r; bc->cf_last->r6xx_uses_waterfall = 1; bc->ar_loaded = 1; return 0; } int r600_bytecode_add_alu_type(struct r600_bytecode *bc, const struct r600_bytecode_alu *alu, unsigned type) { struct r600_bytecode_alu *nalu = r600_bytecode_alu(); struct r600_bytecode_alu *lalu; int i, r; if (nalu == NULL) return -ENOMEM; memcpy(nalu, alu, sizeof(struct r600_bytecode_alu)); if (bc->cf_last != NULL && bc->cf_last->op != type) { /* check if we could add it anyway */ if (bc->cf_last->op == CF_OP_ALU && type == CF_OP_ALU_PUSH_BEFORE) { LIST_FOR_EACH_ENTRY(lalu, &bc->cf_last->alu, list) { if (lalu->execute_mask) { bc->force_add_cf = 1; break; } } } else bc->force_add_cf = 1; } /* cf can contains only alu or only vtx or only tex */ if (bc->cf_last == NULL || bc->force_add_cf) { r = r600_bytecode_add_cf(bc); if (r) { free(nalu); return r; } } bc->cf_last->op = type; /* Check AR usage and load it if required */ for (i = 0; i < 3; i++) if (nalu->src[i].rel && !bc->ar_loaded) load_ar(bc); if (nalu->dst.rel && !bc->ar_loaded) load_ar(bc); /* Setup the kcache for this ALU instruction. This will start a new * ALU clause if needed. */ if ((r = r600_bytecode_alloc_kcache_lines(bc, nalu, type))) { free(nalu); return r; } if (!bc->cf_last->curr_bs_head) { bc->cf_last->curr_bs_head = nalu; } /* number of gpr == the last gpr used in any alu */ for (i = 0; i < 3; i++) { if (nalu->src[i].sel >= bc->ngpr && nalu->src[i].sel < 128) { bc->ngpr = nalu->src[i].sel + 1; } if (nalu->src[i].sel == V_SQ_ALU_SRC_LITERAL) r600_bytecode_special_constants(nalu->src[i].value, &nalu->src[i].sel, &nalu->src[i].neg); } if (nalu->dst.sel >= bc->ngpr) { bc->ngpr = nalu->dst.sel + 1; } LIST_ADDTAIL(&nalu->list, &bc->cf_last->alu); /* each alu use 2 dwords */ bc->cf_last->ndw += 2; bc->ndw += 2; /* process cur ALU instructions for bank swizzle */ if (nalu->last) { uint32_t literal[4]; unsigned nliteral; struct r600_bytecode_alu *slots[5]; int max_slots = bc->chip_class == CAYMAN ? 4 : 5; r = assign_alu_units(bc, bc->cf_last->curr_bs_head, slots); if (r) return r; if (bc->cf_last->prev_bs_head) { r = merge_inst_groups(bc, slots, bc->cf_last->prev_bs_head); if (r) return r; } if (bc->cf_last->prev_bs_head) { r = replace_gpr_with_pv_ps(bc, slots, bc->cf_last->prev_bs_head); if (r) return r; } r = check_and_set_bank_swizzle(bc, slots); if (r) return r; for (i = 0, nliteral = 0; i < max_slots; i++) { if (slots[i]) { r = r600_bytecode_alu_nliterals(bc, slots[i], literal, &nliteral); if (r) return r; } } bc->cf_last->ndw += align(nliteral, 2); /* at most 128 slots, one add alu can add 5 slots + 4 constants(2 slots) * worst case */ if ((bc->cf_last->ndw >> 1) >= 120) { bc->force_add_cf = 1; } bc->cf_last->prev2_bs_head = bc->cf_last->prev_bs_head; bc->cf_last->prev_bs_head = bc->cf_last->curr_bs_head; bc->cf_last->curr_bs_head = NULL; } if (nalu->dst.rel && bc->r6xx_nop_after_rel_dst) insert_nop_r6xx(bc); return 0; } int r600_bytecode_add_alu(struct r600_bytecode *bc, const struct r600_bytecode_alu *alu) { return r600_bytecode_add_alu_type(bc, alu, CF_OP_ALU); } static unsigned r600_bytecode_num_tex_and_vtx_instructions(const struct r600_bytecode *bc) { switch (bc->chip_class) { case R600: return 8; case R700: case EVERGREEN: case CAYMAN: return 16; default: R600_ERR("Unknown chip class %d.\n", bc->chip_class); return 8; } } static inline boolean last_inst_was_not_vtx_fetch(struct r600_bytecode *bc) { return !((r600_isa_cf(bc->cf_last->op)->flags & CF_FETCH) && (bc->chip_class == CAYMAN || bc->cf_last->op != CF_OP_TEX)); } int r600_bytecode_add_vtx(struct r600_bytecode *bc, const struct r600_bytecode_vtx *vtx) { struct r600_bytecode_vtx *nvtx = r600_bytecode_vtx(); int r; if (nvtx == NULL) return -ENOMEM; memcpy(nvtx, vtx, sizeof(struct r600_bytecode_vtx)); /* cf can contains only alu or only vtx or only tex */ if (bc->cf_last == NULL || last_inst_was_not_vtx_fetch(bc) || bc->force_add_cf) { r = r600_bytecode_add_cf(bc); if (r) { free(nvtx); return r; } switch (bc->chip_class) { case R600: case R700: case EVERGREEN: bc->cf_last->op = CF_OP_VTX; break; case CAYMAN: bc->cf_last->op = CF_OP_TEX; break; default: R600_ERR("Unknown chip class %d.\n", bc->chip_class); free(nvtx); return -EINVAL; } } LIST_ADDTAIL(&nvtx->list, &bc->cf_last->vtx); /* each fetch use 4 dwords */ bc->cf_last->ndw += 4; bc->ndw += 4; if ((bc->cf_last->ndw / 4) >= r600_bytecode_num_tex_and_vtx_instructions(bc)) bc->force_add_cf = 1; bc->ngpr = MAX2(bc->ngpr, vtx->src_gpr + 1); bc->ngpr = MAX2(bc->ngpr, vtx->dst_gpr + 1); return 0; } int r600_bytecode_add_tex(struct r600_bytecode *bc, const struct r600_bytecode_tex *tex) { struct r600_bytecode_tex *ntex = r600_bytecode_tex(); int r; if (ntex == NULL) return -ENOMEM; memcpy(ntex, tex, sizeof(struct r600_bytecode_tex)); /* we can't fetch data und use it as texture lookup address in the same TEX clause */ if (bc->cf_last != NULL && bc->cf_last->op == CF_OP_TEX) { struct r600_bytecode_tex *ttex; LIST_FOR_EACH_ENTRY(ttex, &bc->cf_last->tex, list) { if (ttex->dst_gpr == ntex->src_gpr) { bc->force_add_cf = 1; break; } } /* slight hack to make gradients always go into same cf */ if (ntex->op == FETCH_OP_SET_GRADIENTS_H) bc->force_add_cf = 1; } /* cf can contains only alu or only vtx or only tex */ if (bc->cf_last == NULL || bc->cf_last->op != CF_OP_TEX || bc->force_add_cf) { r = r600_bytecode_add_cf(bc); if (r) { free(ntex); return r; } bc->cf_last->op = CF_OP_TEX; } if (ntex->src_gpr >= bc->ngpr) { bc->ngpr = ntex->src_gpr + 1; } if (ntex->dst_gpr >= bc->ngpr) { bc->ngpr = ntex->dst_gpr + 1; } LIST_ADDTAIL(&ntex->list, &bc->cf_last->tex); /* each texture fetch use 4 dwords */ bc->cf_last->ndw += 4; bc->ndw += 4; if ((bc->cf_last->ndw / 4) >= r600_bytecode_num_tex_and_vtx_instructions(bc)) bc->force_add_cf = 1; return 0; } int r600_bytecode_add_cfinst(struct r600_bytecode *bc, unsigned op) { int r; r = r600_bytecode_add_cf(bc); if (r) return r; bc->cf_last->cond = V_SQ_CF_COND_ACTIVE; bc->cf_last->op = op; return 0; } int cm_bytecode_add_cf_end(struct r600_bytecode *bc) { return r600_bytecode_add_cfinst(bc, CF_OP_CF_END); } /* common to all 3 families */ static int r600_bytecode_vtx_build(struct r600_bytecode *bc, struct r600_bytecode_vtx *vtx, unsigned id) { bc->bytecode[id] = S_SQ_VTX_WORD0_BUFFER_ID(vtx->buffer_id) | S_SQ_VTX_WORD0_FETCH_TYPE(vtx->fetch_type) | S_SQ_VTX_WORD0_SRC_GPR(vtx->src_gpr) | S_SQ_VTX_WORD0_SRC_SEL_X(vtx->src_sel_x); if (bc->chip_class < CAYMAN) bc->bytecode[id] |= S_SQ_VTX_WORD0_MEGA_FETCH_COUNT(vtx->mega_fetch_count); id++; bc->bytecode[id++] = S_SQ_VTX_WORD1_DST_SEL_X(vtx->dst_sel_x) | S_SQ_VTX_WORD1_DST_SEL_Y(vtx->dst_sel_y) | S_SQ_VTX_WORD1_DST_SEL_Z(vtx->dst_sel_z) | S_SQ_VTX_WORD1_DST_SEL_W(vtx->dst_sel_w) | S_SQ_VTX_WORD1_USE_CONST_FIELDS(vtx->use_const_fields) | S_SQ_VTX_WORD1_DATA_FORMAT(vtx->data_format) | S_SQ_VTX_WORD1_NUM_FORMAT_ALL(vtx->num_format_all) | S_SQ_VTX_WORD1_FORMAT_COMP_ALL(vtx->format_comp_all) | S_SQ_VTX_WORD1_SRF_MODE_ALL(vtx->srf_mode_all) | S_SQ_VTX_WORD1_GPR_DST_GPR(vtx->dst_gpr); bc->bytecode[id] = S_SQ_VTX_WORD2_OFFSET(vtx->offset)| S_SQ_VTX_WORD2_ENDIAN_SWAP(vtx->endian); if (bc->chip_class < CAYMAN) bc->bytecode[id] |= S_SQ_VTX_WORD2_MEGA_FETCH(1); id++; bc->bytecode[id++] = 0; return 0; } /* common to all 3 families */ static int r600_bytecode_tex_build(struct r600_bytecode *bc, struct r600_bytecode_tex *tex, unsigned id) { bc->bytecode[id++] = S_SQ_TEX_WORD0_TEX_INST( r600_isa_fetch_opcode(bc->isa->hw_class, tex->op)) | EG_S_SQ_TEX_WORD0_INST_MOD(tex->inst_mod) | S_SQ_TEX_WORD0_RESOURCE_ID(tex->resource_id) | S_SQ_TEX_WORD0_SRC_GPR(tex->src_gpr) | S_SQ_TEX_WORD0_SRC_REL(tex->src_rel); bc->bytecode[id++] = S_SQ_TEX_WORD1_DST_GPR(tex->dst_gpr) | S_SQ_TEX_WORD1_DST_REL(tex->dst_rel) | S_SQ_TEX_WORD1_DST_SEL_X(tex->dst_sel_x) | S_SQ_TEX_WORD1_DST_SEL_Y(tex->dst_sel_y) | S_SQ_TEX_WORD1_DST_SEL_Z(tex->dst_sel_z) | S_SQ_TEX_WORD1_DST_SEL_W(tex->dst_sel_w) | S_SQ_TEX_WORD1_LOD_BIAS(tex->lod_bias) | S_SQ_TEX_WORD1_COORD_TYPE_X(tex->coord_type_x) | S_SQ_TEX_WORD1_COORD_TYPE_Y(tex->coord_type_y) | S_SQ_TEX_WORD1_COORD_TYPE_Z(tex->coord_type_z) | S_SQ_TEX_WORD1_COORD_TYPE_W(tex->coord_type_w); bc->bytecode[id++] = S_SQ_TEX_WORD2_OFFSET_X(tex->offset_x) | S_SQ_TEX_WORD2_OFFSET_Y(tex->offset_y) | S_SQ_TEX_WORD2_OFFSET_Z(tex->offset_z) | S_SQ_TEX_WORD2_SAMPLER_ID(tex->sampler_id) | S_SQ_TEX_WORD2_SRC_SEL_X(tex->src_sel_x) | S_SQ_TEX_WORD2_SRC_SEL_Y(tex->src_sel_y) | S_SQ_TEX_WORD2_SRC_SEL_Z(tex->src_sel_z) | S_SQ_TEX_WORD2_SRC_SEL_W(tex->src_sel_w); bc->bytecode[id++] = 0; return 0; } /* r600 only, r700/eg bits in r700_asm.c */ static int r600_bytecode_alu_build(struct r600_bytecode *bc, struct r600_bytecode_alu *alu, unsigned id) { unsigned opcode = r600_isa_alu_opcode(bc->isa->hw_class, alu->op); /* don't replace gpr by pv or ps for destination register */ bc->bytecode[id++] = S_SQ_ALU_WORD0_SRC0_SEL(alu->src[0].sel) | S_SQ_ALU_WORD0_SRC0_REL(alu->src[0].rel) | S_SQ_ALU_WORD0_SRC0_CHAN(alu->src[0].chan) | S_SQ_ALU_WORD0_SRC0_NEG(alu->src[0].neg) | S_SQ_ALU_WORD0_SRC1_SEL(alu->src[1].sel) | S_SQ_ALU_WORD0_SRC1_REL(alu->src[1].rel) | S_SQ_ALU_WORD0_SRC1_CHAN(alu->src[1].chan) | S_SQ_ALU_WORD0_SRC1_NEG(alu->src[1].neg) | S_SQ_ALU_WORD0_INDEX_MODE(alu->index_mode) | S_SQ_ALU_WORD0_PRED_SEL(alu->pred_sel) | S_SQ_ALU_WORD0_LAST(alu->last); if (alu->is_op3) { bc->bytecode[id++] = S_SQ_ALU_WORD1_DST_GPR(alu->dst.sel) | S_SQ_ALU_WORD1_DST_CHAN(alu->dst.chan) | S_SQ_ALU_WORD1_DST_REL(alu->dst.rel) | S_SQ_ALU_WORD1_CLAMP(alu->dst.clamp) | S_SQ_ALU_WORD1_OP3_SRC2_SEL(alu->src[2].sel) | S_SQ_ALU_WORD1_OP3_SRC2_REL(alu->src[2].rel) | S_SQ_ALU_WORD1_OP3_SRC2_CHAN(alu->src[2].chan) | S_SQ_ALU_WORD1_OP3_SRC2_NEG(alu->src[2].neg) | S_SQ_ALU_WORD1_OP3_ALU_INST(opcode) | S_SQ_ALU_WORD1_BANK_SWIZZLE(alu->bank_swizzle); } else { bc->bytecode[id++] = S_SQ_ALU_WORD1_DST_GPR(alu->dst.sel) | S_SQ_ALU_WORD1_DST_CHAN(alu->dst.chan) | S_SQ_ALU_WORD1_DST_REL(alu->dst.rel) | S_SQ_ALU_WORD1_CLAMP(alu->dst.clamp) | S_SQ_ALU_WORD1_OP2_SRC0_ABS(alu->src[0].abs) | S_SQ_ALU_WORD1_OP2_SRC1_ABS(alu->src[1].abs) | S_SQ_ALU_WORD1_OP2_WRITE_MASK(alu->dst.write) | S_SQ_ALU_WORD1_OP2_OMOD(alu->omod) | S_SQ_ALU_WORD1_OP2_ALU_INST(opcode) | S_SQ_ALU_WORD1_BANK_SWIZZLE(alu->bank_swizzle) | S_SQ_ALU_WORD1_OP2_UPDATE_EXECUTE_MASK(alu->execute_mask) | S_SQ_ALU_WORD1_OP2_UPDATE_PRED(alu->update_pred); } return 0; } static void r600_bytecode_cf_vtx_build(uint32_t *bytecode, const struct r600_bytecode_cf *cf) { *bytecode++ = S_SQ_CF_WORD0_ADDR(cf->addr >> 1); *bytecode++ = S_SQ_CF_WORD1_CF_INST(r600_isa_cf_opcode(ISA_CC_R600, cf->op)) | S_SQ_CF_WORD1_BARRIER(1) | S_SQ_CF_WORD1_COUNT((cf->ndw / 4) - 1); } /* common for r600/r700 - eg in eg_asm.c */ static int r600_bytecode_cf_build(struct r600_bytecode *bc, struct r600_bytecode_cf *cf) { unsigned id = cf->id; const struct cf_op_info *cfop = r600_isa_cf(cf->op); unsigned opcode = r600_isa_cf_opcode(bc->isa->hw_class, cf->op); if (cf->op == CF_NATIVE) { bc->bytecode[id++] = cf->isa[0]; bc->bytecode[id++] = cf->isa[1]; } else if (cfop->flags & CF_ALU) { bc->bytecode[id++] = S_SQ_CF_ALU_WORD0_ADDR(cf->addr >> 1) | S_SQ_CF_ALU_WORD0_KCACHE_MODE0(cf->kcache[0].mode) | S_SQ_CF_ALU_WORD0_KCACHE_BANK0(cf->kcache[0].bank) | S_SQ_CF_ALU_WORD0_KCACHE_BANK1(cf->kcache[1].bank); bc->bytecode[id++] = S_SQ_CF_ALU_WORD1_CF_INST(opcode) | S_SQ_CF_ALU_WORD1_KCACHE_MODE1(cf->kcache[1].mode) | S_SQ_CF_ALU_WORD1_KCACHE_ADDR0(cf->kcache[0].addr) | S_SQ_CF_ALU_WORD1_KCACHE_ADDR1(cf->kcache[1].addr) | S_SQ_CF_ALU_WORD1_BARRIER(1) | S_SQ_CF_ALU_WORD1_USES_WATERFALL(bc->chip_class == R600 ? cf->r6xx_uses_waterfall : 0) | S_SQ_CF_ALU_WORD1_COUNT((cf->ndw / 2) - 1); } else if (cfop->flags & CF_FETCH) { if (bc->chip_class == R700) r700_bytecode_cf_vtx_build(&bc->bytecode[id], cf); else r600_bytecode_cf_vtx_build(&bc->bytecode[id], cf); } else if (cfop->flags & CF_EXP) { bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD0_RW_GPR(cf->output.gpr) | S_SQ_CF_ALLOC_EXPORT_WORD0_ELEM_SIZE(cf->output.elem_size) | S_SQ_CF_ALLOC_EXPORT_WORD0_ARRAY_BASE(cf->output.array_base) | S_SQ_CF_ALLOC_EXPORT_WORD0_TYPE(cf->output.type) | S_SQ_CF_ALLOC_EXPORT_WORD0_INDEX_GPR(cf->output.index_gpr); bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD1_BURST_COUNT(cf->output.burst_count - 1) | S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_X(cf->output.swizzle_x) | S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Y(cf->output.swizzle_y) | S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Z(cf->output.swizzle_z) | S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_W(cf->output.swizzle_w) | S_SQ_CF_ALLOC_EXPORT_WORD1_BARRIER(cf->barrier) | S_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(opcode) | S_SQ_CF_ALLOC_EXPORT_WORD1_END_OF_PROGRAM(cf->end_of_program); } else if (cfop->flags & CF_MEM) { bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD0_RW_GPR(cf->output.gpr) | S_SQ_CF_ALLOC_EXPORT_WORD0_ELEM_SIZE(cf->output.elem_size) | S_SQ_CF_ALLOC_EXPORT_WORD0_ARRAY_BASE(cf->output.array_base) | S_SQ_CF_ALLOC_EXPORT_WORD0_TYPE(cf->output.type) | S_SQ_CF_ALLOC_EXPORT_WORD0_INDEX_GPR(cf->output.index_gpr); bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD1_BURST_COUNT(cf->output.burst_count - 1) | S_SQ_CF_ALLOC_EXPORT_WORD1_BARRIER(cf->barrier) | S_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(opcode) | S_SQ_CF_ALLOC_EXPORT_WORD1_END_OF_PROGRAM(cf->end_of_program) | S_SQ_CF_ALLOC_EXPORT_WORD1_BUF_ARRAY_SIZE(cf->output.array_size) | S_SQ_CF_ALLOC_EXPORT_WORD1_BUF_COMP_MASK(cf->output.comp_mask); } else { bc->bytecode[id++] = S_SQ_CF_WORD0_ADDR(cf->cf_addr >> 1); bc->bytecode[id++] = S_SQ_CF_WORD1_CF_INST(opcode) | S_SQ_CF_WORD1_BARRIER(1) | S_SQ_CF_WORD1_COND(cf->cond) | S_SQ_CF_WORD1_POP_COUNT(cf->pop_count) | S_SQ_CF_WORD1_END_OF_PROGRAM(cf->end_of_program); } return 0; } int r600_bytecode_build(struct r600_bytecode *bc) { struct r600_bytecode_cf *cf; struct r600_bytecode_alu *alu; struct r600_bytecode_vtx *vtx; struct r600_bytecode_tex *tex; uint32_t literal[4]; unsigned nliteral; unsigned addr; int i, r; if (!bc->nstack) // If not 0, Stack_size already provided by llvm bc->nstack = bc->stack.max_entries; if (bc->type == TGSI_PROCESSOR_VERTEX && !bc->nstack) { bc->nstack = 1; } /* first path compute addr of each CF block */ /* addr start after all the CF instructions */ addr = bc->cf_last->id + 2; LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) { if (r600_isa_cf(cf->op)->flags & CF_FETCH) { addr += 3; addr &= 0xFFFFFFFCUL; } cf->addr = addr; addr += cf->ndw; bc->ndw = cf->addr + cf->ndw; } free(bc->bytecode); bc->bytecode = calloc(1, bc->ndw * 4); if (bc->bytecode == NULL) return -ENOMEM; LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) { const struct cf_op_info *cfop = r600_isa_cf(cf->op); addr = cf->addr; if (bc->chip_class >= EVERGREEN) r = eg_bytecode_cf_build(bc, cf); else r = r600_bytecode_cf_build(bc, cf); if (r) return r; if (cfop->flags & CF_ALU) { nliteral = 0; memset(literal, 0, sizeof(literal)); LIST_FOR_EACH_ENTRY(alu, &cf->alu, list) { r = r600_bytecode_alu_nliterals(bc, alu, literal, &nliteral); if (r) return r; r600_bytecode_alu_adjust_literals(bc, alu, literal, nliteral); r600_bytecode_assign_kcache_banks(bc, alu, cf->kcache); switch(bc->chip_class) { case R600: r = r600_bytecode_alu_build(bc, alu, addr); break; case R700: case EVERGREEN: /* eg alu is same encoding as r700 */ case CAYMAN: r = r700_bytecode_alu_build(bc, alu, addr); break; default: R600_ERR("unknown chip class %d.\n", bc->chip_class); return -EINVAL; } if (r) return r; addr += 2; if (alu->last) { for (i = 0; i < align(nliteral, 2); ++i) { bc->bytecode[addr++] = literal[i]; } nliteral = 0; memset(literal, 0, sizeof(literal)); } } } else if (cf->op == CF_OP_VTX) { LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) { r = r600_bytecode_vtx_build(bc, vtx, addr); if (r) return r; addr += 4; } } else if (cf->op == CF_OP_TEX) { LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) { assert(bc->chip_class >= EVERGREEN); r = r600_bytecode_vtx_build(bc, vtx, addr); if (r) return r; addr += 4; } LIST_FOR_EACH_ENTRY(tex, &cf->tex, list) { r = r600_bytecode_tex_build(bc, tex, addr); if (r) return r; addr += 4; } } } return 0; } void r600_bytecode_clear(struct r600_bytecode *bc) { struct r600_bytecode_cf *cf = NULL, *next_cf; free(bc->bytecode); bc->bytecode = NULL; LIST_FOR_EACH_ENTRY_SAFE(cf, next_cf, &bc->cf, list) { struct r600_bytecode_alu *alu = NULL, *next_alu; struct r600_bytecode_tex *tex = NULL, *next_tex; struct r600_bytecode_tex *vtx = NULL, *next_vtx; LIST_FOR_EACH_ENTRY_SAFE(alu, next_alu, &cf->alu, list) { free(alu); } LIST_INITHEAD(&cf->alu); LIST_FOR_EACH_ENTRY_SAFE(tex, next_tex, &cf->tex, list) { free(tex); } LIST_INITHEAD(&cf->tex); LIST_FOR_EACH_ENTRY_SAFE(vtx, next_vtx, &cf->vtx, list) { free(vtx); } LIST_INITHEAD(&cf->vtx); free(cf); } LIST_INITHEAD(&cf->list); } static int print_swizzle(unsigned swz) { const char * swzchars = "xyzw01?_"; assert(swz<8 && swz != 6); return fprintf(stderr, "%c", swzchars[swz]); } static int print_sel(unsigned sel, unsigned rel, unsigned index_mode, unsigned need_brackets) { int o = 0; if (rel && index_mode >= 5 && sel < 128) o += fprintf(stderr, "G"); if (rel || need_brackets) { o += fprintf(stderr, "["); } o += fprintf(stderr, "%d", sel); if (rel) { if (index_mode == 0 || index_mode == 6) o += fprintf(stderr, "+AR"); else if (index_mode == 4) o += fprintf(stderr, "+AL"); } if (rel || need_brackets) { o += fprintf(stderr, "]"); } return o; } static int print_dst(struct r600_bytecode_alu *alu) { int o = 0; unsigned sel = alu->dst.sel; char reg_char = 'R'; if (sel > 128 - 4) { /* clause temporary gpr */ sel -= 128 - 4; reg_char = 'T'; } if (alu->dst.write || alu->is_op3) { o += fprintf(stderr, "%c", reg_char); o += print_sel(alu->dst.sel, alu->dst.rel, alu->index_mode, 0); } else { o += fprintf(stderr, "__"); } o += fprintf(stderr, "."); o += print_swizzle(alu->dst.chan); return o; } static int print_src(struct r600_bytecode_alu *alu, unsigned idx) { int o = 0; struct r600_bytecode_alu_src *src = &alu->src[idx]; unsigned sel = src->sel, need_sel = 1, need_chan = 1, need_brackets = 0; if (src->neg) o += fprintf(stderr,"-"); if (src->abs) o += fprintf(stderr,"|"); if (sel < 128 - 4) { o += fprintf(stderr, "R"); } else if (sel < 128) { o += fprintf(stderr, "T"); sel -= 128 - 4; } else if (sel < 160) { o += fprintf(stderr, "KC0"); need_brackets = 1; sel -= 128; } else if (sel < 192) { o += fprintf(stderr, "KC1"); need_brackets = 1; sel -= 160; } else if (sel >= 512) { o += fprintf(stderr, "C%d", src->kc_bank); need_brackets = 1; sel -= 512; } else if (sel >= 448) { o += fprintf(stderr, "Param"); sel -= 448; need_chan = 0; } else if (sel >= 288) { o += fprintf(stderr, "KC3"); need_brackets = 1; sel -= 288; } else if (sel >= 256) { o += fprintf(stderr, "KC2"); need_brackets = 1; sel -= 256; } else { need_sel = 0; need_chan = 0; switch (sel) { case V_SQ_ALU_SRC_PS: o += fprintf(stderr, "PS"); break; case V_SQ_ALU_SRC_PV: o += fprintf(stderr, "PV"); need_chan = 1; break; case V_SQ_ALU_SRC_LITERAL: o += fprintf(stderr, "[0x%08X %f]", src->value, *(float*)&src->value); break; case V_SQ_ALU_SRC_0_5: o += fprintf(stderr, "0.5"); break; case V_SQ_ALU_SRC_M_1_INT: o += fprintf(stderr, "-1"); break; case V_SQ_ALU_SRC_1_INT: o += fprintf(stderr, "1"); break; case V_SQ_ALU_SRC_1: o += fprintf(stderr, "1.0"); break; case V_SQ_ALU_SRC_0: o += fprintf(stderr, "0"); break; default: o += fprintf(stderr, "??IMM_%d", sel); break; } } if (need_sel) o += print_sel(sel, src->rel, alu->index_mode, need_brackets); if (need_chan) { o += fprintf(stderr, "."); o += print_swizzle(src->chan); } if (src->abs) o += fprintf(stderr,"|"); return o; } static int print_indent(int p, int c) { int o = 0; while (p++ < c) o += fprintf(stderr, " "); return o; } void r600_bytecode_disasm(struct r600_bytecode *bc) { static int index = 0; struct r600_bytecode_cf *cf = NULL; struct r600_bytecode_alu *alu = NULL; struct r600_bytecode_vtx *vtx = NULL; struct r600_bytecode_tex *tex = NULL; unsigned i, id, ngr = 0, last; uint32_t literal[4]; unsigned nliteral; char chip = '6'; switch (bc->chip_class) { case R700: chip = '7'; break; case EVERGREEN: chip = 'E'; break; case CAYMAN: chip = 'C'; break; case R600: default: chip = '6'; break; } fprintf(stderr, "bytecode %d dw -- %d gprs -- %d nstack -------------\n", bc->ndw, bc->ngpr, bc->nstack); fprintf(stderr, "shader %d -- %c\n", index++, chip); LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) { id = cf->id; if (cf->op == CF_NATIVE) { fprintf(stderr, "%04d %08X %08X CF_NATIVE\n", id, bc->bytecode[id], bc->bytecode[id + 1]); } else { const struct cf_op_info *cfop = r600_isa_cf(cf->op); if (cfop->flags & CF_ALU) { if (cf->eg_alu_extended) { fprintf(stderr, "%04d %08X %08X %s\n", id, bc->bytecode[id], bc->bytecode[id + 1], "ALU_EXT"); id += 2; } fprintf(stderr, "%04d %08X %08X %s ", id, bc->bytecode[id], bc->bytecode[id + 1], cfop->name); fprintf(stderr, "%d @%d ", cf->ndw / 2, cf->addr); for (i = 0; i < 4; ++i) { if (cf->kcache[i].mode) { int c_start = (cf->kcache[i].addr << 4); int c_end = c_start + (cf->kcache[i].mode << 4); fprintf(stderr, "KC%d[CB%d:%d-%d] ", i, cf->kcache[i].bank, c_start, c_end); } } fprintf(stderr, "\n"); } else if (cfop->flags & CF_FETCH) { fprintf(stderr, "%04d %08X %08X %s ", id, bc->bytecode[id], bc->bytecode[id + 1], cfop->name); fprintf(stderr, "%d @%d ", cf->ndw / 4, cf->addr); fprintf(stderr, "\n"); } else if (cfop->flags & CF_EXP) { int o = 0; const char *exp_type[] = {"PIXEL", "POS ", "PARAM"}; o += fprintf(stderr, "%04d %08X %08X %s ", id, bc->bytecode[id], bc->bytecode[id + 1], cfop->name); o += print_indent(o, 43); o += fprintf(stderr, "%s ", exp_type[cf->output.type]); if (cf->output.burst_count > 1) { o += fprintf(stderr, "%d-%d ", cf->output.array_base, cf->output.array_base + cf->output.burst_count - 1); o += print_indent(o, 55); o += fprintf(stderr, "R%d-%d.", cf->output.gpr, cf->output.gpr + cf->output.burst_count - 1); } else { o += fprintf(stderr, "%d ", cf->output.array_base); o += print_indent(o, 55); o += fprintf(stderr, "R%d.", cf->output.gpr); } o += print_swizzle(cf->output.swizzle_x); o += print_swizzle(cf->output.swizzle_y); o += print_swizzle(cf->output.swizzle_z); o += print_swizzle(cf->output.swizzle_w); print_indent(o, 67); fprintf(stderr, " ES:%X ", cf->output.elem_size); if (!cf->barrier) fprintf(stderr, "NO_BARRIER "); if (cf->end_of_program) fprintf(stderr, "EOP "); fprintf(stderr, "\n"); } else if (r600_isa_cf(cf->op)->flags & CF_MEM) { int o = 0; const char *exp_type[] = {"WRITE", "WRITE_IND", "WRITE_ACK", "WRITE_IND_ACK"}; o += fprintf(stderr, "%04d %08X %08X %s ", id, bc->bytecode[id], bc->bytecode[id + 1], cfop->name); o += print_indent(o, 43); o += fprintf(stderr, "%s ", exp_type[cf->output.type]); if (cf->output.burst_count > 1) { o += fprintf(stderr, "%d-%d ", cf->output.array_base, cf->output.array_base + cf->output.burst_count - 1); o += print_indent(o, 55); o += fprintf(stderr, "R%d-%d.", cf->output.gpr, cf->output.gpr + cf->output.burst_count - 1); } else { o += fprintf(stderr, "%d ", cf->output.array_base); o += print_indent(o, 55); o += fprintf(stderr, "R%d.", cf->output.gpr); } for (i = 0; i < 4; ++i) { if (cf->output.comp_mask & (1 << i)) o += print_swizzle(i); else o += print_swizzle(7); } if (cf->output.type == V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_WRITE_IND) o += fprintf(stderr, " R%d", cf->output.index_gpr); o += print_indent(o, 67); fprintf(stderr, " ES:%i ", cf->output.elem_size); if (cf->output.array_size != 0xFFF) fprintf(stderr, "AS:%i ", cf->output.array_size); if (!cf->barrier) fprintf(stderr, "NO_BARRIER "); if (cf->end_of_program) fprintf(stderr, "EOP "); fprintf(stderr, "\n"); } else { fprintf(stderr, "%04d %08X %08X %s ", id, bc->bytecode[id], bc->bytecode[id + 1], cfop->name); fprintf(stderr, "@%d ", cf->cf_addr); if (cf->cond) fprintf(stderr, "CND:%X ", cf->cond); if (cf->pop_count) fprintf(stderr, "POP:%X ", cf->pop_count); fprintf(stderr, "\n"); } } id = cf->addr; nliteral = 0; last = 1; LIST_FOR_EACH_ENTRY(alu, &cf->alu, list) { const char *omod_str[] = {"","*2","*4","/2"}; const struct alu_op_info *aop = r600_isa_alu(alu->op); int o = 0; r600_bytecode_alu_nliterals(bc, alu, literal, &nliteral); o += fprintf(stderr, " %04d %08X %08X ", id, bc->bytecode[id], bc->bytecode[id+1]); if (last) o += fprintf(stderr, "%4d ", ++ngr); else o += fprintf(stderr, " "); o += fprintf(stderr, "%c%c %c ", alu->execute_mask ? 'M':' ', alu->update_pred ? 'P':' ', alu->pred_sel ? alu->pred_sel==2 ? '0':'1':' '); o += fprintf(stderr, "%s%s%s ", aop->name, omod_str[alu->omod], alu->dst.clamp ? "_sat":""); o += print_indent(o,60); o += print_dst(alu); for (i = 0; i < aop->src_count; ++i) { o += fprintf(stderr, i == 0 ? ", ": ", "); o += print_src(alu, i); } if (alu->bank_swizzle) { o += print_indent(o,75); o += fprintf(stderr, " BS:%d", alu->bank_swizzle); } fprintf(stderr, "\n"); id += 2; if (alu->last) { for (i = 0; i < nliteral; i++, id++) { float *f = (float*)(bc->bytecode + id); o = fprintf(stderr, " %04d %08X", id, bc->bytecode[id]); print_indent(o, 60); fprintf(stderr, " %f (%d)\n", *f, *(bc->bytecode + id)); } id += nliteral & 1; nliteral = 0; } last = alu->last; } LIST_FOR_EACH_ENTRY(tex, &cf->tex, list) { int o = 0; o += fprintf(stderr, " %04d %08X %08X %08X ", id, bc->bytecode[id], bc->bytecode[id + 1], bc->bytecode[id + 2]); o += fprintf(stderr, "%s ", r600_isa_fetch(tex->op)->name); o += print_indent(o, 50); o += fprintf(stderr, "R%d.", tex->dst_gpr); o += print_swizzle(tex->dst_sel_x); o += print_swizzle(tex->dst_sel_y); o += print_swizzle(tex->dst_sel_z); o += print_swizzle(tex->dst_sel_w); o += fprintf(stderr, ", R%d.", tex->src_gpr); o += print_swizzle(tex->src_sel_x); o += print_swizzle(tex->src_sel_y); o += print_swizzle(tex->src_sel_z); o += print_swizzle(tex->src_sel_w); o += fprintf(stderr, ", RID:%d", tex->resource_id); o += fprintf(stderr, ", SID:%d ", tex->sampler_id); if (tex->lod_bias) fprintf(stderr, "LB:%d ", tex->lod_bias); fprintf(stderr, "CT:%c%c%c%c ", tex->coord_type_x ? 'N' : 'U', tex->coord_type_y ? 'N' : 'U', tex->coord_type_z ? 'N' : 'U', tex->coord_type_w ? 'N' : 'U'); if (tex->offset_x) fprintf(stderr, "OX:%d ", tex->offset_x); if (tex->offset_y) fprintf(stderr, "OY:%d ", tex->offset_y); if (tex->offset_z) fprintf(stderr, "OZ:%d ", tex->offset_z); id += 4; fprintf(stderr, "\n"); } LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) { int o = 0; const char * fetch_type[] = {"VERTEX", "INSTANCE", ""}; o += fprintf(stderr, " %04d %08X %08X %08X ", id, bc->bytecode[id], bc->bytecode[id + 1], bc->bytecode[id + 2]); o += fprintf(stderr, "%s ", r600_isa_fetch(vtx->op)->name); o += print_indent(o, 50); o += fprintf(stderr, "R%d.", vtx->dst_gpr); o += print_swizzle(vtx->dst_sel_x); o += print_swizzle(vtx->dst_sel_y); o += print_swizzle(vtx->dst_sel_z); o += print_swizzle(vtx->dst_sel_w); o += fprintf(stderr, ", R%d.", vtx->src_gpr); o += print_swizzle(vtx->src_sel_x); if (vtx->offset) fprintf(stderr, " +%db", vtx->offset); o += print_indent(o, 55); fprintf(stderr, ", RID:%d ", vtx->buffer_id); fprintf(stderr, "%s ", fetch_type[vtx->fetch_type]); if (bc->chip_class < CAYMAN && vtx->mega_fetch_count) fprintf(stderr, "MFC:%d ", vtx->mega_fetch_count); fprintf(stderr, "UCF:%d ", vtx->use_const_fields); fprintf(stderr, "FMT(DTA:%d ", vtx->data_format); fprintf(stderr, "NUM:%d ", vtx->num_format_all); fprintf(stderr, "COMP:%d ", vtx->format_comp_all); fprintf(stderr, "MODE:%d)\n", vtx->srf_mode_all); id += 4; } } fprintf(stderr, "--------------------------------------\n"); } void r600_vertex_data_type(enum pipe_format pformat, unsigned *format, unsigned *num_format, unsigned *format_comp, unsigned *endian) { const struct util_format_description *desc; unsigned i; *format = 0; *num_format = 0; *format_comp = 0; *endian = ENDIAN_NONE; if (pformat == PIPE_FORMAT_R11G11B10_FLOAT) { *format = FMT_10_11_11_FLOAT; *endian = r600_endian_swap(32); return; } desc = util_format_description(pformat); if (desc->layout != UTIL_FORMAT_LAYOUT_PLAIN) { goto out_unknown; } /* Find the first non-VOID channel. */ for (i = 0; i < 4; i++) { if (desc->channel[i].type != UTIL_FORMAT_TYPE_VOID) { break; } } *endian = r600_endian_swap(desc->channel[i].size); switch (desc->channel[i].type) { /* Half-floats, floats, ints */ case UTIL_FORMAT_TYPE_FLOAT: switch (desc->channel[i].size) { case 16: switch (desc->nr_channels) { case 1: *format = FMT_16_FLOAT; break; case 2: *format = FMT_16_16_FLOAT; break; case 3: case 4: *format = FMT_16_16_16_16_FLOAT; break; } break; case 32: switch (desc->nr_channels) { case 1: *format = FMT_32_FLOAT; break; case 2: *format = FMT_32_32_FLOAT; break; case 3: *format = FMT_32_32_32_FLOAT; break; case 4: *format = FMT_32_32_32_32_FLOAT; break; } break; default: goto out_unknown; } break; /* Unsigned ints */ case UTIL_FORMAT_TYPE_UNSIGNED: /* Signed ints */ case UTIL_FORMAT_TYPE_SIGNED: switch (desc->channel[i].size) { case 8: switch (desc->nr_channels) { case 1: *format = FMT_8; break; case 2: *format = FMT_8_8; break; case 3: case 4: *format = FMT_8_8_8_8; break; } break; case 10: if (desc->nr_channels != 4) goto out_unknown; *format = FMT_2_10_10_10; break; case 16: switch (desc->nr_channels) { case 1: *format = FMT_16; break; case 2: *format = FMT_16_16; break; case 3: case 4: *format = FMT_16_16_16_16; break; } break; case 32: switch (desc->nr_channels) { case 1: *format = FMT_32; break; case 2: *format = FMT_32_32; break; case 3: *format = FMT_32_32_32; break; case 4: *format = FMT_32_32_32_32; break; } break; default: goto out_unknown; } break; default: goto out_unknown; } if (desc->channel[i].type == UTIL_FORMAT_TYPE_SIGNED) { *format_comp = 1; } *num_format = 0; if (desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED || desc->channel[i].type == UTIL_FORMAT_TYPE_SIGNED) { if (!desc->channel[i].normalized) { if (desc->channel[i].pure_integer) *num_format = 1; else *num_format = 2; } } return; out_unknown: R600_ERR("unsupported vertex format %s\n", util_format_name(pformat)); } void *r600_create_vertex_fetch_shader(struct pipe_context *ctx, unsigned count, const struct pipe_vertex_element *elements) { struct r600_context *rctx = (struct r600_context *)ctx; struct r600_bytecode bc; struct r600_bytecode_vtx vtx; const struct util_format_description *desc; unsigned fetch_resource_start = rctx->b.chip_class >= EVERGREEN ? 0 : 160; unsigned format, num_format, format_comp, endian; uint32_t *bytecode; int i, j, r, fs_size; struct r600_fetch_shader *shader; unsigned no_sb = rctx->screen->b.debug_flags & DBG_NO_SB; unsigned sb_disasm = !no_sb || (rctx->screen->b.debug_flags & DBG_SB_DISASM); assert(count < 32); memset(&bc, 0, sizeof(bc)); r600_bytecode_init(&bc, rctx->b.chip_class, rctx->b.family, rctx->screen->has_compressed_msaa_texturing); bc.isa = rctx->isa; for (i = 0; i < count; i++) { if (elements[i].instance_divisor > 1) { if (rctx->b.chip_class == CAYMAN) { for (j = 0; j < 4; j++) { struct r600_bytecode_alu alu; memset(&alu, 0, sizeof(alu)); alu.op = ALU_OP2_MULHI_UINT; alu.src[0].sel = 0; alu.src[0].chan = 3; alu.src[1].sel = V_SQ_ALU_SRC_LITERAL; alu.src[1].value = (1ll << 32) / elements[i].instance_divisor + 1; alu.dst.sel = i + 1; alu.dst.chan = j; alu.dst.write = j == 3; alu.last = j == 3; if ((r = r600_bytecode_add_alu(&bc, &alu))) { r600_bytecode_clear(&bc); return NULL; } } } else { struct r600_bytecode_alu alu; memset(&alu, 0, sizeof(alu)); alu.op = ALU_OP2_MULHI_UINT; alu.src[0].sel = 0; alu.src[0].chan = 3; alu.src[1].sel = V_SQ_ALU_SRC_LITERAL; alu.src[1].value = (1ll << 32) / elements[i].instance_divisor + 1; alu.dst.sel = i + 1; alu.dst.chan = 3; alu.dst.write = 1; alu.last = 1; if ((r = r600_bytecode_add_alu(&bc, &alu))) { r600_bytecode_clear(&bc); return NULL; } } } } for (i = 0; i < count; i++) { r600_vertex_data_type(elements[i].src_format, &format, &num_format, &format_comp, &endian); desc = util_format_description(elements[i].src_format); if (desc == NULL) { r600_bytecode_clear(&bc); R600_ERR("unknown format %d\n", elements[i].src_format); return NULL; } if (elements[i].src_offset > 65535) { r600_bytecode_clear(&bc); R600_ERR("too big src_offset: %u\n", elements[i].src_offset); return NULL; } memset(&vtx, 0, sizeof(vtx)); vtx.buffer_id = elements[i].vertex_buffer_index + fetch_resource_start; vtx.fetch_type = elements[i].instance_divisor ? 1 : 0; vtx.src_gpr = elements[i].instance_divisor > 1 ? i + 1 : 0; vtx.src_sel_x = elements[i].instance_divisor ? 3 : 0; vtx.mega_fetch_count = 0x1F; vtx.dst_gpr = i + 1; vtx.dst_sel_x = desc->swizzle[0]; vtx.dst_sel_y = desc->swizzle[1]; vtx.dst_sel_z = desc->swizzle[2]; vtx.dst_sel_w = desc->swizzle[3]; vtx.data_format = format; vtx.num_format_all = num_format; vtx.format_comp_all = format_comp; vtx.srf_mode_all = 1; vtx.offset = elements[i].src_offset; vtx.endian = endian; if ((r = r600_bytecode_add_vtx(&bc, &vtx))) { r600_bytecode_clear(&bc); return NULL; } } r600_bytecode_add_cfinst(&bc, CF_OP_RET); if ((r = r600_bytecode_build(&bc))) { r600_bytecode_clear(&bc); return NULL; } if (rctx->screen->b.debug_flags & DBG_FS) { fprintf(stderr, "--------------------------------------------------------------\n"); fprintf(stderr, "Vertex elements state:\n"); for (i = 0; i < count; i++) { fprintf(stderr, " "); util_dump_vertex_element(stderr, elements+i); fprintf(stderr, "\n"); } if (!sb_disasm) { r600_bytecode_disasm(&bc); fprintf(stderr, "______________________________________________________________\n"); } else { r600_sb_bytecode_process(rctx, &bc, NULL, 1 /*dump*/, 0 /*optimize*/); } } fs_size = bc.ndw*4; /* Allocate the CSO. */ shader = CALLOC_STRUCT(r600_fetch_shader); if (!shader) { r600_bytecode_clear(&bc); return NULL; } u_suballocator_alloc(rctx->allocator_fetch_shader, fs_size, &shader->offset, (struct pipe_resource**)&shader->buffer); if (!shader->buffer) { r600_bytecode_clear(&bc); FREE(shader); return NULL; } bytecode = r600_buffer_map_sync_with_rings(&rctx->b, shader->buffer, PIPE_TRANSFER_WRITE | PIPE_TRANSFER_UNSYNCHRONIZED); bytecode += shader->offset / 4; if (R600_BIG_ENDIAN) { for (i = 0; i < fs_size / 4; ++i) { bytecode[i] = util_cpu_to_le32(bc.bytecode[i]); } } else { memcpy(bytecode, bc.bytecode, fs_size); } rctx->b.ws->buffer_unmap(shader->buffer->cs_buf); r600_bytecode_clear(&bc); return shader; } void r600_bytecode_alu_read(struct r600_bytecode *bc, struct r600_bytecode_alu *alu, uint32_t word0, uint32_t word1) { /* WORD0 */ alu->src[0].sel = G_SQ_ALU_WORD0_SRC0_SEL(word0); alu->src[0].rel = G_SQ_ALU_WORD0_SRC0_REL(word0); alu->src[0].chan = G_SQ_ALU_WORD0_SRC0_CHAN(word0); alu->src[0].neg = G_SQ_ALU_WORD0_SRC0_NEG(word0); alu->src[1].sel = G_SQ_ALU_WORD0_SRC1_SEL(word0); alu->src[1].rel = G_SQ_ALU_WORD0_SRC1_REL(word0); alu->src[1].chan = G_SQ_ALU_WORD0_SRC1_CHAN(word0); alu->src[1].neg = G_SQ_ALU_WORD0_SRC1_NEG(word0); alu->index_mode = G_SQ_ALU_WORD0_INDEX_MODE(word0); alu->pred_sel = G_SQ_ALU_WORD0_PRED_SEL(word0); alu->last = G_SQ_ALU_WORD0_LAST(word0); /* WORD1 */ alu->bank_swizzle = G_SQ_ALU_WORD1_BANK_SWIZZLE(word1); if (alu->bank_swizzle) alu->bank_swizzle_force = alu->bank_swizzle; alu->dst.sel = G_SQ_ALU_WORD1_DST_GPR(word1); alu->dst.rel = G_SQ_ALU_WORD1_DST_REL(word1); alu->dst.chan = G_SQ_ALU_WORD1_DST_CHAN(word1); alu->dst.clamp = G_SQ_ALU_WORD1_CLAMP(word1); if (G_SQ_ALU_WORD1_ENCODING(word1)) /*ALU_DWORD1_OP3*/ { alu->is_op3 = 1; alu->src[2].sel = G_SQ_ALU_WORD1_OP3_SRC2_SEL(word1); alu->src[2].rel = G_SQ_ALU_WORD1_OP3_SRC2_REL(word1); alu->src[2].chan = G_SQ_ALU_WORD1_OP3_SRC2_CHAN(word1); alu->src[2].neg = G_SQ_ALU_WORD1_OP3_SRC2_NEG(word1); alu->op = r600_isa_alu_by_opcode(bc->isa, G_SQ_ALU_WORD1_OP3_ALU_INST(word1), /* is_op3 = */ 1); } else /*ALU_DWORD1_OP2*/ { alu->src[0].abs = G_SQ_ALU_WORD1_OP2_SRC0_ABS(word1); alu->src[1].abs = G_SQ_ALU_WORD1_OP2_SRC1_ABS(word1); alu->op = r600_isa_alu_by_opcode(bc->isa, G_SQ_ALU_WORD1_OP2_ALU_INST(word1), /* is_op3 = */ 0); alu->omod = G_SQ_ALU_WORD1_OP2_OMOD(word1); alu->dst.write = G_SQ_ALU_WORD1_OP2_WRITE_MASK(word1); alu->update_pred = G_SQ_ALU_WORD1_OP2_UPDATE_PRED(word1); alu->execute_mask = G_SQ_ALU_WORD1_OP2_UPDATE_EXECUTE_MASK(word1); } } #if 0 void r600_bytecode_export_read(struct r600_bytecode *bc, struct r600_bytecode_output *output, uint32_t word0, uint32_t word1) { output->array_base = G_SQ_CF_ALLOC_EXPORT_WORD0_ARRAY_BASE(word0); output->type = G_SQ_CF_ALLOC_EXPORT_WORD0_TYPE(word0); output->gpr = G_SQ_CF_ALLOC_EXPORT_WORD0_RW_GPR(word0); output->elem_size = G_SQ_CF_ALLOC_EXPORT_WORD0_ELEM_SIZE(word0); output->swizzle_x = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_X(word1); output->swizzle_y = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Y(word1); output->swizzle_z = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Z(word1); output->swizzle_w = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_W(word1); output->burst_count = G_SQ_CF_ALLOC_EXPORT_WORD1_BURST_COUNT(word1); output->end_of_program = G_SQ_CF_ALLOC_EXPORT_WORD1_END_OF_PROGRAM(word1); output->op = r600_isa_cf_by_opcode(bc->isa, G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(word1), 0); output->barrier = G_SQ_CF_ALLOC_EXPORT_WORD1_BARRIER(word1); output->array_size = G_SQ_CF_ALLOC_EXPORT_WORD1_BUF_ARRAY_SIZE(word1); output->comp_mask = G_SQ_CF_ALLOC_EXPORT_WORD1_BUF_COMP_MASK(word1); } #endif