/* * Copyright 2008 Corbin Simpson * Copyright 2010 Marek Olšák * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "r300_texture_desc.h" #include "r300_context.h" #include "util/u_format.h" #include /* Returns the number of pixels that the texture should be aligned to * in the given dimension. */ unsigned r300_get_pixel_alignment(enum pipe_format format, unsigned num_samples, enum radeon_bo_layout microtile, enum radeon_bo_layout macrotile, enum r300_dim dim, boolean is_rs690) { static const unsigned table[2][5][3][2] = { { /* Macro: linear linear linear Micro: linear tiled square-tiled */ {{ 32, 1}, { 8, 4}, { 0, 0}}, /* 8 bits per pixel */ {{ 16, 1}, { 8, 2}, { 4, 4}}, /* 16 bits per pixel */ {{ 8, 1}, { 4, 2}, { 0, 0}}, /* 32 bits per pixel */ {{ 4, 1}, { 2, 2}, { 0, 0}}, /* 64 bits per pixel */ {{ 2, 1}, { 0, 0}, { 0, 0}} /* 128 bits per pixel */ }, { /* Macro: tiled tiled tiled Micro: linear tiled square-tiled */ {{256, 8}, {64, 32}, { 0, 0}}, /* 8 bits per pixel */ {{128, 8}, {64, 16}, {32, 32}}, /* 16 bits per pixel */ {{ 64, 8}, {32, 16}, { 0, 0}}, /* 32 bits per pixel */ {{ 32, 8}, {16, 16}, { 0, 0}}, /* 64 bits per pixel */ {{ 16, 8}, { 0, 0}, { 0, 0}} /* 128 bits per pixel */ } }; unsigned tile = 0; unsigned pixsize = util_format_get_blocksize(format); assert(macrotile <= RADEON_LAYOUT_TILED); assert(microtile <= RADEON_LAYOUT_SQUARETILED); assert(pixsize <= 16); assert(dim <= DIM_HEIGHT); tile = table[macrotile][util_logbase2(pixsize)][microtile][dim]; if (macrotile == 0 && is_rs690 && dim == DIM_WIDTH) { int align; int h_tile; h_tile = table[macrotile][util_logbase2(pixsize)][microtile][DIM_HEIGHT]; align = 64 / (pixsize * h_tile); if (tile < align) tile = align; } assert(tile); return tile; } /* Return true if macrotiling should be enabled on the miplevel. */ static boolean r300_texture_macro_switch(struct r300_resource *tex, unsigned level, boolean rv350_mode, enum r300_dim dim) { unsigned tile, texdim; if (tex->b.b.nr_samples > 1) { return TRUE; } tile = r300_get_pixel_alignment(tex->b.b.format, tex->b.b.nr_samples, tex->tex.microtile, RADEON_LAYOUT_TILED, dim, 0); if (dim == DIM_WIDTH) { texdim = u_minify(tex->tex.width0, level); } else { texdim = u_minify(tex->tex.height0, level); } /* See TX_FILTER1_n.MACRO_SWITCH. */ if (rv350_mode) { return texdim >= tile; } else { return texdim > tile; } } /** * Return the stride, in bytes, of the texture image of the given texture * at the given level. */ static unsigned r300_texture_get_stride(struct r300_screen *screen, struct r300_resource *tex, unsigned level) { unsigned tile_width, width, stride; boolean is_rs690 = (screen->caps.family == CHIP_RS600 || screen->caps.family == CHIP_RS690 || screen->caps.family == CHIP_RS740); if (tex->tex.stride_in_bytes_override) return tex->tex.stride_in_bytes_override; /* Check the level. */ if (level > tex->b.b.last_level) { SCREEN_DBG(screen, DBG_TEX, "%s: level (%u) > last_level (%u)\n", __FUNCTION__, level, tex->b.b.last_level); return 0; } width = u_minify(tex->tex.width0, level); if (util_format_is_plain(tex->b.b.format)) { tile_width = r300_get_pixel_alignment(tex->b.b.format, tex->b.b.nr_samples, tex->tex.microtile, tex->tex.macrotile[level], DIM_WIDTH, is_rs690); width = align(width, tile_width); stride = util_format_get_stride(tex->b.b.format, width); /* The alignment to 32 bytes is sort of implied by the layout... */ return stride; } else { return align(util_format_get_stride(tex->b.b.format, width), is_rs690 ? 64 : 32); } } static unsigned r300_texture_get_nblocksy(struct r300_resource *tex, unsigned level, boolean *out_aligned_for_cbzb) { unsigned height, tile_height; height = u_minify(tex->tex.height0, level); /* Mipmapped and 3D textures must have their height aligned to POT. */ if ((tex->b.b.target != PIPE_TEXTURE_1D && tex->b.b.target != PIPE_TEXTURE_2D && tex->b.b.target != PIPE_TEXTURE_RECT) || tex->b.b.last_level != 0) { height = util_next_power_of_two(height); } if (util_format_is_plain(tex->b.b.format)) { tile_height = r300_get_pixel_alignment(tex->b.b.format, tex->b.b.nr_samples, tex->tex.microtile, tex->tex.macrotile[level], DIM_HEIGHT, 0); height = align(height, tile_height); /* See if the CBZB clear can be used on the buffer, * taking the texture size into account. */ if (out_aligned_for_cbzb) { if (tex->tex.macrotile[level]) { /* When clearing, the layer (width*height) is horizontally split * into two, and the upper and lower halves are cleared by the CB * and ZB units, respectively. Therefore, the number of macrotiles * in the Y direction must be even. */ /* Align the height so that there is an even number of macrotiles. * Do so for 3 or more macrotiles in the Y direction. */ if (level == 0 && tex->b.b.last_level == 0 && (tex->b.b.target == PIPE_TEXTURE_1D || tex->b.b.target == PIPE_TEXTURE_2D || tex->b.b.target == PIPE_TEXTURE_RECT) && height >= tile_height * 3) { height = align(height, tile_height * 2); } *out_aligned_for_cbzb = height % (tile_height * 2) == 0; } else { *out_aligned_for_cbzb = FALSE; } } } return util_format_get_nblocksy(tex->b.b.format, height); } /* Get a width in pixels from a stride in bytes. */ unsigned r300_stride_to_width(enum pipe_format format, unsigned stride_in_bytes) { return (stride_in_bytes / util_format_get_blocksize(format)) * util_format_get_blockwidth(format); } static void r300_setup_miptree(struct r300_screen *screen, struct r300_resource *tex, boolean align_for_cbzb) { struct pipe_resource *base = &tex->b.b; unsigned stride, size, layer_size, nblocksy, i; boolean rv350_mode = screen->caps.family >= CHIP_R350; boolean aligned_for_cbzb; tex->tex.size_in_bytes = 0; SCREEN_DBG(screen, DBG_TEXALLOC, "r300: Making miptree for texture, format %s\n", util_format_short_name(base->format)); for (i = 0; i <= base->last_level; i++) { /* Let's see if this miplevel can be macrotiled. */ tex->tex.macrotile[i] = (tex->tex.macrotile[0] == RADEON_LAYOUT_TILED && r300_texture_macro_switch(tex, i, rv350_mode, DIM_WIDTH) && r300_texture_macro_switch(tex, i, rv350_mode, DIM_HEIGHT)) ? RADEON_LAYOUT_TILED : RADEON_LAYOUT_LINEAR; stride = r300_texture_get_stride(screen, tex, i); /* Compute the number of blocks in Y, see if the CBZB clear can be * used on the texture. */ aligned_for_cbzb = FALSE; if (align_for_cbzb && tex->tex.cbzb_allowed[i]) nblocksy = r300_texture_get_nblocksy(tex, i, &aligned_for_cbzb); else nblocksy = r300_texture_get_nblocksy(tex, i, NULL); layer_size = stride * nblocksy; if (base->nr_samples > 1) { layer_size *= base->nr_samples; } if (base->target == PIPE_TEXTURE_CUBE) size = layer_size * 6; else size = layer_size * u_minify(tex->tex.depth0, i); tex->tex.offset_in_bytes[i] = tex->tex.size_in_bytes; tex->tex.size_in_bytes = tex->tex.offset_in_bytes[i] + size; tex->tex.layer_size_in_bytes[i] = layer_size; tex->tex.stride_in_bytes[i] = stride; tex->tex.cbzb_allowed[i] = tex->tex.cbzb_allowed[i] && aligned_for_cbzb; SCREEN_DBG(screen, DBG_TEXALLOC, "r300: Texture miptree: Level %d " "(%dx%dx%d px, pitch %d bytes) %d bytes total, macrotiled %s\n", i, u_minify(tex->tex.width0, i), u_minify(tex->tex.height0, i), u_minify(tex->tex.depth0, i), stride, tex->tex.size_in_bytes, tex->tex.macrotile[i] ? "TRUE" : "FALSE"); } } static void r300_setup_flags(struct r300_resource *tex) { tex->tex.uses_stride_addressing = !util_is_power_of_two(tex->b.b.width0) || (tex->tex.stride_in_bytes_override && r300_stride_to_width(tex->b.b.format, tex->tex.stride_in_bytes_override) != tex->b.b.width0); tex->tex.is_npot = tex->tex.uses_stride_addressing || !util_is_power_of_two(tex->b.b.height0) || !util_is_power_of_two(tex->b.b.depth0); } static void r300_setup_cbzb_flags(struct r300_screen *rscreen, struct r300_resource *tex) { unsigned i, bpp; boolean first_level_valid; bpp = util_format_get_blocksizebits(tex->b.b.format); /* 1) The texture must be point-sampled, * 2) The depth must be 16 or 32 bits. * 3) If the midpoint ZB offset is not aligned to 2048, it returns garbage * with certain texture sizes. Macrotiling ensures the alignment. */ first_level_valid = tex->b.b.nr_samples <= 1 && (bpp == 16 || bpp == 32) && tex->tex.macrotile[0]; if (SCREEN_DBG_ON(rscreen, DBG_NO_CBZB)) first_level_valid = FALSE; for (i = 0; i <= tex->b.b.last_level; i++) tex->tex.cbzb_allowed[i] = first_level_valid && tex->tex.macrotile[i]; } static unsigned r300_pixels_to_dwords(unsigned stride, unsigned height, unsigned xblock, unsigned yblock) { return (util_align_npot(stride, xblock) * align(height, yblock)) / (xblock * yblock); } static void r300_setup_hyperz_properties(struct r300_screen *screen, struct r300_resource *tex) { /* The tile size of 1 DWORD in ZMASK RAM is: * * GPU Pipes 4x4 mode 8x8 mode * ------------------------------------------ * R580 4P/1Z 32x32 64x64 * RV570 3P/1Z 48x16 96x32 * RV530 1P/2Z 32x16 64x32 * 1P/1Z 16x16 32x32 */ static unsigned zmask_blocks_x_per_dw[4] = {4, 8, 12, 8}; static unsigned zmask_blocks_y_per_dw[4] = {4, 4, 4, 8}; /* In HIZ RAM, one dword is always 8x8 pixels (each byte is 4x4 pixels), * but the blocks have very weird ordering. * * With 2 pipes and an image of size 8xY, where Y >= 1, * clearing 4 dwords clears blocks like this: * * 01012323 * * where numbers correspond to dword indices. The blocks are interleaved * in the X direction, so the alignment must be 4x1 blocks (32x8 pixels). * * With 4 pipes and an image of size 8xY, where Y >= 4, * clearing 8 dwords clears blocks like this: * 01012323 * 45456767 * 01012323 * 45456767 * where numbers correspond to dword indices. The blocks are interleaved * in both directions, so the alignment must be 4x4 blocks (32x32 pixels) */ static unsigned hiz_align_x[4] = {8, 32, 48, 32}; static unsigned hiz_align_y[4] = {8, 8, 8, 32}; if (util_format_is_depth_or_stencil(tex->b.b.format) && util_format_get_blocksizebits(tex->b.b.format) == 32 && tex->tex.microtile) { unsigned i, pipes; if (screen->caps.family == CHIP_RV530) { pipes = screen->info.r300_num_z_pipes; } else { pipes = screen->info.r300_num_gb_pipes; } for (i = 0; i <= tex->b.b.last_level; i++) { unsigned zcomp_numdw, zcompsize, hiz_numdw, stride, height; stride = r300_stride_to_width(tex->b.b.format, tex->tex.stride_in_bytes[i]); stride = align(stride, 16); height = u_minify(tex->b.b.height0, i); /* The 8x8 compression mode needs macrotiling. */ zcompsize = screen->caps.z_compress == R300_ZCOMP_8X8 && tex->tex.macrotile[i] && tex->b.b.nr_samples <= 1 ? 8 : 4; /* Get the ZMASK buffer size in dwords. */ zcomp_numdw = r300_pixels_to_dwords(stride, height, zmask_blocks_x_per_dw[pipes-1] * zcompsize, zmask_blocks_y_per_dw[pipes-1] * zcompsize); /* Check whether we have enough ZMASK memory. */ if (util_format_get_blocksizebits(tex->b.b.format) == 32 && zcomp_numdw <= screen->caps.zmask_ram * pipes) { tex->tex.zmask_dwords[i] = zcomp_numdw; tex->tex.zcomp8x8[i] = zcompsize == 8; tex->tex.zmask_stride_in_pixels[i] = util_align_npot(stride, zmask_blocks_x_per_dw[pipes-1] * zcompsize); } else { tex->tex.zmask_dwords[i] = 0; tex->tex.zcomp8x8[i] = FALSE; tex->tex.zmask_stride_in_pixels[i] = 0; } /* Now setup HIZ. */ stride = util_align_npot(stride, hiz_align_x[pipes-1]); height = align(height, hiz_align_y[pipes-1]); /* Get the HIZ buffer size in dwords. */ hiz_numdw = (stride * height) / (8*8 * pipes); /* Check whether we have enough HIZ memory. */ if (hiz_numdw <= screen->caps.hiz_ram * pipes) { tex->tex.hiz_dwords[i] = hiz_numdw; tex->tex.hiz_stride_in_pixels[i] = stride; } else { tex->tex.hiz_dwords[i] = 0; tex->tex.hiz_stride_in_pixels[i] = 0; } } } } static void r300_setup_cmask_properties(struct r300_screen *screen, struct r300_resource *tex) { static unsigned cmask_align_x[4] = {16, 32, 48, 32}; static unsigned cmask_align_y[4] = {16, 16, 16, 32}; unsigned pipes, stride, cmask_num_dw, cmask_max_size; if (!screen->caps.has_cmask) { return; } /* We need an AA colorbuffer, no mipmaps. */ if (tex->b.b.nr_samples <= 1 || tex->b.b.last_level > 0 || util_format_is_depth_or_stencil(tex->b.b.format)) { return; } /* FP16 AA needs R500 and a fairly new DRM. */ if ((tex->b.b.format == PIPE_FORMAT_R16G16B16A16_FLOAT || tex->b.b.format == PIPE_FORMAT_R16G16B16X16_FLOAT) && (!screen->caps.is_r500 || screen->info.drm_minor < 29)) { return; } if (SCREEN_DBG_ON(screen, DBG_NO_CMASK)) { return; } /* CMASK is part of raster pipes. The number of Z pipes doesn't matter. */ pipes = screen->info.r300_num_gb_pipes; /* The single-pipe cards have 5120 dwords of CMASK RAM, * the other cards have 4096 dwords of CMASK RAM per pipe. */ cmask_max_size = pipes == 1 ? 5120 : pipes * 4096; stride = r300_stride_to_width(tex->b.b.format, tex->tex.stride_in_bytes[0]); stride = align(stride, 16); /* Get the CMASK size in dwords. */ cmask_num_dw = r300_pixels_to_dwords(stride, tex->b.b.height0, cmask_align_x[pipes-1], cmask_align_y[pipes-1]); /* Check the CMASK size against the CMASK memory limit. */ if (cmask_num_dw <= cmask_max_size) { tex->tex.cmask_dwords = cmask_num_dw; tex->tex.cmask_stride_in_pixels = util_align_npot(stride, cmask_align_x[pipes-1]); } } static void r300_setup_tiling(struct r300_screen *screen, struct r300_resource *tex) { enum pipe_format format = tex->b.b.format; boolean rv350_mode = screen->caps.family >= CHIP_R350; boolean is_zb = util_format_is_depth_or_stencil(format); boolean dbg_no_tiling = SCREEN_DBG_ON(screen, DBG_NO_TILING); boolean force_microtiling = (tex->b.b.flags & R300_RESOURCE_FORCE_MICROTILING) != 0; if (tex->b.b.nr_samples > 1) { tex->tex.microtile = RADEON_LAYOUT_TILED; tex->tex.macrotile[0] = RADEON_LAYOUT_TILED; return; } tex->tex.microtile = RADEON_LAYOUT_LINEAR; tex->tex.macrotile[0] = RADEON_LAYOUT_LINEAR; if (tex->b.b.usage == PIPE_USAGE_STAGING) { return; } if (!util_format_is_plain(format)) { return; } /* If height == 1, disable microtiling except for zbuffer. */ if (!force_microtiling && !is_zb && (tex->b.b.height0 == 1 || dbg_no_tiling)) { return; } /* Set microtiling. */ switch (util_format_get_blocksize(format)) { case 1: case 4: case 8: tex->tex.microtile = RADEON_LAYOUT_TILED; break; case 2: tex->tex.microtile = RADEON_LAYOUT_SQUARETILED; break; } if (dbg_no_tiling) { return; } /* Set macrotiling. */ if (r300_texture_macro_switch(tex, 0, rv350_mode, DIM_WIDTH) && r300_texture_macro_switch(tex, 0, rv350_mode, DIM_HEIGHT)) { tex->tex.macrotile[0] = RADEON_LAYOUT_TILED; } } static void r300_tex_print_info(struct r300_resource *tex, const char *func) { fprintf(stderr, "r300: %s: Macro: %s, Micro: %s, Pitch: %i, Dim: %ix%ix%i, " "LastLevel: %i, Size: %i, Format: %s, Samples: %i\n", func, tex->tex.macrotile[0] ? "YES" : " NO", tex->tex.microtile ? "YES" : " NO", r300_stride_to_width(tex->b.b.format, tex->tex.stride_in_bytes[0]), tex->b.b.width0, tex->b.b.height0, tex->b.b.depth0, tex->b.b.last_level, tex->tex.size_in_bytes, util_format_short_name(tex->b.b.format), tex->b.b.nr_samples); } void r300_texture_desc_init(struct r300_screen *rscreen, struct r300_resource *tex, const struct pipe_resource *base) { tex->b.b.target = base->target; tex->b.b.format = base->format; tex->b.b.width0 = base->width0; tex->b.b.height0 = base->height0; tex->b.b.depth0 = base->depth0; tex->b.b.array_size = base->array_size; tex->b.b.last_level = base->last_level; tex->b.b.nr_samples = base->nr_samples; tex->tex.width0 = base->width0; tex->tex.height0 = base->height0; tex->tex.depth0 = base->depth0; /* There is a CB memory addressing hardware bug that limits the width * of the MSAA buffer in some cases in R520. In order to get around it, * the following code lowers the sample count depending on the format and * the width. * * The only catch is that all MSAA colorbuffers and a zbuffer which are * supposed to be used together should always be bound together. Only * then the correct minimum sample count of all bound buffers is used * for rendering. */ if (rscreen->caps.is_r500) { /* FP16 6x MSAA buffers are limited to a width of 1360 pixels. */ if ((tex->b.b.format == PIPE_FORMAT_R16G16B16A16_FLOAT || tex->b.b.format == PIPE_FORMAT_R16G16B16X16_FLOAT) && tex->b.b.nr_samples == 6 && tex->b.b.width0 > 1360) { tex->b.b.nr_samples = 4; } /* FP16 4x MSAA buffers are limited to a width of 2048 pixels. */ if ((tex->b.b.format == PIPE_FORMAT_R16G16B16A16_FLOAT || tex->b.b.format == PIPE_FORMAT_R16G16B16X16_FLOAT) && tex->b.b.nr_samples == 4 && tex->b.b.width0 > 2048) { tex->b.b.nr_samples = 2; } } /* 32-bit 6x MSAA buffers are limited to a width of 2720 pixels. * This applies to all R300-R500 cards. */ if (util_format_get_blocksizebits(tex->b.b.format) == 32 && !util_format_is_depth_or_stencil(tex->b.b.format) && tex->b.b.nr_samples == 6 && tex->b.b.width0 > 2720) { tex->b.b.nr_samples = 4; } r300_setup_flags(tex); /* Align a 3D NPOT texture to POT. */ if (base->target == PIPE_TEXTURE_3D && tex->tex.is_npot) { tex->tex.width0 = util_next_power_of_two(tex->tex.width0); tex->tex.height0 = util_next_power_of_two(tex->tex.height0); tex->tex.depth0 = util_next_power_of_two(tex->tex.depth0); } /* Setup tiling. */ if (tex->tex.microtile == RADEON_LAYOUT_UNKNOWN) { r300_setup_tiling(rscreen, tex); } r300_setup_cbzb_flags(rscreen, tex); /* Setup the miptree description. */ r300_setup_miptree(rscreen, tex, TRUE); /* If the required buffer size is larger than the given max size, * try again without the alignment for the CBZB clear. */ if (tex->buf && tex->tex.size_in_bytes > tex->buf->size) { r300_setup_miptree(rscreen, tex, FALSE); /* Make sure the buffer we got is large enough. */ if (tex->tex.size_in_bytes > tex->buf->size) { fprintf(stderr, "r300: I got a pre-allocated buffer to use it as a texture " "storage, but the buffer is too small. I'll use the buffer " "anyway, because I can't crash here, but it's dangerous. " "This can be a DDX bug. Got: %"PRIu64"B, Need: %uB, Info:\n", tex->buf->size, tex->tex.size_in_bytes); r300_tex_print_info(tex, "texture_desc_init"); /* Ooops, what now. Apps will break if we fail this, * so just pretend everything's okay. */ } } r300_setup_hyperz_properties(rscreen, tex); r300_setup_cmask_properties(rscreen, tex); if (SCREEN_DBG_ON(rscreen, DBG_TEX)) r300_tex_print_info(tex, "texture_desc_init"); } unsigned r300_texture_get_offset(struct r300_resource *tex, unsigned level, unsigned layer) { unsigned offset = tex->tex.offset_in_bytes[level]; switch (tex->b.b.target) { case PIPE_TEXTURE_3D: case PIPE_TEXTURE_CUBE: return offset + layer * tex->tex.layer_size_in_bytes[level]; default: assert(layer == 0); return offset; } }