#include "pipe/p_context.h" #include "pipe/p_defines.h" #include "pipe/p_state.h" #include "util/u_linkage.h" #include "util/u_debug.h" #include "pipe/p_shader_tokens.h" #include "tgsi/tgsi_parse.h" #include "tgsi/tgsi_dump.h" #include "tgsi/tgsi_util.h" #include "tgsi/tgsi_ureg.h" #include "draw/draw_context.h" #include "nv30/nv30-40_3d.xml.h" #include "nv30/nv30_context.h" #include "nv30/nv30_resource.h" /* TODO (at least...): * 1. Indexed consts + ARL * 3. NV_vp11, NV_vp2, NV_vp3 features * - extra arith opcodes * - branching * - texture sampling * - indexed attribs * - indexed results * 4. bugs */ #include "nv30/nv30_vertprog.h" #include "nv30/nv40_vertprog.h" struct nvfx_loop_entry { unsigned brk_target; unsigned cont_target; }; struct nvfx_vpc { struct nv30_context* nv30; struct pipe_shader_state pipe; struct nv30_vertprog *vp; struct tgsi_shader_info* info; struct nv30_vertprog_exec *vpi; unsigned r_temps; unsigned r_temps_discard; struct nvfx_reg r_result[PIPE_MAX_SHADER_OUTPUTS]; struct nvfx_reg *r_address; struct nvfx_reg *r_temp; struct nvfx_reg *r_const; struct nvfx_reg r_0_1; struct nvfx_reg *imm; unsigned nr_imm; int hpos_idx; int cvtx_idx; struct util_dynarray label_relocs; struct util_dynarray loop_stack; }; static struct nvfx_reg temp(struct nvfx_vpc *vpc) { int idx = ffs(~vpc->r_temps) - 1; if (idx < 0) { NOUVEAU_ERR("out of temps!!\n"); assert(0); return nvfx_reg(NVFXSR_TEMP, 0); } vpc->r_temps |= (1 << idx); vpc->r_temps_discard |= (1 << idx); return nvfx_reg(NVFXSR_TEMP, idx); } static inline void release_temps(struct nvfx_vpc *vpc) { vpc->r_temps &= ~vpc->r_temps_discard; vpc->r_temps_discard = 0; } static struct nvfx_reg constant(struct nvfx_vpc *vpc, int pipe, float x, float y, float z, float w) { struct nv30_vertprog *vp = vpc->vp; struct nv30_vertprog_data *vpd; int idx; if (pipe >= 0) { for (idx = 0; idx < vp->nr_consts; idx++) { if (vp->consts[idx].index == pipe) return nvfx_reg(NVFXSR_CONST, idx); } } idx = vp->nr_consts++; vp->consts = realloc(vp->consts, sizeof(*vpd) * vp->nr_consts); vpd = &vp->consts[idx]; vpd->index = pipe; vpd->value[0] = x; vpd->value[1] = y; vpd->value[2] = z; vpd->value[3] = w; return nvfx_reg(NVFXSR_CONST, idx); } #define arith(s,t,o,d,m,s0,s1,s2) \ nvfx_insn((s), (NVFX_VP_INST_SLOT_##t << 7) | NVFX_VP_INST_##t##_OP_##o, -1, (d), (m), (s0), (s1), (s2)) static void emit_src(struct nv30_context *nv30, struct nvfx_vpc *vpc, uint32_t *hw, int pos, struct nvfx_src src) { struct nv30_vertprog *vp = vpc->vp; uint32_t sr = 0; struct nvfx_relocation reloc; switch (src.reg.type) { case NVFXSR_TEMP: sr |= (NVFX_VP(SRC_REG_TYPE_TEMP) << NVFX_VP(SRC_REG_TYPE_SHIFT)); sr |= (src.reg.index << NVFX_VP(SRC_TEMP_SRC_SHIFT)); break; case NVFXSR_INPUT: sr |= (NVFX_VP(SRC_REG_TYPE_INPUT) << NVFX_VP(SRC_REG_TYPE_SHIFT)); vp->ir |= (1 << src.reg.index); hw[1] |= (src.reg.index << NVFX_VP(INST_INPUT_SRC_SHIFT)); break; case NVFXSR_CONST: sr |= (NVFX_VP(SRC_REG_TYPE_CONST) << NVFX_VP(SRC_REG_TYPE_SHIFT)); if (src.reg.index < 256 && src.reg.index >= -256) { reloc.location = vp->nr_insns - 1; reloc.target = src.reg.index; util_dynarray_append(&vp->const_relocs, struct nvfx_relocation, reloc); } else { hw[1] |= (src.reg.index << NVFX_VP(INST_CONST_SRC_SHIFT)) & NVFX_VP(INST_CONST_SRC_MASK); } break; case NVFXSR_NONE: sr |= (NVFX_VP(SRC_REG_TYPE_INPUT) << NVFX_VP(SRC_REG_TYPE_SHIFT)); break; default: assert(0); } if (src.negate) sr |= NVFX_VP(SRC_NEGATE); if (src.abs) hw[0] |= (1 << (21 + pos)); sr |= ((src.swz[0] << NVFX_VP(SRC_SWZ_X_SHIFT)) | (src.swz[1] << NVFX_VP(SRC_SWZ_Y_SHIFT)) | (src.swz[2] << NVFX_VP(SRC_SWZ_Z_SHIFT)) | (src.swz[3] << NVFX_VP(SRC_SWZ_W_SHIFT))); if(src.indirect) { if(src.reg.type == NVFXSR_CONST) hw[3] |= NVFX_VP(INST_INDEX_CONST); else if(src.reg.type == NVFXSR_INPUT) hw[0] |= NVFX_VP(INST_INDEX_INPUT); else assert(0); if(src.indirect_reg) hw[0] |= NVFX_VP(INST_ADDR_REG_SELECT_1); hw[0] |= src.indirect_swz << NVFX_VP(INST_ADDR_SWZ_SHIFT); } switch (pos) { case 0: hw[1] |= ((sr & NVFX_VP(SRC0_HIGH_MASK)) >> NVFX_VP(SRC0_HIGH_SHIFT)) << NVFX_VP(INST_SRC0H_SHIFT); hw[2] |= (sr & NVFX_VP(SRC0_LOW_MASK)) << NVFX_VP(INST_SRC0L_SHIFT); break; case 1: hw[2] |= sr << NVFX_VP(INST_SRC1_SHIFT); break; case 2: hw[2] |= ((sr & NVFX_VP(SRC2_HIGH_MASK)) >> NVFX_VP(SRC2_HIGH_SHIFT)) << NVFX_VP(INST_SRC2H_SHIFT); hw[3] |= (sr & NVFX_VP(SRC2_LOW_MASK)) << NVFX_VP(INST_SRC2L_SHIFT); break; default: assert(0); } } static void emit_dst(struct nv30_context *nv30, struct nvfx_vpc *vpc, uint32_t *hw, int slot, struct nvfx_reg dst) { struct nv30_vertprog *vp = vpc->vp; switch (dst.type) { case NVFXSR_NONE: if(!nv30->is_nv4x) hw[0] |= NV30_VP_INST_DEST_TEMP_ID_MASK; else { hw[3] |= NV40_VP_INST_DEST_MASK; if (slot == 0) hw[0] |= NV40_VP_INST_VEC_DEST_TEMP_MASK; else hw[3] |= NV40_VP_INST_SCA_DEST_TEMP_MASK; } break; case NVFXSR_TEMP: if(!nv30->is_nv4x) hw[0] |= (dst.index << NV30_VP_INST_DEST_TEMP_ID_SHIFT); else { hw[3] |= NV40_VP_INST_DEST_MASK; if (slot == 0) hw[0] |= (dst.index << NV40_VP_INST_VEC_DEST_TEMP_SHIFT); else hw[3] |= (dst.index << NV40_VP_INST_SCA_DEST_TEMP_SHIFT); } break; case NVFXSR_OUTPUT: /* TODO: this may be wrong because on nv30 COL0 and BFC0 are swapped */ if(nv30->is_nv4x) { switch (dst.index) { case NV30_VP_INST_DEST_CLP(0): dst.index = NVFX_VP(INST_DEST_FOGC); vp->or |= (1 << 6); break; case NV30_VP_INST_DEST_CLP(1): dst.index = NVFX_VP(INST_DEST_FOGC); vp->or |= (1 << 7); break; case NV30_VP_INST_DEST_CLP(2): dst.index = NVFX_VP(INST_DEST_FOGC); vp->or |= (1 << 8); break; case NV30_VP_INST_DEST_CLP(3): dst.index = NVFX_VP(INST_DEST_PSZ); vp->or |= (1 << 9); break; case NV30_VP_INST_DEST_CLP(4): dst.index = NVFX_VP(INST_DEST_PSZ); vp->or |= (1 << 10); break; case NV30_VP_INST_DEST_CLP(5): dst.index = NVFX_VP(INST_DEST_PSZ); vp->or |= (1 << 11); break; case NV40_VP_INST_DEST_COL0: vp->or |= (1 << 0); break; case NV40_VP_INST_DEST_COL1: vp->or |= (1 << 1); break; case NV40_VP_INST_DEST_BFC0: vp->or |= (1 << 2); break; case NV40_VP_INST_DEST_BFC1: vp->or |= (1 << 3); break; case NV40_VP_INST_DEST_FOGC: vp->or |= (1 << 4); break; case NV40_VP_INST_DEST_PSZ : vp->or |= (1 << 5); break; } } if(!nv30->is_nv4x) { hw[3] |= (dst.index << NV30_VP_INST_DEST_SHIFT); hw[0] |= NV30_VP_INST_VEC_DEST_TEMP_MASK; /*XXX: no way this is entirely correct, someone needs to * figure out what exactly it is. */ hw[3] |= 0x800; } else { hw[3] |= (dst.index << NV40_VP_INST_DEST_SHIFT); if (slot == 0) { hw[0] |= NV40_VP_INST_VEC_RESULT; hw[0] |= NV40_VP_INST_VEC_DEST_TEMP_MASK; } else { hw[3] |= NV40_VP_INST_SCA_RESULT; hw[3] |= NV40_VP_INST_SCA_DEST_TEMP_MASK; } } break; default: assert(0); } } static void nvfx_vp_emit(struct nvfx_vpc *vpc, struct nvfx_insn insn) { struct nv30_context *nv30 = vpc->nv30; struct nv30_vertprog *vp = vpc->vp; unsigned slot = insn.op >> 7; unsigned op = insn.op & 0x7f; uint32_t *hw; vp->insns = realloc(vp->insns, ++vp->nr_insns * sizeof(*vpc->vpi)); vpc->vpi = &vp->insns[vp->nr_insns - 1]; memset(vpc->vpi, 0, sizeof(*vpc->vpi)); hw = vpc->vpi->data; if (insn.cc_test != NVFX_COND_TR) hw[0] |= NVFX_VP(INST_COND_TEST_ENABLE); hw[0] |= (insn.cc_test << NVFX_VP(INST_COND_SHIFT)); hw[0] |= ((insn.cc_swz[0] << NVFX_VP(INST_COND_SWZ_X_SHIFT)) | (insn.cc_swz[1] << NVFX_VP(INST_COND_SWZ_Y_SHIFT)) | (insn.cc_swz[2] << NVFX_VP(INST_COND_SWZ_Z_SHIFT)) | (insn.cc_swz[3] << NVFX_VP(INST_COND_SWZ_W_SHIFT))); if(insn.cc_update) hw[0] |= NVFX_VP(INST_COND_UPDATE_ENABLE); if(insn.sat) { assert(nv30->use_nv4x); if(nv30->use_nv4x) hw[0] |= NV40_VP_INST_SATURATE; } if(!nv30->is_nv4x) { if(slot == 0) hw[1] |= (op << NV30_VP_INST_VEC_OPCODE_SHIFT); else { hw[0] |= ((op >> 4) << NV30_VP_INST_SCA_OPCODEH_SHIFT); hw[1] |= ((op & 0xf) << NV30_VP_INST_SCA_OPCODEL_SHIFT); } // hw[3] |= NVFX_VP(INST_SCA_DEST_TEMP_MASK); // hw[3] |= (mask << NVFX_VP(INST_VEC_WRITEMASK_SHIFT)); if (insn.dst.type == NVFXSR_OUTPUT) { if (slot) hw[3] |= (insn.mask << NV30_VP_INST_SDEST_WRITEMASK_SHIFT); else hw[3] |= (insn.mask << NV30_VP_INST_VDEST_WRITEMASK_SHIFT); } else { if (slot) hw[3] |= (insn.mask << NV30_VP_INST_STEMP_WRITEMASK_SHIFT); else hw[3] |= (insn.mask << NV30_VP_INST_VTEMP_WRITEMASK_SHIFT); } } else { if (slot == 0) { hw[1] |= (op << NV40_VP_INST_VEC_OPCODE_SHIFT); hw[3] |= NV40_VP_INST_SCA_DEST_TEMP_MASK; hw[3] |= (insn.mask << NV40_VP_INST_VEC_WRITEMASK_SHIFT); } else { hw[1] |= (op << NV40_VP_INST_SCA_OPCODE_SHIFT); hw[0] |= NV40_VP_INST_VEC_DEST_TEMP_MASK ; hw[3] |= (insn.mask << NV40_VP_INST_SCA_WRITEMASK_SHIFT); } } emit_dst(nv30, vpc, hw, slot, insn.dst); emit_src(nv30, vpc, hw, 0, insn.src[0]); emit_src(nv30, vpc, hw, 1, insn.src[1]); emit_src(nv30, vpc, hw, 2, insn.src[2]); // if(insn.src[0].indirect || op == NVFX_VP_INST_VEC_OP_ARL) // hw[3] |= NV40_VP_INST_SCA_RESULT; } static inline struct nvfx_src tgsi_src(struct nvfx_vpc *vpc, const struct tgsi_full_src_register *fsrc) { struct nvfx_src src; switch (fsrc->Register.File) { case TGSI_FILE_INPUT: src.reg = nvfx_reg(NVFXSR_INPUT, fsrc->Register.Index); break; case TGSI_FILE_CONSTANT: if(fsrc->Register.Indirect) { src.reg = vpc->r_const[0]; src.reg.index = fsrc->Register.Index; } else { src.reg = vpc->r_const[fsrc->Register.Index]; } break; case TGSI_FILE_IMMEDIATE: src.reg = vpc->imm[fsrc->Register.Index]; break; case TGSI_FILE_TEMPORARY: src.reg = vpc->r_temp[fsrc->Register.Index]; break; default: NOUVEAU_ERR("bad src file\n"); src.reg.index = 0; src.reg.type = -1; break; } src.abs = fsrc->Register.Absolute; src.negate = fsrc->Register.Negate; src.swz[0] = fsrc->Register.SwizzleX; src.swz[1] = fsrc->Register.SwizzleY; src.swz[2] = fsrc->Register.SwizzleZ; src.swz[3] = fsrc->Register.SwizzleW; src.indirect = 0; src.indirect_reg = 0; src.indirect_swz = 0; if(fsrc->Register.Indirect) { if(fsrc->Indirect.File == TGSI_FILE_ADDRESS && (fsrc->Register.File == TGSI_FILE_CONSTANT || fsrc->Register.File == TGSI_FILE_INPUT)) { src.indirect = 1; src.indirect_reg = fsrc->Indirect.Index; src.indirect_swz = fsrc->Indirect.Swizzle; } else { src.reg.index = 0; src.reg.type = -1; } } return src; } static INLINE struct nvfx_reg tgsi_dst(struct nvfx_vpc *vpc, const struct tgsi_full_dst_register *fdst) { struct nvfx_reg dst; switch (fdst->Register.File) { case TGSI_FILE_NULL: dst = nvfx_reg(NVFXSR_NONE, 0); break; case TGSI_FILE_OUTPUT: dst = vpc->r_result[fdst->Register.Index]; break; case TGSI_FILE_TEMPORARY: dst = vpc->r_temp[fdst->Register.Index]; break; case TGSI_FILE_ADDRESS: dst = vpc->r_address[fdst->Register.Index]; break; default: NOUVEAU_ERR("bad dst file %i\n", fdst->Register.File); dst.index = 0; dst.type = 0; break; } return dst; } static inline int tgsi_mask(uint tgsi) { int mask = 0; if (tgsi & TGSI_WRITEMASK_X) mask |= NVFX_VP_MASK_X; if (tgsi & TGSI_WRITEMASK_Y) mask |= NVFX_VP_MASK_Y; if (tgsi & TGSI_WRITEMASK_Z) mask |= NVFX_VP_MASK_Z; if (tgsi & TGSI_WRITEMASK_W) mask |= NVFX_VP_MASK_W; return mask; } static boolean nvfx_vertprog_parse_instruction(struct nv30_context *nv30, struct nvfx_vpc *vpc, unsigned idx, const struct tgsi_full_instruction *finst) { struct nvfx_src src[3], tmp; struct nvfx_reg dst; struct nvfx_reg final_dst; struct nvfx_src none = nvfx_src(nvfx_reg(NVFXSR_NONE, 0)); struct nvfx_insn insn; struct nvfx_relocation reloc; struct nvfx_loop_entry loop; boolean sat = FALSE; int mask; int ai = -1, ci = -1, ii = -1; int i; unsigned sub_depth = 0; for (i = 0; i < finst->Instruction.NumSrcRegs; i++) { const struct tgsi_full_src_register *fsrc; fsrc = &finst->Src[i]; if (fsrc->Register.File == TGSI_FILE_TEMPORARY) { src[i] = tgsi_src(vpc, fsrc); } } for (i = 0; i < finst->Instruction.NumSrcRegs; i++) { const struct tgsi_full_src_register *fsrc; fsrc = &finst->Src[i]; switch (fsrc->Register.File) { case TGSI_FILE_INPUT: if (ai == -1 || ai == fsrc->Register.Index) { ai = fsrc->Register.Index; src[i] = tgsi_src(vpc, fsrc); } else { src[i] = nvfx_src(temp(vpc)); nvfx_vp_emit(vpc, arith(0, VEC, MOV, src[i].reg, NVFX_VP_MASK_ALL, tgsi_src(vpc, fsrc), none, none)); } break; case TGSI_FILE_CONSTANT: if ((ci == -1 && ii == -1) || ci == fsrc->Register.Index) { ci = fsrc->Register.Index; src[i] = tgsi_src(vpc, fsrc); } else { src[i] = nvfx_src(temp(vpc)); nvfx_vp_emit(vpc, arith(0, VEC, MOV, src[i].reg, NVFX_VP_MASK_ALL, tgsi_src(vpc, fsrc), none, none)); } break; case TGSI_FILE_IMMEDIATE: if ((ci == -1 && ii == -1) || ii == fsrc->Register.Index) { ii = fsrc->Register.Index; src[i] = tgsi_src(vpc, fsrc); } else { src[i] = nvfx_src(temp(vpc)); nvfx_vp_emit(vpc, arith(0, VEC, MOV, src[i].reg, NVFX_VP_MASK_ALL, tgsi_src(vpc, fsrc), none, none)); } break; case TGSI_FILE_TEMPORARY: /* handled above */ break; default: NOUVEAU_ERR("bad src file\n"); return FALSE; } } for (i = 0; i < finst->Instruction.NumSrcRegs; i++) { if(src[i].reg.type < 0) return FALSE; } if(finst->Dst[0].Register.File == TGSI_FILE_ADDRESS && finst->Instruction.Opcode != TGSI_OPCODE_ARL) return FALSE; final_dst = dst = tgsi_dst(vpc, &finst->Dst[0]); mask = tgsi_mask(finst->Dst[0].Register.WriteMask); if(finst->Instruction.Saturate == TGSI_SAT_ZERO_ONE) { assert(finst->Instruction.Opcode != TGSI_OPCODE_ARL); if (nv30->use_nv4x) sat = TRUE; else if(dst.type != NVFXSR_TEMP) dst = temp(vpc); } switch (finst->Instruction.Opcode) { case TGSI_OPCODE_ABS: nvfx_vp_emit(vpc, arith(sat, VEC, MOV, dst, mask, abs(src[0]), none, none)); break; case TGSI_OPCODE_ADD: nvfx_vp_emit(vpc, arith(sat, VEC, ADD, dst, mask, src[0], none, src[1])); break; case TGSI_OPCODE_ARL: nvfx_vp_emit(vpc, arith(0, VEC, ARL, dst, mask, src[0], none, none)); break; case TGSI_OPCODE_CEIL: tmp = nvfx_src(temp(vpc)); nvfx_vp_emit(vpc, arith(0, VEC, FLR, tmp.reg, mask, neg(src[0]), none, none)); nvfx_vp_emit(vpc, arith(sat, VEC, MOV, dst, mask, neg(tmp), none, none)); break; case TGSI_OPCODE_CMP: insn = arith(0, VEC, MOV, none.reg, mask, src[0], none, none); insn.cc_update = 1; nvfx_vp_emit(vpc, insn); insn = arith(sat, VEC, MOV, dst, mask, src[2], none, none); insn.cc_test = NVFX_COND_GE; nvfx_vp_emit(vpc, insn); insn = arith(sat, VEC, MOV, dst, mask, src[1], none, none); insn.cc_test = NVFX_COND_LT; nvfx_vp_emit(vpc, insn); break; case TGSI_OPCODE_COS: nvfx_vp_emit(vpc, arith(sat, SCA, COS, dst, mask, none, none, src[0])); break; case TGSI_OPCODE_DP2: tmp = nvfx_src(temp(vpc)); nvfx_vp_emit(vpc, arith(0, VEC, MUL, tmp.reg, NVFX_VP_MASK_X | NVFX_VP_MASK_Y, src[0], src[1], none)); nvfx_vp_emit(vpc, arith(sat, VEC, ADD, dst, mask, swz(tmp, X, X, X, X), none, swz(tmp, Y, Y, Y, Y))); break; case TGSI_OPCODE_DP3: nvfx_vp_emit(vpc, arith(sat, VEC, DP3, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_DP4: nvfx_vp_emit(vpc, arith(sat, VEC, DP4, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_DPH: nvfx_vp_emit(vpc, arith(sat, VEC, DPH, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_DST: nvfx_vp_emit(vpc, arith(sat, VEC, DST, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_EX2: nvfx_vp_emit(vpc, arith(sat, SCA, EX2, dst, mask, none, none, src[0])); break; case TGSI_OPCODE_EXP: nvfx_vp_emit(vpc, arith(sat, SCA, EXP, dst, mask, none, none, src[0])); break; case TGSI_OPCODE_FLR: nvfx_vp_emit(vpc, arith(sat, VEC, FLR, dst, mask, src[0], none, none)); break; case TGSI_OPCODE_FRC: nvfx_vp_emit(vpc, arith(sat, VEC, FRC, dst, mask, src[0], none, none)); break; case TGSI_OPCODE_LG2: nvfx_vp_emit(vpc, arith(sat, SCA, LG2, dst, mask, none, none, src[0])); break; case TGSI_OPCODE_LIT: nvfx_vp_emit(vpc, arith(sat, SCA, LIT, dst, mask, none, none, src[0])); break; case TGSI_OPCODE_LOG: nvfx_vp_emit(vpc, arith(sat, SCA, LOG, dst, mask, none, none, src[0])); break; case TGSI_OPCODE_LRP: tmp = nvfx_src(temp(vpc)); nvfx_vp_emit(vpc, arith(0, VEC, MAD, tmp.reg, mask, neg(src[0]), src[2], src[2])); nvfx_vp_emit(vpc, arith(sat, VEC, MAD, dst, mask, src[0], src[1], tmp)); break; case TGSI_OPCODE_MAD: nvfx_vp_emit(vpc, arith(sat, VEC, MAD, dst, mask, src[0], src[1], src[2])); break; case TGSI_OPCODE_MAX: nvfx_vp_emit(vpc, arith(sat, VEC, MAX, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_MIN: nvfx_vp_emit(vpc, arith(sat, VEC, MIN, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_MOV: nvfx_vp_emit(vpc, arith(sat, VEC, MOV, dst, mask, src[0], none, none)); break; case TGSI_OPCODE_MUL: nvfx_vp_emit(vpc, arith(sat, VEC, MUL, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_NOP: break; case TGSI_OPCODE_POW: tmp = nvfx_src(temp(vpc)); nvfx_vp_emit(vpc, arith(0, SCA, LG2, tmp.reg, NVFX_VP_MASK_X, none, none, swz(src[0], X, X, X, X))); nvfx_vp_emit(vpc, arith(0, VEC, MUL, tmp.reg, NVFX_VP_MASK_X, swz(tmp, X, X, X, X), swz(src[1], X, X, X, X), none)); nvfx_vp_emit(vpc, arith(sat, SCA, EX2, dst, mask, none, none, swz(tmp, X, X, X, X))); break; case TGSI_OPCODE_RCP: nvfx_vp_emit(vpc, arith(sat, SCA, RCP, dst, mask, none, none, src[0])); break; case TGSI_OPCODE_RSQ: nvfx_vp_emit(vpc, arith(sat, SCA, RSQ, dst, mask, none, none, abs(src[0]))); break; case TGSI_OPCODE_SEQ: nvfx_vp_emit(vpc, arith(sat, VEC, SEQ, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_SFL: nvfx_vp_emit(vpc, arith(sat, VEC, SFL, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_SGE: nvfx_vp_emit(vpc, arith(sat, VEC, SGE, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_SGT: nvfx_vp_emit(vpc, arith(sat, VEC, SGT, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_SIN: nvfx_vp_emit(vpc, arith(sat, SCA, SIN, dst, mask, none, none, src[0])); break; case TGSI_OPCODE_SLE: nvfx_vp_emit(vpc, arith(sat, VEC, SLE, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_SLT: nvfx_vp_emit(vpc, arith(sat, VEC, SLT, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_SNE: nvfx_vp_emit(vpc, arith(sat, VEC, SNE, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_SSG: nvfx_vp_emit(vpc, arith(sat, VEC, SSG, dst, mask, src[0], none, none)); break; case TGSI_OPCODE_STR: nvfx_vp_emit(vpc, arith(sat, VEC, STR, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_SUB: nvfx_vp_emit(vpc, arith(sat, VEC, ADD, dst, mask, src[0], none, neg(src[1]))); break; case TGSI_OPCODE_TRUNC: tmp = nvfx_src(temp(vpc)); insn = arith(0, VEC, MOV, none.reg, mask, src[0], none, none); insn.cc_update = 1; nvfx_vp_emit(vpc, insn); nvfx_vp_emit(vpc, arith(0, VEC, FLR, tmp.reg, mask, abs(src[0]), none, none)); nvfx_vp_emit(vpc, arith(sat, VEC, MOV, dst, mask, tmp, none, none)); insn = arith(sat, VEC, MOV, dst, mask, neg(tmp), none, none); insn.cc_test = NVFX_COND_LT; nvfx_vp_emit(vpc, insn); break; case TGSI_OPCODE_XPD: tmp = nvfx_src(temp(vpc)); nvfx_vp_emit(vpc, arith(0, VEC, MUL, tmp.reg, mask, swz(src[0], Z, X, Y, Y), swz(src[1], Y, Z, X, X), none)); nvfx_vp_emit(vpc, arith(sat, VEC, MAD, dst, (mask & ~NVFX_VP_MASK_W), swz(src[0], Y, Z, X, X), swz(src[1], Z, X, Y, Y), neg(tmp))); break; case TGSI_OPCODE_IF: insn = arith(0, VEC, MOV, none.reg, NVFX_VP_MASK_X, src[0], none, none); insn.cc_update = 1; nvfx_vp_emit(vpc, insn); reloc.location = vpc->vp->nr_insns; reloc.target = finst->Label.Label + 1; util_dynarray_append(&vpc->label_relocs, struct nvfx_relocation, reloc); insn = arith(0, SCA, BRA, none.reg, 0, none, none, none); insn.cc_test = NVFX_COND_EQ; insn.cc_swz[0] = insn.cc_swz[1] = insn.cc_swz[2] = insn.cc_swz[3] = 0; nvfx_vp_emit(vpc, insn); break; case TGSI_OPCODE_ELSE: case TGSI_OPCODE_BRA: case TGSI_OPCODE_CAL: reloc.location = vpc->vp->nr_insns; reloc.target = finst->Label.Label; util_dynarray_append(&vpc->label_relocs, struct nvfx_relocation, reloc); if(finst->Instruction.Opcode == TGSI_OPCODE_CAL) insn = arith(0, SCA, CAL, none.reg, 0, none, none, none); else insn = arith(0, SCA, BRA, none.reg, 0, none, none, none); nvfx_vp_emit(vpc, insn); break; case TGSI_OPCODE_RET: if(sub_depth || !vpc->vp->enabled_ucps) { tmp = none; tmp.swz[0] = tmp.swz[1] = tmp.swz[2] = tmp.swz[3] = 0; nvfx_vp_emit(vpc, arith(0, SCA, RET, none.reg, 0, none, none, tmp)); } else { reloc.location = vpc->vp->nr_insns; reloc.target = vpc->info->num_instructions; util_dynarray_append(&vpc->label_relocs, struct nvfx_relocation, reloc); nvfx_vp_emit(vpc, arith(0, SCA, BRA, none.reg, 0, none, none, none)); } break; case TGSI_OPCODE_BGNSUB: ++sub_depth; break; case TGSI_OPCODE_ENDSUB: --sub_depth; break; case TGSI_OPCODE_ENDIF: /* nothing to do here */ break; case TGSI_OPCODE_BGNLOOP: loop.cont_target = idx; loop.brk_target = finst->Label.Label + 1; util_dynarray_append(&vpc->loop_stack, struct nvfx_loop_entry, loop); break; case TGSI_OPCODE_ENDLOOP: loop = util_dynarray_pop(&vpc->loop_stack, struct nvfx_loop_entry); reloc.location = vpc->vp->nr_insns; reloc.target = loop.cont_target; util_dynarray_append(&vpc->label_relocs, struct nvfx_relocation, reloc); nvfx_vp_emit(vpc, arith(0, SCA, BRA, none.reg, 0, none, none, none)); break; case TGSI_OPCODE_CONT: loop = util_dynarray_top(&vpc->loop_stack, struct nvfx_loop_entry); reloc.location = vpc->vp->nr_insns; reloc.target = loop.cont_target; util_dynarray_append(&vpc->label_relocs, struct nvfx_relocation, reloc); nvfx_vp_emit(vpc, arith(0, SCA, BRA, none.reg, 0, none, none, none)); break; case TGSI_OPCODE_BRK: loop = util_dynarray_top(&vpc->loop_stack, struct nvfx_loop_entry); reloc.location = vpc->vp->nr_insns; reloc.target = loop.brk_target; util_dynarray_append(&vpc->label_relocs, struct nvfx_relocation, reloc); nvfx_vp_emit(vpc, arith(0, SCA, BRA, none.reg, 0, none, none, none)); break; case TGSI_OPCODE_END: assert(!sub_depth); if(vpc->vp->enabled_ucps) { if(idx != (vpc->info->num_instructions - 1)) { reloc.location = vpc->vp->nr_insns; reloc.target = vpc->info->num_instructions; util_dynarray_append(&vpc->label_relocs, struct nvfx_relocation, reloc); nvfx_vp_emit(vpc, arith(0, SCA, BRA, none.reg, 0, none, none, none)); } } else { if(vpc->vp->nr_insns) vpc->vp->insns[vpc->vp->nr_insns - 1].data[3] |= NVFX_VP_INST_LAST; nvfx_vp_emit(vpc, arith(0, VEC, NOP, none.reg, 0, none, none, none)); vpc->vp->insns[vpc->vp->nr_insns - 1].data[3] |= NVFX_VP_INST_LAST; } break; default: NOUVEAU_ERR("invalid opcode %d\n", finst->Instruction.Opcode); return FALSE; } if(finst->Instruction.Saturate == TGSI_SAT_ZERO_ONE && !nv30->use_nv4x) { if (!vpc->r_0_1.type) vpc->r_0_1 = constant(vpc, -1, 0, 1, 0, 0); nvfx_vp_emit(vpc, arith(0, VEC, MAX, dst, mask, nvfx_src(dst), swz(nvfx_src(vpc->r_0_1), X, X, X, X), none)); nvfx_vp_emit(vpc, arith(0, VEC, MIN, final_dst, mask, nvfx_src(dst), swz(nvfx_src(vpc->r_0_1), Y, Y, Y, Y), none)); } release_temps(vpc); return TRUE; } static boolean nvfx_vertprog_parse_decl_output(struct nv30_context *nv30, struct nvfx_vpc *vpc, const struct tgsi_full_declaration *fdec) { unsigned num_texcoords = nv30->is_nv4x ? 10 : 8; unsigned idx = fdec->Range.First; unsigned semantic_index = fdec->Semantic.Index; int hw = 0, i; switch (fdec->Semantic.Name) { case TGSI_SEMANTIC_POSITION: hw = NVFX_VP(INST_DEST_POS); vpc->hpos_idx = idx; break; case TGSI_SEMANTIC_CLIPVERTEX: vpc->r_result[idx] = temp(vpc); vpc->r_temps_discard = 0; vpc->cvtx_idx = idx; return TRUE; case TGSI_SEMANTIC_COLOR: if (fdec->Semantic.Index == 0) { hw = NVFX_VP(INST_DEST_COL0); } else if (fdec->Semantic.Index == 1) { hw = NVFX_VP(INST_DEST_COL1); } else { NOUVEAU_ERR("bad colour semantic index\n"); return FALSE; } break; case TGSI_SEMANTIC_BCOLOR: if (fdec->Semantic.Index == 0) { hw = NVFX_VP(INST_DEST_BFC0); } else if (fdec->Semantic.Index == 1) { hw = NVFX_VP(INST_DEST_BFC1); } else { NOUVEAU_ERR("bad bcolour semantic index\n"); return FALSE; } break; case TGSI_SEMANTIC_FOG: hw = NVFX_VP(INST_DEST_FOGC); break; case TGSI_SEMANTIC_PSIZE: hw = NVFX_VP(INST_DEST_PSZ); break; case TGSI_SEMANTIC_GENERIC: /* this is really an identifier for VP/FP linkage */ semantic_index += 8; /* fall through */ case TGSI_SEMANTIC_TEXCOORD: for (i = 0; i < num_texcoords; i++) { if (vpc->vp->texcoord[i] == semantic_index) { hw = NVFX_VP(INST_DEST_TC(i)); break; } } if (i == num_texcoords) { vpc->r_result[idx] = nvfx_reg(NVFXSR_NONE, 0); return TRUE; } break; case TGSI_SEMANTIC_EDGEFLAG: /* not really an error just a fallback */ NOUVEAU_ERR("cannot handle edgeflag output\n"); return FALSE; default: NOUVEAU_ERR("bad output semantic\n"); return FALSE; } vpc->r_result[idx] = nvfx_reg(NVFXSR_OUTPUT, hw); return TRUE; } static boolean nvfx_vertprog_prepare(struct nv30_context *nv30, struct nvfx_vpc *vpc) { struct tgsi_parse_context p; int high_const = -1, high_temp = -1, high_addr = -1, nr_imm = 0, i; tgsi_parse_init(&p, vpc->pipe.tokens); while (!tgsi_parse_end_of_tokens(&p)) { const union tgsi_full_token *tok = &p.FullToken; tgsi_parse_token(&p); switch(tok->Token.Type) { case TGSI_TOKEN_TYPE_IMMEDIATE: nr_imm++; break; case TGSI_TOKEN_TYPE_DECLARATION: { const struct tgsi_full_declaration *fdec; fdec = &p.FullToken.FullDeclaration; switch (fdec->Declaration.File) { case TGSI_FILE_TEMPORARY: if (fdec->Range.Last > high_temp) { high_temp = fdec->Range.Last; } break; case TGSI_FILE_ADDRESS: if (fdec->Range.Last > high_addr) { high_addr = fdec->Range.Last; } break; case TGSI_FILE_CONSTANT: if (fdec->Range.Last > high_const) { high_const = fdec->Range.Last; } break; case TGSI_FILE_OUTPUT: if (!nvfx_vertprog_parse_decl_output(nv30, vpc, fdec)) return FALSE; break; default: break; } } break; default: break; } } tgsi_parse_free(&p); if (nr_imm) { vpc->imm = CALLOC(nr_imm, sizeof(struct nvfx_reg)); assert(vpc->imm); } if (++high_temp) { vpc->r_temp = CALLOC(high_temp, sizeof(struct nvfx_reg)); for (i = 0; i < high_temp; i++) vpc->r_temp[i] = temp(vpc); } if (++high_addr) { vpc->r_address = CALLOC(high_addr, sizeof(struct nvfx_reg)); for (i = 0; i < high_addr; i++) vpc->r_address[i] = nvfx_reg(NVFXSR_TEMP, i); } if(++high_const) { vpc->r_const = CALLOC(high_const, sizeof(struct nvfx_reg)); for (i = 0; i < high_const; i++) vpc->r_const[i] = constant(vpc, i, 0, 0, 0, 0); } vpc->r_temps_discard = 0; return TRUE; } DEBUG_GET_ONCE_BOOL_OPTION(nvfx_dump_vp, "NVFX_DUMP_VP", FALSE) boolean _nvfx_vertprog_translate(struct nv30_context *nv30, struct nv30_vertprog *vp) { struct tgsi_parse_context parse; struct nvfx_vpc *vpc = NULL; struct nvfx_src none = nvfx_src(nvfx_reg(NVFXSR_NONE, 0)); struct util_dynarray insns; int i, ucps; vp->translated = FALSE; vp->nr_insns = 0; vp->nr_consts = 0; vpc = CALLOC_STRUCT(nvfx_vpc); if (!vpc) return FALSE; vpc->nv30 = nv30; vpc->vp = vp; vpc->pipe = vp->pipe; vpc->info = &vp->info; vpc->cvtx_idx = -1; if (!nvfx_vertprog_prepare(nv30, vpc)) { FREE(vpc); return FALSE; } /* Redirect post-transform vertex position to a temp if user clip * planes are enabled. We need to append code to the vtxprog * to handle clip planes later. */ if (vp->enabled_ucps && vpc->cvtx_idx < 0) { vpc->r_result[vpc->hpos_idx] = temp(vpc); vpc->r_temps_discard = 0; vpc->cvtx_idx = vpc->hpos_idx; } util_dynarray_init(&insns); tgsi_parse_init(&parse, vp->pipe.tokens); while (!tgsi_parse_end_of_tokens(&parse)) { tgsi_parse_token(&parse); switch (parse.FullToken.Token.Type) { case TGSI_TOKEN_TYPE_IMMEDIATE: { const struct tgsi_full_immediate *imm; imm = &parse.FullToken.FullImmediate; assert(imm->Immediate.DataType == TGSI_IMM_FLOAT32); assert(imm->Immediate.NrTokens == 4 + 1); vpc->imm[vpc->nr_imm++] = constant(vpc, -1, imm->u[0].Float, imm->u[1].Float, imm->u[2].Float, imm->u[3].Float); } break; case TGSI_TOKEN_TYPE_INSTRUCTION: { const struct tgsi_full_instruction *finst; unsigned idx = insns.size >> 2; util_dynarray_append(&insns, unsigned, vp->nr_insns); finst = &parse.FullToken.FullInstruction; if (!nvfx_vertprog_parse_instruction(nv30, vpc, idx, finst)) goto out; } break; default: break; } } util_dynarray_append(&insns, unsigned, vp->nr_insns); for(unsigned i = 0; i < vpc->label_relocs.size; i += sizeof(struct nvfx_relocation)) { struct nvfx_relocation* label_reloc = (struct nvfx_relocation*)((char*)vpc->label_relocs.data + i); struct nvfx_relocation hw_reloc; hw_reloc.location = label_reloc->location; hw_reloc.target = ((unsigned*)insns.data)[label_reloc->target]; //debug_printf("hw %u -> tgsi %u = hw %u\n", hw_reloc.location, label_reloc->target, hw_reloc.target); util_dynarray_append(&vp->branch_relocs, struct nvfx_relocation, hw_reloc); } util_dynarray_fini(&insns); util_dynarray_trim(&vp->branch_relocs); /* XXX: what if we add a RET before?! make sure we jump here...*/ /* Write out HPOS if it was redirected to a temp earlier */ if (vpc->r_result[vpc->hpos_idx].type != NVFXSR_OUTPUT) { struct nvfx_reg hpos = nvfx_reg(NVFXSR_OUTPUT, NVFX_VP(INST_DEST_POS)); struct nvfx_src htmp = nvfx_src(vpc->r_result[vpc->hpos_idx]); nvfx_vp_emit(vpc, arith(0, VEC, MOV, hpos, NVFX_VP_MASK_ALL, htmp, none, none)); } /* Insert code to handle user clip planes */ ucps = vp->enabled_ucps; while (ucps) { int i = ffs(ucps) - 1; ucps &= ~(1 << i); struct nvfx_reg cdst = nvfx_reg(NVFXSR_OUTPUT, NV30_VP_INST_DEST_CLP(i)); struct nvfx_src ceqn = nvfx_src(nvfx_reg(NVFXSR_CONST, 512 + i)); struct nvfx_src htmp = nvfx_src(vpc->r_result[vpc->cvtx_idx]); unsigned mask; if(nv30->is_nv4x) { switch (i) { case 0: case 3: mask = NVFX_VP_MASK_Y; break; case 1: case 4: mask = NVFX_VP_MASK_Z; break; case 2: case 5: mask = NVFX_VP_MASK_W; break; default: NOUVEAU_ERR("invalid clip dist #%d\n", i); goto out; } } else mask = NVFX_VP_MASK_X; nvfx_vp_emit(vpc, arith(0, VEC, DP4, cdst, mask, htmp, ceqn, none)); } if (vpc->vp->nr_insns) vpc->vp->insns[vpc->vp->nr_insns - 1].data[3] |= NVFX_VP_INST_LAST; if(debug_get_option_nvfx_dump_vp()) { debug_printf("\n"); tgsi_dump(vpc->pipe.tokens, 0); debug_printf("\n%s vertex program:\n", nv30->is_nv4x ? "nv4x" : "nv3x"); for (i = 0; i < vp->nr_insns; i++) debug_printf("%3u: %08x %08x %08x %08x\n", i, vp->insns[i].data[0], vp->insns[i].data[1], vp->insns[i].data[2], vp->insns[i].data[3]); debug_printf("\n"); } vp->translated = TRUE; out: tgsi_parse_free(&parse); if(vpc) { util_dynarray_fini(&vpc->label_relocs); util_dynarray_fini(&vpc->loop_stack); FREE(vpc->r_temp); FREE(vpc->r_address); FREE(vpc->r_const); FREE(vpc->imm); FREE(vpc); } return vp->translated; }