/* * Copyright 2011 Christoph Bumiller * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "codegen/nv50_ir_target_nv50.h" namespace nv50_ir { Target *getTargetNV50(unsigned int chipset) { return new TargetNV50(chipset); } TargetNV50::TargetNV50(unsigned int card) : Target(true, true, false) { chipset = card; wposMask = 0; for (unsigned int i = 0; i <= SV_LAST; ++i) sysvalLocation[i] = ~0; initOpInfo(); } #if 0 // BULTINS / LIBRARY FUNCTIONS: // TODO static const uint32_t nvc0_builtin_code[] = { }; static const uint16_t nvc0_builtin_offsets[NV50_BUILTIN_COUNT] = { }; #endif void TargetNV50::getBuiltinCode(const uint32_t **code, uint32_t *size) const { *code = NULL; *size = 0; } uint32_t TargetNV50::getBuiltinOffset(int builtin) const { return 0; } struct opProperties { operation op; unsigned int mNeg : 4; unsigned int mAbs : 4; unsigned int mNot : 4; unsigned int mSat : 4; unsigned int fConst : 3; unsigned int fShared : 3; unsigned int fAttrib : 3; unsigned int fImm : 3; }; static const struct opProperties _initProps[] = { // neg abs not sat c[] s[], a[], imm { OP_ADD, 0x3, 0x0, 0x0, 0x8, 0x2, 0x1, 0x1, 0x2 }, { OP_SUB, 0x3, 0x0, 0x0, 0x8, 0x2, 0x1, 0x1, 0x2 }, { OP_MUL, 0x3, 0x0, 0x0, 0x0, 0x2, 0x1, 0x1, 0x2 }, { OP_MAX, 0x3, 0x3, 0x0, 0x0, 0x2, 0x1, 0x1, 0x0 }, { OP_MIN, 0x3, 0x3, 0x0, 0x0, 0x2, 0x1, 0x1, 0x0 }, { OP_MAD, 0x7, 0x0, 0x0, 0x8, 0x6, 0x1, 0x1, 0x0 }, // special constraint { OP_ABS, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x1, 0x0 }, { OP_NEG, 0x0, 0x1, 0x0, 0x0, 0x0, 0x1, 0x1, 0x0 }, { OP_CVT, 0x1, 0x1, 0x0, 0x8, 0x0, 0x1, 0x1, 0x0 }, { OP_AND, 0x0, 0x0, 0x3, 0x0, 0x0, 0x0, 0x0, 0x2 }, { OP_OR, 0x0, 0x0, 0x3, 0x0, 0x0, 0x0, 0x0, 0x2 }, { OP_XOR, 0x0, 0x0, 0x3, 0x0, 0x0, 0x0, 0x0, 0x2 }, { OP_SHL, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x2 }, { OP_SHR, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x2 }, { OP_SET, 0x3, 0x3, 0x0, 0x0, 0x2, 0x1, 0x1, 0x0 }, { OP_PREEX2, 0x1, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 }, { OP_PRESIN, 0x1, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 }, { OP_EX2, 0x0, 0x0, 0x0, 0x8, 0x0, 0x0, 0x0, 0x0 }, { OP_LG2, 0x1, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 }, { OP_RCP, 0x1, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 }, { OP_RSQ, 0x1, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 }, { OP_DFDX, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 }, { OP_DFDY, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 }, }; void TargetNV50::initOpInfo() { unsigned int i, j; static const uint32_t commutative[(OP_LAST + 31) / 32] = { // ADD, MUL, MAD, FMA, AND, OR, XOR, MAX, MIN, SET_AND, SET_OR, SET_XOR, // SET, SELP, SLCT 0x0ce0ca00, 0x0000007e, 0x00000000, 0x00000000 }; static const uint32_t shortForm[(OP_LAST + 31) / 32] = { // MOV, ADD, SUB, MUL, MAD, SAD, RCP, L/PINTERP, TEX, TXF 0x00014e40, 0x00000080, 0x00001260, 0x00000000 }; static const operation noDestList[] = { OP_STORE, OP_WRSV, OP_EXPORT, OP_BRA, OP_CALL, OP_RET, OP_EXIT, OP_DISCARD, OP_CONT, OP_BREAK, OP_PRECONT, OP_PREBREAK, OP_PRERET, OP_JOIN, OP_JOINAT, OP_BRKPT, OP_MEMBAR, OP_EMIT, OP_RESTART, OP_QUADON, OP_QUADPOP, OP_TEXBAR, OP_SUSTB, OP_SUSTP, OP_SUREDP, OP_SUREDB, OP_BAR }; static const operation noPredList[] = { OP_CALL, OP_PREBREAK, OP_PRERET, OP_QUADON, OP_QUADPOP, OP_JOINAT, OP_EMIT, OP_RESTART }; for (i = 0; i < DATA_FILE_COUNT; ++i) nativeFileMap[i] = (DataFile)i; nativeFileMap[FILE_PREDICATE] = FILE_FLAGS; for (i = 0; i < OP_LAST; ++i) { opInfo[i].variants = NULL; opInfo[i].op = (operation)i; opInfo[i].srcTypes = 1 << (int)TYPE_F32; opInfo[i].dstTypes = 1 << (int)TYPE_F32; opInfo[i].immdBits = 0xffffffff; opInfo[i].srcNr = operationSrcNr[i]; for (j = 0; j < opInfo[i].srcNr; ++j) { opInfo[i].srcMods[j] = 0; opInfo[i].srcFiles[j] = 1 << (int)FILE_GPR; } opInfo[i].dstMods = 0; opInfo[i].dstFiles = 1 << (int)FILE_GPR; opInfo[i].hasDest = 1; opInfo[i].vector = (i >= OP_TEX && i <= OP_TEXCSAA); opInfo[i].commutative = (commutative[i / 32] >> (i % 32)) & 1; opInfo[i].pseudo = (i < OP_MOV); opInfo[i].predicate = !opInfo[i].pseudo; opInfo[i].flow = (i >= OP_BRA && i <= OP_JOIN); opInfo[i].minEncSize = (shortForm[i / 32] & (1 << (i % 32))) ? 4 : 8; } for (i = 0; i < sizeof(noDestList) / sizeof(noDestList[0]); ++i) opInfo[noDestList[i]].hasDest = 0; for (i = 0; i < sizeof(noPredList) / sizeof(noPredList[0]); ++i) opInfo[noPredList[i]].predicate = 0; for (i = 0; i < sizeof(_initProps) / sizeof(_initProps[0]); ++i) { const struct opProperties *prop = &_initProps[i]; for (int s = 0; s < 3; ++s) { if (prop->mNeg & (1 << s)) opInfo[prop->op].srcMods[s] |= NV50_IR_MOD_NEG; if (prop->mAbs & (1 << s)) opInfo[prop->op].srcMods[s] |= NV50_IR_MOD_ABS; if (prop->mNot & (1 << s)) opInfo[prop->op].srcMods[s] |= NV50_IR_MOD_NOT; if (prop->fConst & (1 << s)) opInfo[prop->op].srcFiles[s] |= 1 << (int)FILE_MEMORY_CONST; if (prop->fShared & (1 << s)) opInfo[prop->op].srcFiles[s] |= 1 << (int)FILE_MEMORY_SHARED; if (prop->fAttrib & (1 << s)) opInfo[prop->op].srcFiles[s] |= 1 << (int)FILE_SHADER_INPUT; if (prop->fImm & (1 << s)) opInfo[prop->op].srcFiles[s] |= 1 << (int)FILE_IMMEDIATE; } if (prop->mSat & 8) opInfo[prop->op].dstMods = NV50_IR_MOD_SAT; } if (chipset >= 0xa0) opInfo[OP_MUL].dstMods = NV50_IR_MOD_SAT; } unsigned int TargetNV50::getFileSize(DataFile file) const { switch (file) { case FILE_NULL: return 0; case FILE_GPR: return 256; // in 16-bit units ** case FILE_PREDICATE: return 0; case FILE_FLAGS: return 4; case FILE_ADDRESS: return 4; case FILE_IMMEDIATE: return 0; case FILE_MEMORY_CONST: return 65536; case FILE_SHADER_INPUT: return 0x200; case FILE_SHADER_OUTPUT: return 0x200; case FILE_MEMORY_BUFFER: return 0xffffffff; case FILE_MEMORY_GLOBAL: return 0xffffffff; case FILE_MEMORY_SHARED: return 16 << 10; case FILE_MEMORY_LOCAL: return 48 << 10; case FILE_SYSTEM_VALUE: return 16; default: assert(!"invalid file"); return 0; } // ** only first 128 units encodable for 16-bit regs } unsigned int TargetNV50::getFileUnit(DataFile file) const { if (file == FILE_GPR || file == FILE_ADDRESS) return 1; if (file == FILE_SYSTEM_VALUE) return 2; return 0; } uint32_t TargetNV50::getSVAddress(DataFile shaderFile, const Symbol *sym) const { switch (sym->reg.data.sv.sv) { case SV_FACE: return 0x3fc; case SV_POSITION: { uint32_t addr = sysvalLocation[sym->reg.data.sv.sv]; for (int c = 0; c < sym->reg.data.sv.index; ++c) if (wposMask & (1 << c)) addr += 4; return addr; } case SV_PRIMITIVE_ID: return shaderFile == FILE_SHADER_INPUT ? 0x18 : sysvalLocation[sym->reg.data.sv.sv]; case SV_NCTAID: return 0x8 + 2 * sym->reg.data.sv.index; case SV_CTAID: return 0xc + 2 * sym->reg.data.sv.index; case SV_NTID: return 0x2 + 2 * sym->reg.data.sv.index; case SV_TID: return 0; case SV_SAMPLE_POS: return 0; /* sample position is handled differently */ default: return sysvalLocation[sym->reg.data.sv.sv]; } } // long: rrr, arr, rcr, acr, rrc, arc, gcr, grr // short: rr, ar, rc, gr // immd: ri, gi bool TargetNV50::insnCanLoad(const Instruction *i, int s, const Instruction *ld) const { DataFile sf = ld->src(0).getFile(); // immediate 0 can be represented by GPR $r63/$r127 if (sf == FILE_IMMEDIATE && ld->getSrc(0)->reg.data.u64 == 0) return (!i->isPseudo() && !i->asTex() && i->op != OP_EXPORT && i->op != OP_STORE); if (sf == FILE_IMMEDIATE && (i->predSrc >= 0 || i->flagsDef >= 0)) return false; if (s >= opInfo[i->op].srcNr) return false; if (!(opInfo[i->op].srcFiles[s] & (1 << (int)sf))) return false; if (s == 2 && i->src(1).getFile() != FILE_GPR) return false; // NOTE: don't rely on flagsDef if (sf == FILE_IMMEDIATE) for (int d = 0; i->defExists(d); ++d) if (i->def(d).getFile() == FILE_FLAGS) return false; unsigned mode = 0; for (int z = 0; z < Target::operationSrcNr[i->op]; ++z) { DataFile zf = (z == s) ? sf : i->src(z).getFile(); switch (zf) { case FILE_GPR: break; case FILE_MEMORY_SHARED: case FILE_SHADER_INPUT: mode |= 1 << (z * 2); break; case FILE_MEMORY_CONST: mode |= 2 << (z * 2); break; case FILE_IMMEDIATE: mode |= 3 << (z * 2); default: break; } } switch (mode) { case 0x00: case 0x01: case 0x03: case 0x08: case 0x0c: case 0x20: case 0x21: break; case 0x09: // Shader inputs get transformed to p[] in geometry shaders, and those // aren't allowed to be used at the same time as c[]. if (ld->bb->getProgram()->getType() == Program::TYPE_GEOMETRY) return false; break; case 0x0d: if (ld->bb->getProgram()->getType() != Program::TYPE_GEOMETRY) return false; break; default: return false; } uint8_t ldSize; if ((i->op == OP_MUL || i->op == OP_MAD) && !isFloatType(i->dType)) { // 32-bit MUL will be split into 16-bit MULs if (ld->src(0).isIndirect(0)) return false; if (sf == FILE_IMMEDIATE) return false; if (i->subOp == NV50_IR_SUBOP_MUL_HIGH && sf == FILE_MEMORY_CONST) return false; ldSize = 2; } else { ldSize = typeSizeof(ld->dType); } if (sf == FILE_IMMEDIATE) return ldSize <= 4; // Check if memory access is encodable: if (ldSize < 4 && sf == FILE_SHADER_INPUT) // no < 4-byte aligned a[] access return false; if (ld->getSrc(0)->reg.data.offset > (int32_t)(127 * ldSize)) return false; if (ld->src(0).isIndirect(0)) { for (int z = 0; i->srcExists(z); ++z) if (i->src(z).isIndirect(0)) return false; // s[] access only possible in CP, $aX always applies if (sf == FILE_MEMORY_SHARED) return true; if (!ld->bb) // can't check type ... return false; Program::Type pt = ld->bb->getProgram()->getType(); // $aX applies to c[] only in VP, FP, GP if p[] is not accessed if (pt == Program::TYPE_COMPUTE) return false; if (pt == Program::TYPE_GEOMETRY) { if (sf == FILE_MEMORY_CONST) return i->src(s).getFile() != FILE_SHADER_INPUT; return sf == FILE_SHADER_INPUT; } return sf == FILE_MEMORY_CONST; } return true; } bool TargetNV50::insnCanLoadOffset(const Instruction *i, int s, int offset) const { if (!i->src(s).isIndirect(0)) return true; offset += i->src(s).get()->reg.data.offset; if (i->op == OP_LOAD || i->op == OP_STORE) { // There are some restrictions in theory, but in practice they're never // going to be hit. When we enable shared/global memory, this will // become more important. return true; } return offset >= 0 && offset <= (int32_t)(127 * i->src(s).get()->reg.size); } bool TargetNV50::isAccessSupported(DataFile file, DataType ty) const { if (ty == TYPE_B96 || ty == TYPE_NONE) return false; if (typeSizeof(ty) > 4) return (file == FILE_MEMORY_LOCAL) || (file == FILE_MEMORY_GLOBAL) || (file == FILE_MEMORY_BUFFER); return true; } bool TargetNV50::isOpSupported(operation op, DataType ty) const { if (ty == TYPE_F64 && chipset < 0xa0) return false; switch (op) { case OP_PRERET: return chipset >= 0xa0; case OP_TXG: return chipset >= 0xa3 && chipset != 0xaa && chipset != 0xac; case OP_POW: case OP_SQRT: case OP_DIV: case OP_MOD: case OP_SET_AND: case OP_SET_OR: case OP_SET_XOR: case OP_SLCT: case OP_SELP: case OP_POPCNT: case OP_INSBF: case OP_EXTBF: case OP_EXIT: // want exit modifier instead (on NOP if required) case OP_MEMBAR: case OP_SHLADD: return false; case OP_SAD: return ty == TYPE_S32; case OP_SET: return !isFloatType(ty); default: return true; } } bool TargetNV50::isModSupported(const Instruction *insn, int s, Modifier mod) const { if (!isFloatType(insn->dType)) { switch (insn->op) { case OP_ABS: case OP_NEG: case OP_CVT: case OP_CEIL: case OP_FLOOR: case OP_TRUNC: case OP_AND: case OP_OR: case OP_XOR: break; case OP_ADD: if (insn->src(s ? 0 : 1).mod.neg()) return false; break; case OP_SUB: if (s == 0) return insn->src(1).mod.neg() ? false : true; break; case OP_SET: if (insn->sType != TYPE_F32) return false; break; default: return false; } } if (s >= opInfo[insn->op].srcNr || s >= 3) return false; return (mod & Modifier(opInfo[insn->op].srcMods[s])) == mod; } bool TargetNV50::mayPredicate(const Instruction *insn, const Value *pred) const { if (insn->getPredicate() || insn->flagsSrc >= 0) return false; for (int s = 0; insn->srcExists(s); ++s) if (insn->src(s).getFile() == FILE_IMMEDIATE) return false; return opInfo[insn->op].predicate; } bool TargetNV50::isSatSupported(const Instruction *insn) const { if (insn->op == OP_CVT) return true; if (insn->dType != TYPE_F32) return false; return opInfo[insn->op].dstMods & NV50_IR_MOD_SAT; } int TargetNV50::getLatency(const Instruction *i) const { // TODO: tune these values if (i->op == OP_LOAD) { switch (i->src(0).getFile()) { case FILE_MEMORY_LOCAL: case FILE_MEMORY_GLOBAL: case FILE_MEMORY_BUFFER: return 100; // really 400 to 800 default: return 22; } } return 22; } // These are "inverse" throughput values, i.e. the number of cycles required // to issue a specific instruction for a full warp (32 threads). // // Assuming we have more than 1 warp in flight, a higher issue latency results // in a lower result latency since the MP will have spent more time with other // warps. // This also helps to determine the number of cycles between instructions in // a single warp. // int TargetNV50::getThroughput(const Instruction *i) const { // TODO: tune these values if (i->dType == TYPE_F32) { switch (i->op) { case OP_RCP: case OP_RSQ: case OP_LG2: case OP_SIN: case OP_COS: case OP_PRESIN: case OP_PREEX2: return 16; default: return 4; } } else if (i->dType == TYPE_U32 || i->dType == TYPE_S32) { return 4; } else if (i->dType == TYPE_F64) { return 32; } else { return 1; } } static void recordLocation(uint16_t *locs, uint8_t *masks, const struct nv50_ir_varying *var) { uint16_t addr = var->slot[0] * 4; switch (var->sn) { case TGSI_SEMANTIC_POSITION: locs[SV_POSITION] = addr; break; case TGSI_SEMANTIC_INSTANCEID: locs[SV_INSTANCE_ID] = addr; break; case TGSI_SEMANTIC_VERTEXID: locs[SV_VERTEX_ID] = addr; break; case TGSI_SEMANTIC_PRIMID: locs[SV_PRIMITIVE_ID] = addr; break; case TGSI_SEMANTIC_LAYER: locs[SV_LAYER] = addr; break; case TGSI_SEMANTIC_VIEWPORT_INDEX: locs[SV_VIEWPORT_INDEX] = addr; break; default: break; } if (var->sn == TGSI_SEMANTIC_POSITION && masks) masks[0] = var->mask; } void TargetNV50::parseDriverInfo(const struct nv50_ir_prog_info *info) { unsigned int i; for (i = 0; i < info->numOutputs; ++i) recordLocation(sysvalLocation, NULL, &info->out[i]); for (i = 0; i < info->numInputs; ++i) recordLocation(sysvalLocation, &wposMask, &info->in[i]); for (i = 0; i < info->numSysVals; ++i) recordLocation(sysvalLocation, NULL, &info->sv[i]); if (sysvalLocation[SV_POSITION] >= 0x200) { // not assigned by driver, but we need it internally wposMask = 0x8; sysvalLocation[SV_POSITION] = 0; } Target::parseDriverInfo(info); } } // namespace nv50_ir