/************************************************************************** * * Copyright 2009 VMware, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /** * @file * Unit tests for blend LLVM IR generation * * @author Jose Fonseca * * Blend computation code derived from code written by * @author Brian Paul */ #include "gallivm/lp_bld_init.h" #include "gallivm/lp_bld_type.h" #include "gallivm/lp_bld_debug.h" #include "lp_bld_blend.h" #include "lp_test.h" enum vector_mode { AoS = 0, SoA = 1 }; typedef void (*blend_test_ptr_t)(const void *src, const void *dst, const void *con, void *res); /** cast wrapper */ static blend_test_ptr_t voidptr_to_blend_test_ptr_t(void *p) { union { void *v; blend_test_ptr_t f; } u; u.v = p; return u.f; } void write_tsv_header(FILE *fp) { fprintf(fp, "result\t" "cycles_per_channel\t" "mode\t" "type\t" "sep_func\t" "sep_src_factor\t" "sep_dst_factor\t" "rgb_func\t" "rgb_src_factor\t" "rgb_dst_factor\t" "alpha_func\t" "alpha_src_factor\t" "alpha_dst_factor\n"); fflush(fp); } static void write_tsv_row(FILE *fp, const struct pipe_blend_state *blend, enum vector_mode mode, struct lp_type type, double cycles, boolean success) { fprintf(fp, "%s\t", success ? "pass" : "fail"); if (mode == AoS) { fprintf(fp, "%.1f\t", cycles / type.length); fprintf(fp, "aos\t"); } if (mode == SoA) { fprintf(fp, "%.1f\t", cycles / (4 * type.length)); fprintf(fp, "soa\t"); } fprintf(fp, "%s%u%sx%u\t", type.floating ? "f" : (type.fixed ? "h" : (type.sign ? "s" : "u")), type.width, type.norm ? "n" : "", type.length); fprintf(fp, "%s\t%s\t%s\t", blend->rt[0].rgb_func != blend->rt[0].alpha_func ? "true" : "false", blend->rt[0].rgb_src_factor != blend->rt[0].alpha_src_factor ? "true" : "false", blend->rt[0].rgb_dst_factor != blend->rt[0].alpha_dst_factor ? "true" : "false"); fprintf(fp, "%s\t%s\t%s\t%s\t%s\t%s\n", util_dump_blend_func(blend->rt[0].rgb_func, TRUE), util_dump_blend_factor(blend->rt[0].rgb_src_factor, TRUE), util_dump_blend_factor(blend->rt[0].rgb_dst_factor, TRUE), util_dump_blend_func(blend->rt[0].alpha_func, TRUE), util_dump_blend_factor(blend->rt[0].alpha_src_factor, TRUE), util_dump_blend_factor(blend->rt[0].alpha_dst_factor, TRUE)); fflush(fp); } static void dump_blend_type(FILE *fp, const struct pipe_blend_state *blend, enum vector_mode mode, struct lp_type type) { fprintf(fp, "%s", mode ? "soa" : "aos"); fprintf(fp, " type=%s%u%sx%u", type.floating ? "f" : (type.fixed ? "h" : (type.sign ? "s" : "u")), type.width, type.norm ? "n" : "", type.length); fprintf(fp, " %s=%s %s=%s %s=%s %s=%s %s=%s %s=%s", "rgb_func", util_dump_blend_func(blend->rt[0].rgb_func, TRUE), "rgb_src_factor", util_dump_blend_factor(blend->rt[0].rgb_src_factor, TRUE), "rgb_dst_factor", util_dump_blend_factor(blend->rt[0].rgb_dst_factor, TRUE), "alpha_func", util_dump_blend_func(blend->rt[0].alpha_func, TRUE), "alpha_src_factor", util_dump_blend_factor(blend->rt[0].alpha_src_factor, TRUE), "alpha_dst_factor", util_dump_blend_factor(blend->rt[0].alpha_dst_factor, TRUE)); fprintf(fp, " ...\n"); fflush(fp); } static LLVMValueRef add_blend_test(struct gallivm_state *gallivm, const struct pipe_blend_state *blend, enum vector_mode mode, struct lp_type type) { LLVMModuleRef module = gallivm->module; LLVMContextRef context = gallivm->context; LLVMTypeRef vec_type; LLVMTypeRef args[4]; LLVMValueRef func; LLVMValueRef src_ptr; LLVMValueRef dst_ptr; LLVMValueRef const_ptr; LLVMValueRef res_ptr; LLVMBasicBlockRef block; LLVMBuilderRef builder; const unsigned rt = 0; vec_type = lp_build_vec_type(gallivm, type); args[3] = args[2] = args[1] = args[0] = LLVMPointerType(vec_type, 0); func = LLVMAddFunction(module, "test", LLVMFunctionType(LLVMVoidTypeInContext(context), args, 4, 0)); LLVMSetFunctionCallConv(func, LLVMCCallConv); src_ptr = LLVMGetParam(func, 0); dst_ptr = LLVMGetParam(func, 1); const_ptr = LLVMGetParam(func, 2); res_ptr = LLVMGetParam(func, 3); block = LLVMAppendBasicBlockInContext(context, func, "entry"); builder = gallivm->builder; LLVMPositionBuilderAtEnd(builder, block); if (mode == AoS) { LLVMValueRef src; LLVMValueRef dst; LLVMValueRef con; LLVMValueRef res; src = LLVMBuildLoad(builder, src_ptr, "src"); dst = LLVMBuildLoad(builder, dst_ptr, "dst"); con = LLVMBuildLoad(builder, const_ptr, "const"); res = lp_build_blend_aos(gallivm, blend, type, rt, src, dst, con, 3); lp_build_name(res, "res"); LLVMBuildStore(builder, res, res_ptr); } if (mode == SoA) { LLVMValueRef src[4]; LLVMValueRef dst[4]; LLVMValueRef con[4]; LLVMValueRef res[4]; unsigned i; for(i = 0; i < 4; ++i) { LLVMValueRef index = LLVMConstInt(LLVMInt32TypeInContext(context), i, 0); src[i] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, src_ptr, &index, 1, ""), ""); dst[i] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), ""); con[i] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), ""); lp_build_name(src[i], "src.%c", "rgba"[i]); lp_build_name(con[i], "con.%c", "rgba"[i]); lp_build_name(dst[i], "dst.%c", "rgba"[i]); } lp_build_blend_soa(gallivm, blend, type, rt, src, dst, con, res); for(i = 0; i < 4; ++i) { LLVMValueRef index = LLVMConstInt(LLVMInt32TypeInContext(context), i, 0); lp_build_name(res[i], "res.%c", "rgba"[i]); LLVMBuildStore(builder, res[i], LLVMBuildGEP(builder, res_ptr, &index, 1, "")); } } LLVMBuildRetVoid(builder);; return func; } static void compute_blend_ref_term(unsigned rgb_factor, unsigned alpha_factor, const double *factor, const double *src, const double *dst, const double *con, double *term) { double temp; switch (rgb_factor) { case PIPE_BLENDFACTOR_ONE: term[0] = factor[0]; /* R */ term[1] = factor[1]; /* G */ term[2] = factor[2]; /* B */ break; case PIPE_BLENDFACTOR_SRC_COLOR: term[0] = factor[0] * src[0]; /* R */ term[1] = factor[1] * src[1]; /* G */ term[2] = factor[2] * src[2]; /* B */ break; case PIPE_BLENDFACTOR_SRC_ALPHA: term[0] = factor[0] * src[3]; /* R */ term[1] = factor[1] * src[3]; /* G */ term[2] = factor[2] * src[3]; /* B */ break; case PIPE_BLENDFACTOR_DST_COLOR: term[0] = factor[0] * dst[0]; /* R */ term[1] = factor[1] * dst[1]; /* G */ term[2] = factor[2] * dst[2]; /* B */ break; case PIPE_BLENDFACTOR_DST_ALPHA: term[0] = factor[0] * dst[3]; /* R */ term[1] = factor[1] * dst[3]; /* G */ term[2] = factor[2] * dst[3]; /* B */ break; case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE: temp = MIN2(src[3], 1.0f - dst[3]); term[0] = factor[0] * temp; /* R */ term[1] = factor[1] * temp; /* G */ term[2] = factor[2] * temp; /* B */ break; case PIPE_BLENDFACTOR_CONST_COLOR: term[0] = factor[0] * con[0]; /* R */ term[1] = factor[1] * con[1]; /* G */ term[2] = factor[2] * con[2]; /* B */ break; case PIPE_BLENDFACTOR_CONST_ALPHA: term[0] = factor[0] * con[3]; /* R */ term[1] = factor[1] * con[3]; /* G */ term[2] = factor[2] * con[3]; /* B */ break; case PIPE_BLENDFACTOR_SRC1_COLOR: assert(0); /* to do */ break; case PIPE_BLENDFACTOR_SRC1_ALPHA: assert(0); /* to do */ break; case PIPE_BLENDFACTOR_ZERO: term[0] = 0.0f; /* R */ term[1] = 0.0f; /* G */ term[2] = 0.0f; /* B */ break; case PIPE_BLENDFACTOR_INV_SRC_COLOR: term[0] = factor[0] * (1.0f - src[0]); /* R */ term[1] = factor[1] * (1.0f - src[1]); /* G */ term[2] = factor[2] * (1.0f - src[2]); /* B */ break; case PIPE_BLENDFACTOR_INV_SRC_ALPHA: term[0] = factor[0] * (1.0f - src[3]); /* R */ term[1] = factor[1] * (1.0f - src[3]); /* G */ term[2] = factor[2] * (1.0f - src[3]); /* B */ break; case PIPE_BLENDFACTOR_INV_DST_ALPHA: term[0] = factor[0] * (1.0f - dst[3]); /* R */ term[1] = factor[1] * (1.0f - dst[3]); /* G */ term[2] = factor[2] * (1.0f - dst[3]); /* B */ break; case PIPE_BLENDFACTOR_INV_DST_COLOR: term[0] = factor[0] * (1.0f - dst[0]); /* R */ term[1] = factor[1] * (1.0f - dst[1]); /* G */ term[2] = factor[2] * (1.0f - dst[2]); /* B */ break; case PIPE_BLENDFACTOR_INV_CONST_COLOR: term[0] = factor[0] * (1.0f - con[0]); /* R */ term[1] = factor[1] * (1.0f - con[1]); /* G */ term[2] = factor[2] * (1.0f - con[2]); /* B */ break; case PIPE_BLENDFACTOR_INV_CONST_ALPHA: term[0] = factor[0] * (1.0f - con[3]); /* R */ term[1] = factor[1] * (1.0f - con[3]); /* G */ term[2] = factor[2] * (1.0f - con[3]); /* B */ break; case PIPE_BLENDFACTOR_INV_SRC1_COLOR: assert(0); /* to do */ break; case PIPE_BLENDFACTOR_INV_SRC1_ALPHA: assert(0); /* to do */ break; default: assert(0); } /* * Compute src/first term A */ switch (alpha_factor) { case PIPE_BLENDFACTOR_ONE: term[3] = factor[3]; /* A */ break; case PIPE_BLENDFACTOR_SRC_COLOR: case PIPE_BLENDFACTOR_SRC_ALPHA: term[3] = factor[3] * src[3]; /* A */ break; case PIPE_BLENDFACTOR_DST_COLOR: case PIPE_BLENDFACTOR_DST_ALPHA: term[3] = factor[3] * dst[3]; /* A */ break; case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE: term[3] = src[3]; /* A */ break; case PIPE_BLENDFACTOR_CONST_COLOR: case PIPE_BLENDFACTOR_CONST_ALPHA: term[3] = factor[3] * con[3]; /* A */ break; case PIPE_BLENDFACTOR_ZERO: term[3] = 0.0f; /* A */ break; case PIPE_BLENDFACTOR_INV_SRC_COLOR: case PIPE_BLENDFACTOR_INV_SRC_ALPHA: term[3] = factor[3] * (1.0f - src[3]); /* A */ break; case PIPE_BLENDFACTOR_INV_DST_COLOR: case PIPE_BLENDFACTOR_INV_DST_ALPHA: term[3] = factor[3] * (1.0f - dst[3]); /* A */ break; case PIPE_BLENDFACTOR_INV_CONST_COLOR: case PIPE_BLENDFACTOR_INV_CONST_ALPHA: term[3] = factor[3] * (1.0f - con[3]); break; default: assert(0); } } static void compute_blend_ref(const struct pipe_blend_state *blend, const double *src, const double *dst, const double *con, double *res) { double src_term[4]; double dst_term[4]; compute_blend_ref_term(blend->rt[0].rgb_src_factor, blend->rt[0].alpha_src_factor, src, src, dst, con, src_term); compute_blend_ref_term(blend->rt[0].rgb_dst_factor, blend->rt[0].alpha_dst_factor, dst, src, dst, con, dst_term); /* * Combine RGB terms */ switch (blend->rt[0].rgb_func) { case PIPE_BLEND_ADD: res[0] = src_term[0] + dst_term[0]; /* R */ res[1] = src_term[1] + dst_term[1]; /* G */ res[2] = src_term[2] + dst_term[2]; /* B */ break; case PIPE_BLEND_SUBTRACT: res[0] = src_term[0] - dst_term[0]; /* R */ res[1] = src_term[1] - dst_term[1]; /* G */ res[2] = src_term[2] - dst_term[2]; /* B */ break; case PIPE_BLEND_REVERSE_SUBTRACT: res[0] = dst_term[0] - src_term[0]; /* R */ res[1] = dst_term[1] - src_term[1]; /* G */ res[2] = dst_term[2] - src_term[2]; /* B */ break; case PIPE_BLEND_MIN: res[0] = MIN2(src_term[0], dst_term[0]); /* R */ res[1] = MIN2(src_term[1], dst_term[1]); /* G */ res[2] = MIN2(src_term[2], dst_term[2]); /* B */ break; case PIPE_BLEND_MAX: res[0] = MAX2(src_term[0], dst_term[0]); /* R */ res[1] = MAX2(src_term[1], dst_term[1]); /* G */ res[2] = MAX2(src_term[2], dst_term[2]); /* B */ break; default: assert(0); } /* * Combine A terms */ switch (blend->rt[0].alpha_func) { case PIPE_BLEND_ADD: res[3] = src_term[3] + dst_term[3]; /* A */ break; case PIPE_BLEND_SUBTRACT: res[3] = src_term[3] - dst_term[3]; /* A */ break; case PIPE_BLEND_REVERSE_SUBTRACT: res[3] = dst_term[3] - src_term[3]; /* A */ break; case PIPE_BLEND_MIN: res[3] = MIN2(src_term[3], dst_term[3]); /* A */ break; case PIPE_BLEND_MAX: res[3] = MAX2(src_term[3], dst_term[3]); /* A */ break; default: assert(0); } } PIPE_ALIGN_STACK static boolean test_one(struct gallivm_state *gallivm, unsigned verbose, FILE *fp, const struct pipe_blend_state *blend, enum vector_mode mode, struct lp_type type) { LLVMModuleRef module = gallivm->module; LLVMValueRef func = NULL; LLVMExecutionEngineRef engine = gallivm->engine; char *error = NULL; blend_test_ptr_t blend_test_ptr; boolean success; const unsigned n = LP_TEST_NUM_SAMPLES; int64_t cycles[LP_TEST_NUM_SAMPLES]; double cycles_avg = 0.0; unsigned i, j; void *code; if(verbose >= 1) dump_blend_type(stdout, blend, mode, type); func = add_blend_test(gallivm, blend, mode, type); if(LLVMVerifyModule(module, LLVMPrintMessageAction, &error)) { LLVMDumpModule(module); abort(); } LLVMDisposeMessage(error); code = LLVMGetPointerToGlobal(engine, func); blend_test_ptr = voidptr_to_blend_test_ptr_t(code); if(verbose >= 2) lp_disassemble(code); success = TRUE; for(i = 0; i < n && success; ++i) { if(mode == AoS) { PIPE_ALIGN_VAR(16) uint8_t src[LP_NATIVE_VECTOR_WIDTH/8]; PIPE_ALIGN_VAR(16) uint8_t dst[LP_NATIVE_VECTOR_WIDTH/8]; PIPE_ALIGN_VAR(16) uint8_t con[LP_NATIVE_VECTOR_WIDTH/8]; PIPE_ALIGN_VAR(16) uint8_t res[LP_NATIVE_VECTOR_WIDTH/8]; PIPE_ALIGN_VAR(16) uint8_t ref[LP_NATIVE_VECTOR_WIDTH/8]; int64_t start_counter = 0; int64_t end_counter = 0; random_vec(type, src); random_vec(type, dst); random_vec(type, con); { double fsrc[LP_MAX_VECTOR_LENGTH]; double fdst[LP_MAX_VECTOR_LENGTH]; double fcon[LP_MAX_VECTOR_LENGTH]; double fref[LP_MAX_VECTOR_LENGTH]; read_vec(type, src, fsrc); read_vec(type, dst, fdst); read_vec(type, con, fcon); for(j = 0; j < type.length; j += 4) compute_blend_ref(blend, fsrc + j, fdst + j, fcon + j, fref + j); write_vec(type, ref, fref); } start_counter = rdtsc(); blend_test_ptr(src, dst, con, res); end_counter = rdtsc(); cycles[i] = end_counter - start_counter; if(!compare_vec(type, res, ref)) { success = FALSE; if(verbose < 1) dump_blend_type(stderr, blend, mode, type); fprintf(stderr, "MISMATCH\n"); fprintf(stderr, " Src: "); dump_vec(stderr, type, src); fprintf(stderr, "\n"); fprintf(stderr, " Dst: "); dump_vec(stderr, type, dst); fprintf(stderr, "\n"); fprintf(stderr, " Con: "); dump_vec(stderr, type, con); fprintf(stderr, "\n"); fprintf(stderr, " Res: "); dump_vec(stderr, type, res); fprintf(stderr, "\n"); fprintf(stderr, " Ref: "); dump_vec(stderr, type, ref); fprintf(stderr, "\n"); } } if(mode == SoA) { const unsigned stride = type.length*type.width/8; PIPE_ALIGN_VAR(16) uint8_t src[4*LP_NATIVE_VECTOR_WIDTH/8]; PIPE_ALIGN_VAR(16) uint8_t dst[4*LP_NATIVE_VECTOR_WIDTH/8]; PIPE_ALIGN_VAR(16) uint8_t con[4*LP_NATIVE_VECTOR_WIDTH/8]; PIPE_ALIGN_VAR(16) uint8_t res[4*LP_NATIVE_VECTOR_WIDTH/8]; PIPE_ALIGN_VAR(16) uint8_t ref[4*LP_NATIVE_VECTOR_WIDTH/8]; int64_t start_counter = 0; int64_t end_counter = 0; boolean mismatch; for(j = 0; j < 4; ++j) { random_vec(type, src + j*stride); random_vec(type, dst + j*stride); random_vec(type, con + j*stride); } { double fsrc[4]; double fdst[4]; double fcon[4]; double fref[4]; unsigned k; for(k = 0; k < type.length; ++k) { for(j = 0; j < 4; ++j) { fsrc[j] = read_elem(type, src + j*stride, k); fdst[j] = read_elem(type, dst + j*stride, k); fcon[j] = read_elem(type, con + j*stride, k); } compute_blend_ref(blend, fsrc, fdst, fcon, fref); for(j = 0; j < 4; ++j) write_elem(type, ref + j*stride, k, fref[j]); } } start_counter = rdtsc(); blend_test_ptr(src, dst, con, res); end_counter = rdtsc(); cycles[i] = end_counter - start_counter; mismatch = FALSE; for (j = 0; j < 4; ++j) if(!compare_vec(type, res + j*stride, ref + j*stride)) mismatch = TRUE; if (mismatch) { success = FALSE; if(verbose < 1) dump_blend_type(stderr, blend, mode, type); fprintf(stderr, "MISMATCH\n"); for(j = 0; j < 4; ++j) { char channel = "RGBA"[j]; fprintf(stderr, " Src%c: ", channel); dump_vec(stderr, type, src + j*stride); fprintf(stderr, "\n"); fprintf(stderr, " Dst%c: ", channel); dump_vec(stderr, type, dst + j*stride); fprintf(stderr, "\n"); fprintf(stderr, " Con%c: ", channel); dump_vec(stderr, type, con + j*stride); fprintf(stderr, "\n"); fprintf(stderr, " Res%c: ", channel); dump_vec(stderr, type, res + j*stride); fprintf(stderr, "\n"); fprintf(stderr, " Ref%c: ", channel); dump_vec(stderr, type, ref + j*stride); fprintf(stderr, "\n"); fprintf(stderr, "\n"); } } } } /* * Unfortunately the output of cycle counter is not very reliable as it comes * -- sometimes we get outliers (due IRQs perhaps?) which are * better removed to avoid random or biased data. */ { double sum = 0.0, sum2 = 0.0; double avg, std; unsigned m; for(i = 0; i < n; ++i) { sum += cycles[i]; sum2 += cycles[i]*cycles[i]; } avg = sum/n; std = sqrtf((sum2 - n*avg*avg)/n); m = 0; sum = 0.0; for(i = 0; i < n; ++i) { if(fabs(cycles[i] - avg) <= 4.0*std) { sum += cycles[i]; ++m; } } cycles_avg = sum/m; } if(fp) write_tsv_row(fp, blend, mode, type, cycles_avg, success); if (!success) { if(verbose < 2) LLVMDumpModule(module); LLVMWriteBitcodeToFile(module, "blend.bc"); fprintf(stderr, "blend.bc written\n"); fprintf(stderr, "Invoke as \"llc -o - blend.bc\"\n"); abort(); } LLVMFreeMachineCodeForFunction(engine, func); return success; } const unsigned blend_factors[] = { PIPE_BLENDFACTOR_ZERO, PIPE_BLENDFACTOR_ONE, PIPE_BLENDFACTOR_SRC_COLOR, PIPE_BLENDFACTOR_SRC_ALPHA, PIPE_BLENDFACTOR_DST_COLOR, PIPE_BLENDFACTOR_DST_ALPHA, PIPE_BLENDFACTOR_CONST_COLOR, PIPE_BLENDFACTOR_CONST_ALPHA, #if 0 PIPE_BLENDFACTOR_SRC1_COLOR, PIPE_BLENDFACTOR_SRC1_ALPHA, #endif PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE, PIPE_BLENDFACTOR_INV_SRC_COLOR, PIPE_BLENDFACTOR_INV_SRC_ALPHA, PIPE_BLENDFACTOR_INV_DST_COLOR, PIPE_BLENDFACTOR_INV_DST_ALPHA, PIPE_BLENDFACTOR_INV_CONST_COLOR, PIPE_BLENDFACTOR_INV_CONST_ALPHA, #if 0 PIPE_BLENDFACTOR_INV_SRC1_COLOR, PIPE_BLENDFACTOR_INV_SRC1_ALPHA, #endif }; const unsigned blend_funcs[] = { PIPE_BLEND_ADD, PIPE_BLEND_SUBTRACT, PIPE_BLEND_REVERSE_SUBTRACT, PIPE_BLEND_MIN, PIPE_BLEND_MAX }; const struct lp_type blend_types[] = { /* float, fixed, sign, norm, width, len */ { TRUE, FALSE, TRUE, FALSE, 32, 4 }, /* f32 x 4 */ { FALSE, FALSE, FALSE, TRUE, 8, 16 }, /* u8n x 16 */ }; const unsigned num_funcs = sizeof(blend_funcs)/sizeof(blend_funcs[0]); const unsigned num_factors = sizeof(blend_factors)/sizeof(blend_factors[0]); const unsigned num_types = sizeof(blend_types)/sizeof(blend_types[0]); boolean test_all(struct gallivm_state *gallivm, unsigned verbose, FILE *fp) { const unsigned *rgb_func; const unsigned *rgb_src_factor; const unsigned *rgb_dst_factor; const unsigned *alpha_func; const unsigned *alpha_src_factor; const unsigned *alpha_dst_factor; struct pipe_blend_state blend; enum vector_mode mode; const struct lp_type *type; boolean success = TRUE; for(rgb_func = blend_funcs; rgb_func < &blend_funcs[num_funcs]; ++rgb_func) { for(alpha_func = blend_funcs; alpha_func < &blend_funcs[num_funcs]; ++alpha_func) { for(rgb_src_factor = blend_factors; rgb_src_factor < &blend_factors[num_factors]; ++rgb_src_factor) { for(rgb_dst_factor = blend_factors; rgb_dst_factor <= rgb_src_factor; ++rgb_dst_factor) { for(alpha_src_factor = blend_factors; alpha_src_factor < &blend_factors[num_factors]; ++alpha_src_factor) { for(alpha_dst_factor = blend_factors; alpha_dst_factor <= alpha_src_factor; ++alpha_dst_factor) { for(mode = 0; mode < 2; ++mode) { for(type = blend_types; type < &blend_types[num_types]; ++type) { if(*rgb_dst_factor == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE || *alpha_dst_factor == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE) continue; memset(&blend, 0, sizeof blend); blend.rt[0].blend_enable = 1; blend.rt[0].rgb_func = *rgb_func; blend.rt[0].rgb_src_factor = *rgb_src_factor; blend.rt[0].rgb_dst_factor = *rgb_dst_factor; blend.rt[0].alpha_func = *alpha_func; blend.rt[0].alpha_src_factor = *alpha_src_factor; blend.rt[0].alpha_dst_factor = *alpha_dst_factor; blend.rt[0].colormask = PIPE_MASK_RGBA; if(!test_one(gallivm, verbose, fp, &blend, mode, *type)) success = FALSE; } } } } } } } } return success; } boolean test_some(struct gallivm_state *gallivm, unsigned verbose, FILE *fp, unsigned long n) { const unsigned *rgb_func; const unsigned *rgb_src_factor; const unsigned *rgb_dst_factor; const unsigned *alpha_func; const unsigned *alpha_src_factor; const unsigned *alpha_dst_factor; struct pipe_blend_state blend; enum vector_mode mode; const struct lp_type *type; unsigned long i; boolean success = TRUE; for(i = 0; i < n; ++i) { rgb_func = &blend_funcs[rand() % num_funcs]; alpha_func = &blend_funcs[rand() % num_funcs]; rgb_src_factor = &blend_factors[rand() % num_factors]; alpha_src_factor = &blend_factors[rand() % num_factors]; do { rgb_dst_factor = &blend_factors[rand() % num_factors]; } while(*rgb_dst_factor == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE); do { alpha_dst_factor = &blend_factors[rand() % num_factors]; } while(*alpha_dst_factor == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE); mode = rand() & 1; type = &blend_types[rand() % num_types]; memset(&blend, 0, sizeof blend); blend.rt[0].blend_enable = 1; blend.rt[0].rgb_func = *rgb_func; blend.rt[0].rgb_src_factor = *rgb_src_factor; blend.rt[0].rgb_dst_factor = *rgb_dst_factor; blend.rt[0].alpha_func = *alpha_func; blend.rt[0].alpha_src_factor = *alpha_src_factor; blend.rt[0].alpha_dst_factor = *alpha_dst_factor; blend.rt[0].colormask = PIPE_MASK_RGBA; if(!test_one(gallivm, verbose, fp, &blend, mode, *type)) success = FALSE; } return success; } boolean test_single(struct gallivm_state *gallivm, unsigned verbose, FILE *fp) { printf("no test_single()"); return TRUE; }