/************************************************************************** * * Copyright 2007-2010 VMware, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /* * Rasterization for binned triangles within a tile */ /** * Prototype for a 8 plane rasterizer function. Will codegenerate * several of these. * * XXX: Varients for more/fewer planes. * XXX: Need ways of dropping planes as we descend. * XXX: SIMD */ static void TAG(do_block_4)(struct lp_rasterizer_task *task, const struct lp_rast_triangle *tri, const struct lp_rast_plane *plane, int x, int y, const int64_t *c) { unsigned mask = 0xffff; int j; for (j = 0; j < NR_PLANES; j++) { #ifdef RASTER_64 mask &= ~BUILD_MASK_LINEAR(((c[j] - 1) >> (int64_t)FIXED_ORDER), -plane[j].dcdx >> FIXED_ORDER, plane[j].dcdy >> FIXED_ORDER); #else mask &= ~BUILD_MASK_LINEAR((c[j] - 1), -plane[j].dcdx, plane[j].dcdy); #endif } /* Now pass to the shader: */ if (mask) lp_rast_shade_quads_mask(task, &tri->inputs, x, y, mask); } /** * Evaluate a 16x16 block of pixels to determine which 4x4 subblocks are in/out * of the triangle's bounds. */ static void TAG(do_block_16)(struct lp_rasterizer_task *task, const struct lp_rast_triangle *tri, const struct lp_rast_plane *plane, int x, int y, const int64_t *c) { unsigned outmask, inmask, partmask, partial_mask; unsigned j; outmask = 0; /* outside one or more trivial reject planes */ partmask = 0; /* outside one or more trivial accept planes */ for (j = 0; j < NR_PLANES; j++) { #ifdef RASTER_64 int32_t dcdx = -plane[j].dcdx >> FIXED_ORDER; int32_t dcdy = plane[j].dcdy >> FIXED_ORDER; const int32_t cox = plane[j].eo >> FIXED_ORDER; const int32_t ei = (dcdy + dcdx - cox) << 2; const int32_t cox_s = cox << 2; const int32_t co = (int32_t)(c[j] >> (int64_t)FIXED_ORDER) + cox_s; int32_t cdiff; cdiff = ei - cox_s + ((int32_t)((c[j] - 1) >> (int64_t)FIXED_ORDER) - (int32_t)(c[j] >> (int64_t)FIXED_ORDER)); dcdx <<= 2; dcdy <<= 2; #else const int64_t dcdx = -IMUL64(plane[j].dcdx, 4); const int64_t dcdy = IMUL64(plane[j].dcdy, 4); const int64_t cox = IMUL64(plane[j].eo, 4); const int32_t ei = plane[j].dcdy - plane[j].dcdx - (int64_t)plane[j].eo; const int64_t cio = IMUL64(ei, 4) - 1; int32_t co, cdiff; co = c[j] + cox; cdiff = cio - cox; #endif BUILD_MASKS(co, cdiff, dcdx, dcdy, &outmask, /* sign bits from c[i][0..15] + cox */ &partmask); /* sign bits from c[i][0..15] + cio */ } if (outmask == 0xffff) return; /* Mask of sub-blocks which are inside all trivial accept planes: */ inmask = ~partmask & 0xffff; /* Mask of sub-blocks which are inside all trivial reject planes, * but outside at least one trivial accept plane: */ partial_mask = partmask & ~outmask; assert((partial_mask & inmask) == 0); LP_COUNT_ADD(nr_empty_4, util_bitcount(0xffff & ~(partial_mask | inmask))); /* Iterate over partials: */ while (partial_mask) { int i = ffs(partial_mask) - 1; int ix = (i & 3) * 4; int iy = (i >> 2) * 4; int px = x + ix; int py = y + iy; int64_t cx[NR_PLANES]; partial_mask &= ~(1 << i); LP_COUNT(nr_partially_covered_4); for (j = 0; j < NR_PLANES; j++) cx[j] = (c[j] - IMUL64(plane[j].dcdx, ix) + IMUL64(plane[j].dcdy, iy)); TAG(do_block_4)(task, tri, plane, px, py, cx); } /* Iterate over fulls: */ while (inmask) { int i = ffs(inmask) - 1; int ix = (i & 3) * 4; int iy = (i >> 2) * 4; int px = x + ix; int py = y + iy; inmask &= ~(1 << i); LP_COUNT(nr_fully_covered_4); block_full_4(task, tri, px, py); } } /** * Scan the tile in chunks and figure out which pixels to rasterize * for this triangle. */ void TAG(lp_rast_triangle)(struct lp_rasterizer_task *task, const union lp_rast_cmd_arg arg) { const struct lp_rast_triangle *tri = arg.triangle.tri; unsigned plane_mask = arg.triangle.plane_mask; const struct lp_rast_plane *tri_plane = GET_PLANES(tri); const int x = task->x, y = task->y; struct lp_rast_plane plane[NR_PLANES]; int64_t c[NR_PLANES]; unsigned outmask, inmask, partmask, partial_mask; unsigned j = 0; if (tri->inputs.disable) { /* This triangle was partially binned and has been disabled */ return; } outmask = 0; /* outside one or more trivial reject planes */ partmask = 0; /* outside one or more trivial accept planes */ while (plane_mask) { int i = ffs(plane_mask) - 1; plane[j] = tri_plane[i]; plane_mask &= ~(1 << i); c[j] = plane[j].c + IMUL64(plane[j].dcdy, y) - IMUL64(plane[j].dcdx, x); { #ifdef RASTER_64 /* * Strip off lower FIXED_ORDER bits. Note that those bits from * dcdx, dcdy, eo are always 0 (by definition). * c values, however, are not. This means that for every * addition of the form c + n*dcdx the lower FIXED_ORDER bits will * NOT change. And those bits are not relevant to the sign bit (which * is only what we need!) that is, * sign(c + n*dcdx) == sign((c >> FIXED_ORDER) + n*(dcdx >> FIXED_ORDER)) * This means we can get away with using 32bit math for the most part. * Only tricky part is the -1 adjustment for cdiff. */ int32_t dcdx = -plane[j].dcdx >> FIXED_ORDER; int32_t dcdy = plane[j].dcdy >> FIXED_ORDER; const int32_t cox = plane[j].eo >> FIXED_ORDER; const int32_t ei = (dcdy + dcdx - cox) << 4; const int32_t cox_s = cox << 4; const int32_t co = (int32_t)(c[j] >> (int64_t)FIXED_ORDER) + cox_s; int32_t cdiff; /* * Plausibility check to ensure the 32bit math works. * Note that within a tile, the max we can move the edge function * is essentially dcdx * TILE_SIZE + dcdy * TILE_SIZE. * TILE_SIZE is 64, dcdx/dcdy are nominally 21 bit (for 8192 max size * and 8 subpixel bits), I'd be happy with 2 bits more too (1 for * increasing fb size to 16384, the required d3d11 value, another one * because I'm not quite sure we can't be _just_ above the max value * here). This gives us 30 bits max - hence if c would exceed that here * that means the plane is either trivial reject for the whole tile * (in which case the tri will not get binned), or trivial accept for * the whole tile (in which case plane_mask will not include it). */ assert((c[j] >> (int64_t)FIXED_ORDER) > (int32_t)0xb0000000 && (c[j] >> (int64_t)FIXED_ORDER) < (int32_t)0x3fffffff); /* * Note the fixup part is constant throughout the tile - thus could * just calculate this and avoid _all_ 64bit math in rasterization * (except exactly this fixup calc). * In fact theoretically could move that even to setup, albeit that * seems tricky (pre-bin certainly can have values larger than 32bit, * and would need to communicate that fixup value through). * And if we want to support msaa, we'd probably don't want to do the * downscaling in setup in any case... */ cdiff = ei - cox_s + ((int32_t)((c[j] - 1) >> (int64_t)FIXED_ORDER) - (int32_t)(c[j] >> (int64_t)FIXED_ORDER)); dcdx <<= 4; dcdy <<= 4; #else const int32_t dcdx = -plane[j].dcdx << 4; const int32_t dcdy = plane[j].dcdy << 4; const int32_t cox = plane[j].eo << 4; const int32_t ei = plane[j].dcdy - plane[j].dcdx - (int32_t)plane[j].eo; const int32_t cio = (ei << 4) - 1; int32_t co, cdiff; co = c[j] + cox; cdiff = cio - cox; #endif BUILD_MASKS(co, cdiff, dcdx, dcdy, &outmask, /* sign bits from c[i][0..15] + cox */ &partmask); /* sign bits from c[i][0..15] + cio */ } j++; } if (outmask == 0xffff) return; /* Mask of sub-blocks which are inside all trivial accept planes: */ inmask = ~partmask & 0xffff; /* Mask of sub-blocks which are inside all trivial reject planes, * but outside at least one trivial accept plane: */ partial_mask = partmask & ~outmask; assert((partial_mask & inmask) == 0); LP_COUNT_ADD(nr_empty_16, util_bitcount(0xffff & ~(partial_mask | inmask))); /* Iterate over partials: */ while (partial_mask) { int i = ffs(partial_mask) - 1; int ix = (i & 3) * 16; int iy = (i >> 2) * 16; int px = x + ix; int py = y + iy; int64_t cx[NR_PLANES]; for (j = 0; j < NR_PLANES; j++) cx[j] = (c[j] - IMUL64(plane[j].dcdx, ix) + IMUL64(plane[j].dcdy, iy)); partial_mask &= ~(1 << i); LP_COUNT(nr_partially_covered_16); TAG(do_block_16)(task, tri, plane, px, py, cx); } /* Iterate over fulls: */ while (inmask) { int i = ffs(inmask) - 1; int ix = (i & 3) * 16; int iy = (i >> 2) * 16; int px = x + ix; int py = y + iy; inmask &= ~(1 << i); LP_COUNT(nr_fully_covered_16); block_full_16(task, tri, px, py); } } #if defined(PIPE_ARCH_SSE) && defined(TRI_16) /* XXX: special case this when intersection is not required. * - tile completely within bbox, * - bbox completely within tile. */ void TRI_16(struct lp_rasterizer_task *task, const union lp_rast_cmd_arg arg) { const struct lp_rast_triangle *tri = arg.triangle.tri; const struct lp_rast_plane *plane = GET_PLANES(tri); unsigned mask = arg.triangle.plane_mask; unsigned outmask, partial_mask; unsigned j; __m128i cstep4[NR_PLANES][4]; int x = (mask & 0xff); int y = (mask >> 8); outmask = 0; /* outside one or more trivial reject planes */ x += task->x; y += task->y; for (j = 0; j < NR_PLANES; j++) { const int dcdx = -plane[j].dcdx * 4; const int dcdy = plane[j].dcdy * 4; __m128i xdcdy = _mm_set1_epi32(dcdy); cstep4[j][0] = _mm_setr_epi32(0, dcdx, dcdx*2, dcdx*3); cstep4[j][1] = _mm_add_epi32(cstep4[j][0], xdcdy); cstep4[j][2] = _mm_add_epi32(cstep4[j][1], xdcdy); cstep4[j][3] = _mm_add_epi32(cstep4[j][2], xdcdy); { const int c = plane[j].c + plane[j].dcdy * y - plane[j].dcdx * x; const int cox = plane[j].eo * 4; outmask |= sign_bits4(cstep4[j], c + cox); } } if (outmask == 0xffff) return; /* Mask of sub-blocks which are inside all trivial reject planes, * but outside at least one trivial accept plane: */ partial_mask = 0xffff & ~outmask; /* Iterate over partials: */ while (partial_mask) { int i = ffs(partial_mask) - 1; int ix = (i & 3) * 4; int iy = (i >> 2) * 4; int px = x + ix; int py = y + iy; unsigned mask = 0xffff; partial_mask &= ~(1 << i); for (j = 0; j < NR_PLANES; j++) { const int cx = (plane[j].c - 1 - plane[j].dcdx * px + plane[j].dcdy * py) * 4; mask &= ~sign_bits4(cstep4[j], cx); } if (mask) lp_rast_shade_quads_mask(task, &tri->inputs, px, py, mask); } } #endif #if defined(PIPE_ARCH_SSE) && defined(TRI_4) void TRI_4(struct lp_rasterizer_task *task, const union lp_rast_cmd_arg arg) { const struct lp_rast_triangle *tri = arg.triangle.tri; const struct lp_rast_plane *plane = GET_PLANES(tri); unsigned mask = arg.triangle.plane_mask; const int x = task->x + (mask & 0xff); const int y = task->y + (mask >> 8); unsigned j; /* Iterate over partials: */ { unsigned mask = 0xffff; for (j = 0; j < NR_PLANES; j++) { const int cx = (plane[j].c - plane[j].dcdx * x + plane[j].dcdy * y); const int dcdx = -plane[j].dcdx; const int dcdy = plane[j].dcdy; __m128i xdcdy = _mm_set1_epi32(dcdy); __m128i cstep0 = _mm_setr_epi32(cx, cx + dcdx, cx + dcdx*2, cx + dcdx*3); __m128i cstep1 = _mm_add_epi32(cstep0, xdcdy); __m128i cstep2 = _mm_add_epi32(cstep1, xdcdy); __m128i cstep3 = _mm_add_epi32(cstep2, xdcdy); __m128i cstep01 = _mm_packs_epi32(cstep0, cstep1); __m128i cstep23 = _mm_packs_epi32(cstep2, cstep3); __m128i result = _mm_packs_epi16(cstep01, cstep23); /* Extract the sign bits */ mask &= ~_mm_movemask_epi8(result); } if (mask) lp_rast_shade_quads_mask(task, &tri->inputs, x, y, mask); } } #endif #undef TAG #undef TRI_4 #undef TRI_16 #undef NR_PLANES