/************************************************************************** * * Copyright 2008 VMware, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /** * @file * SSE intrinsics portability header. * * Although the SSE intrinsics are support by all modern x86 and x86-64 * compilers, there are some intrisincs missing in some implementations * (especially older MSVC versions). This header abstracts that away. */ #ifndef U_SSE_H_ #define U_SSE_H_ #include "pipe/p_config.h" #if defined(PIPE_ARCH_SSE) #include union m128i { __m128i m; ubyte ub[16]; ushort us[8]; uint ui[4]; }; static inline void u_print_epi8(const char *name, __m128i r) { union { __m128i m; ubyte ub[16]; } u; u.m = r; debug_printf("%s: " "%02x/" "%02x/" "%02x/" "%02x/" "%02x/" "%02x/" "%02x/" "%02x/" "%02x/" "%02x/" "%02x/" "%02x/" "%02x/" "%02x/" "%02x/" "%02x\n", name, u.ub[0], u.ub[1], u.ub[2], u.ub[3], u.ub[4], u.ub[5], u.ub[6], u.ub[7], u.ub[8], u.ub[9], u.ub[10], u.ub[11], u.ub[12], u.ub[13], u.ub[14], u.ub[15]); } static inline void u_print_epi16(const char *name, __m128i r) { union { __m128i m; ushort us[8]; } u; u.m = r; debug_printf("%s: " "%04x/" "%04x/" "%04x/" "%04x/" "%04x/" "%04x/" "%04x/" "%04x\n", name, u.us[0], u.us[1], u.us[2], u.us[3], u.us[4], u.us[5], u.us[6], u.us[7]); } static inline void u_print_epi32(const char *name, __m128i r) { union { __m128i m; uint ui[4]; } u; u.m = r; debug_printf("%s: " "%08x/" "%08x/" "%08x/" "%08x\n", name, u.ui[0], u.ui[1], u.ui[2], u.ui[3]); } static inline void u_print_ps(const char *name, __m128 r) { union { __m128 m; float f[4]; } u; u.m = r; debug_printf("%s: " "%f/" "%f/" "%f/" "%f\n", name, u.f[0], u.f[1], u.f[2], u.f[3]); } #define U_DUMP_EPI32(a) u_print_epi32(#a, a) #define U_DUMP_EPI16(a) u_print_epi16(#a, a) #define U_DUMP_EPI8(a) u_print_epi8(#a, a) #define U_DUMP_PS(a) u_print_ps(#a, a) #if defined(PIPE_ARCH_SSSE3) #include #else /* !PIPE_ARCH_SSSE3 */ /** * Describe _mm_shuffle_epi8() with gcc extended inline assembly, for cases * where -mssse3 is not supported/enabled. * * MSVC will never get in here as its intrinsics support do not rely on * compiler command line options. */ static __inline __m128i #ifdef __clang__ __attribute__((__always_inline__, __nodebug__)) #else __attribute__((__gnu_inline__, __always_inline__, __artificial__)) #endif _mm_shuffle_epi8(__m128i a, __m128i mask) { __m128i result; __asm__("pshufb %1, %0" : "=x" (result) : "xm" (mask), "0" (a)); return result; } #endif /* !PIPE_ARCH_SSSE3 */ /* * Provide an SSE implementation of _mm_mul_epi32() in terms of * _mm_mul_epu32(). * * Basically, albeit surprising at first (and second, and third...) look * if a * b is done signed instead of unsigned, can just * subtract b from the high bits of the result if a is negative * (and the same for a if b is negative). Modular arithmetic at its best! * * So for int32 a,b in crude pseudo-code ("*" here denoting a widening mul) * fixupb = (signmask(b) & a) << 32ULL * fixupa = (signmask(a) & b) << 32ULL * a * b = (unsigned)a * (unsigned)b - fixupb - fixupa * = (unsigned)a * (unsigned)b -(fixupb + fixupa) * * This does both lo (dwords 0/2) and hi parts (1/3) at the same time due * to some optimization potential. */ static inline __m128i mm_mullohi_epi32(const __m128i a, const __m128i b, __m128i *res13) { __m128i a13, b13, mul02, mul13; __m128i anegmask, bnegmask, fixup, fixup02, fixup13; a13 = _mm_shuffle_epi32(a, _MM_SHUFFLE(2,3,0,1)); b13 = _mm_shuffle_epi32(b, _MM_SHUFFLE(2,3,0,1)); anegmask = _mm_srai_epi32(a, 31); bnegmask = _mm_srai_epi32(b, 31); fixup = _mm_add_epi32(_mm_and_si128(anegmask, b), _mm_and_si128(bnegmask, a)); mul02 = _mm_mul_epu32(a, b); mul13 = _mm_mul_epu32(a13, b13); fixup02 = _mm_slli_epi64(fixup, 32); fixup13 = _mm_and_si128(fixup, _mm_set_epi32(-1,0,-1,0)); *res13 = _mm_sub_epi64(mul13, fixup13); return _mm_sub_epi64(mul02, fixup02); } /* Provide an SSE2 implementation of _mm_mullo_epi32() in terms of * _mm_mul_epu32(). * * This always works regardless the signs of the operands, since * the high bits (which would be different) aren't used. * * This seems close enough to the speed of SSE4 and the real * _mm_mullo_epi32() intrinsic as to not justify adding an sse4 * dependency at this point. */ static inline __m128i mm_mullo_epi32(const __m128i a, const __m128i b) { __m128i a4 = _mm_srli_epi64(a, 32); /* shift by one dword */ __m128i b4 = _mm_srli_epi64(b, 32); /* shift by one dword */ __m128i ba = _mm_mul_epu32(b, a); /* multply dwords 0, 2 */ __m128i b4a4 = _mm_mul_epu32(b4, a4); /* multiply dwords 1, 3 */ /* Interleave the results, either with shuffles or (slightly * faster) direct bit operations: * XXX: might be only true for some cpus (in particular 65nm * Core 2). On most cpus (including that Core 2, but not Nehalem...) * using _mm_shuffle_ps/_mm_shuffle_epi32 might also be faster * than using the 3 instructions below. But logic should be fine * as well, we can't have optimal solution for all cpus (if anything, * should just use _mm_mullo_epi32() if sse41 is available...). */ #if 0 __m128i ba8 = _mm_shuffle_epi32(ba, 8); __m128i b4a48 = _mm_shuffle_epi32(b4a4, 8); __m128i result = _mm_unpacklo_epi32(ba8, b4a48); #else __m128i mask = _mm_setr_epi32(~0,0,~0,0); __m128i ba_mask = _mm_and_si128(ba, mask); __m128i b4a4_mask_shift = _mm_slli_epi64(b4a4, 32); __m128i result = _mm_or_si128(ba_mask, b4a4_mask_shift); #endif return result; } static inline void transpose4_epi32(const __m128i * restrict a, const __m128i * restrict b, const __m128i * restrict c, const __m128i * restrict d, __m128i * restrict o, __m128i * restrict p, __m128i * restrict q, __m128i * restrict r) { __m128i t0 = _mm_unpacklo_epi32(*a, *b); __m128i t1 = _mm_unpacklo_epi32(*c, *d); __m128i t2 = _mm_unpackhi_epi32(*a, *b); __m128i t3 = _mm_unpackhi_epi32(*c, *d); *o = _mm_unpacklo_epi64(t0, t1); *p = _mm_unpackhi_epi64(t0, t1); *q = _mm_unpacklo_epi64(t2, t3); *r = _mm_unpackhi_epi64(t2, t3); } /* * Same as above, except the first two values are already interleaved * (i.e. contain 64bit values). */ static inline void transpose2_64_2_32(const __m128i * restrict a01, const __m128i * restrict a23, const __m128i * restrict c, const __m128i * restrict d, __m128i * restrict o, __m128i * restrict p, __m128i * restrict q, __m128i * restrict r) { __m128i t0 = *a01; __m128i t1 = _mm_unpacklo_epi32(*c, *d); __m128i t2 = *a23; __m128i t3 = _mm_unpackhi_epi32(*c, *d); *o = _mm_unpacklo_epi64(t0, t1); *p = _mm_unpackhi_epi64(t0, t1); *q = _mm_unpacklo_epi64(t2, t3); *r = _mm_unpackhi_epi64(t2, t3); } #define SCALAR_EPI32(m, i) _mm_shuffle_epi32((m), _MM_SHUFFLE(i,i,i,i)) #endif /* PIPE_ARCH_SSE */ #endif /* U_SSE_H_ */