/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Jason Ekstrand (jason@jlekstrand.net) * */ #include "nir.h" #include "nir_builder.h" #include "nir_vla.h" /* * This file implements an out-of-SSA pass as described in "Revisiting * Out-of-SSA Translation for Correctness, Code Quality, and Efficiency" by * Boissinot et al. */ struct from_ssa_state { nir_builder builder; void *dead_ctx; bool phi_webs_only; struct hash_table *merge_node_table; nir_instr *instr; bool progress; }; /* Returns true if a dominates b */ static bool ssa_def_dominates(nir_ssa_def *a, nir_ssa_def *b) { if (a->live_index == 0) { /* SSA undefs always dominate */ return true; } else if (b->live_index < a->live_index) { return false; } else if (a->parent_instr->block == b->parent_instr->block) { return a->live_index <= b->live_index; } else { return nir_block_dominates(a->parent_instr->block, b->parent_instr->block); } } /* The following data structure, which I have named merge_set is a way of * representing a set registers of non-interfering registers. This is * based on the concept of a "dominance forest" presented in "Fast Copy * Coalescing and Live-Range Identification" by Budimlic et al. but the * implementation concept is taken from "Revisiting Out-of-SSA Translation * for Correctness, Code Quality, and Efficiency" by Boissinot et al. * * Each SSA definition is associated with a merge_node and the association * is represented by a combination of a hash table and the "def" parameter * in the merge_node structure. The merge_set stores a linked list of * merge_nodes in dominance order of the ssa definitions. (Since the * liveness analysis pass indexes the SSA values in dominance order for us, * this is an easy thing to keep up.) It is assumed that no pair of the * nodes in a given set interfere. Merging two sets or checking for * interference can be done in a single linear-time merge-sort walk of the * two lists of nodes. */ struct merge_set; typedef struct { struct exec_node node; struct merge_set *set; nir_ssa_def *def; } merge_node; typedef struct merge_set { struct exec_list nodes; unsigned size; nir_register *reg; } merge_set; #if 0 static void merge_set_dump(merge_set *set, FILE *fp) { nir_ssa_def *dom[set->size]; int dom_idx = -1; foreach_list_typed(merge_node, node, node, &set->nodes) { while (dom_idx >= 0 && !ssa_def_dominates(dom[dom_idx], node->def)) dom_idx--; for (int i = 0; i <= dom_idx; i++) fprintf(fp, " "); if (node->def->name) fprintf(fp, "ssa_%d /* %s */\n", node->def->index, node->def->name); else fprintf(fp, "ssa_%d\n", node->def->index); dom[++dom_idx] = node->def; } } #endif static merge_node * get_merge_node(nir_ssa_def *def, struct from_ssa_state *state) { struct hash_entry *entry = _mesa_hash_table_search(state->merge_node_table, def); if (entry) return entry->data; merge_set *set = ralloc(state->dead_ctx, merge_set); exec_list_make_empty(&set->nodes); set->size = 1; set->reg = NULL; merge_node *node = ralloc(state->dead_ctx, merge_node); node->set = set; node->def = def; exec_list_push_head(&set->nodes, &node->node); _mesa_hash_table_insert(state->merge_node_table, def, node); return node; } static bool merge_nodes_interfere(merge_node *a, merge_node *b) { return nir_ssa_defs_interfere(a->def, b->def); } /* Merges b into a */ static merge_set * merge_merge_sets(merge_set *a, merge_set *b) { struct exec_node *an = exec_list_get_head(&a->nodes); struct exec_node *bn = exec_list_get_head(&b->nodes); while (!exec_node_is_tail_sentinel(bn)) { merge_node *a_node = exec_node_data(merge_node, an, node); merge_node *b_node = exec_node_data(merge_node, bn, node); if (exec_node_is_tail_sentinel(an) || a_node->def->live_index > b_node->def->live_index) { struct exec_node *next = bn->next; exec_node_remove(bn); exec_node_insert_node_before(an, bn); exec_node_data(merge_node, bn, node)->set = a; bn = next; } else { an = an->next; } } a->size += b->size; b->size = 0; return a; } /* Checks for any interference between two merge sets * * This is an implementation of Algorithm 2 in "Revisiting Out-of-SSA * Translation for Correctness, Code Quality, and Efficiency" by * Boissinot et al. */ static bool merge_sets_interfere(merge_set *a, merge_set *b) { NIR_VLA(merge_node *, dom, a->size + b->size); int dom_idx = -1; struct exec_node *an = exec_list_get_head(&a->nodes); struct exec_node *bn = exec_list_get_head(&b->nodes); while (!exec_node_is_tail_sentinel(an) || !exec_node_is_tail_sentinel(bn)) { merge_node *current; if (exec_node_is_tail_sentinel(an)) { current = exec_node_data(merge_node, bn, node); bn = bn->next; } else if (exec_node_is_tail_sentinel(bn)) { current = exec_node_data(merge_node, an, node); an = an->next; } else { merge_node *a_node = exec_node_data(merge_node, an, node); merge_node *b_node = exec_node_data(merge_node, bn, node); if (a_node->def->live_index <= b_node->def->live_index) { current = a_node; an = an->next; } else { current = b_node; bn = bn->next; } } while (dom_idx >= 0 && !ssa_def_dominates(dom[dom_idx]->def, current->def)) dom_idx--; if (dom_idx >= 0 && merge_nodes_interfere(current, dom[dom_idx])) return true; dom[++dom_idx] = current; } return false; } static bool add_parallel_copy_to_end_of_block(nir_block *block, void *dead_ctx) { bool need_end_copy = false; if (block->successors[0]) { nir_instr *instr = nir_block_first_instr(block->successors[0]); if (instr && instr->type == nir_instr_type_phi) need_end_copy = true; } if (block->successors[1]) { nir_instr *instr = nir_block_first_instr(block->successors[1]); if (instr && instr->type == nir_instr_type_phi) need_end_copy = true; } if (need_end_copy) { /* If one of our successors has at least one phi node, we need to * create a parallel copy at the end of the block but before the jump * (if there is one). */ nir_parallel_copy_instr *pcopy = nir_parallel_copy_instr_create(dead_ctx); nir_instr_insert(nir_after_block_before_jump(block), &pcopy->instr); } return true; } static nir_parallel_copy_instr * get_parallel_copy_at_end_of_block(nir_block *block) { nir_instr *last_instr = nir_block_last_instr(block); if (last_instr == NULL) return NULL; /* The last instruction may be a jump in which case the parallel copy is * right before it. */ if (last_instr->type == nir_instr_type_jump) last_instr = nir_instr_prev(last_instr); if (last_instr && last_instr->type == nir_instr_type_parallel_copy) return nir_instr_as_parallel_copy(last_instr); else return NULL; } /** Isolate phi nodes with parallel copies * * In order to solve the dependency problems with the sources and * destinations of phi nodes, we first isolate them by adding parallel * copies to the beginnings and ends of basic blocks. For every block with * phi nodes, we add a parallel copy immediately following the last phi * node that copies the destinations of all of the phi nodes to new SSA * values. We also add a parallel copy to the end of every block that has * a successor with phi nodes that, for each phi node in each successor, * copies the corresponding sorce of the phi node and adjust the phi to * used the destination of the parallel copy. * * In SSA form, each value has exactly one definition. What this does is * ensure that each value used in a phi also has exactly one use. The * destinations of phis are only used by the parallel copy immediately * following the phi nodes and. Thanks to the parallel copy at the end of * the predecessor block, the sources of phi nodes are are the only use of * that value. This allows us to immediately assign all the sources and * destinations of any given phi node to the same register without worrying * about interference at all. We do coalescing to get rid of the parallel * copies where possible. * * Before this pass can be run, we have to iterate over the blocks with * add_parallel_copy_to_end_of_block to ensure that the parallel copies at * the ends of blocks exist. We can create the ones at the beginnings as * we go, but the ones at the ends of blocks need to be created ahead of * time because of potential back-edges in the CFG. */ static bool isolate_phi_nodes_block(nir_block *block, void *dead_ctx) { nir_instr *last_phi_instr = NULL; nir_foreach_instr(instr, block) { /* Phi nodes only ever come at the start of a block */ if (instr->type != nir_instr_type_phi) break; last_phi_instr = instr; } /* If we don't have any phis, then there's nothing for us to do. */ if (last_phi_instr == NULL) return true; /* If we have phi nodes, we need to create a parallel copy at the * start of this block but after the phi nodes. */ nir_parallel_copy_instr *block_pcopy = nir_parallel_copy_instr_create(dead_ctx); nir_instr_insert_after(last_phi_instr, &block_pcopy->instr); nir_foreach_instr(instr, block) { /* Phi nodes only ever come at the start of a block */ if (instr->type != nir_instr_type_phi) break; nir_phi_instr *phi = nir_instr_as_phi(instr); assert(phi->dest.is_ssa); nir_foreach_phi_src(src, phi) { nir_parallel_copy_instr *pcopy = get_parallel_copy_at_end_of_block(src->pred); assert(pcopy); nir_parallel_copy_entry *entry = rzalloc(dead_ctx, nir_parallel_copy_entry); nir_ssa_dest_init(&pcopy->instr, &entry->dest, phi->dest.ssa.num_components, phi->dest.ssa.bit_size, src->src.ssa->name); exec_list_push_tail(&pcopy->entries, &entry->node); assert(src->src.is_ssa); nir_instr_rewrite_src(&pcopy->instr, &entry->src, src->src); nir_instr_rewrite_src(&phi->instr, &src->src, nir_src_for_ssa(&entry->dest.ssa)); } nir_parallel_copy_entry *entry = rzalloc(dead_ctx, nir_parallel_copy_entry); nir_ssa_dest_init(&block_pcopy->instr, &entry->dest, phi->dest.ssa.num_components, phi->dest.ssa.bit_size, phi->dest.ssa.name); exec_list_push_tail(&block_pcopy->entries, &entry->node); nir_ssa_def_rewrite_uses(&phi->dest.ssa, nir_src_for_ssa(&entry->dest.ssa)); nir_instr_rewrite_src(&block_pcopy->instr, &entry->src, nir_src_for_ssa(&phi->dest.ssa)); } return true; } static bool coalesce_phi_nodes_block(nir_block *block, struct from_ssa_state *state) { nir_foreach_instr(instr, block) { /* Phi nodes only ever come at the start of a block */ if (instr->type != nir_instr_type_phi) break; nir_phi_instr *phi = nir_instr_as_phi(instr); assert(phi->dest.is_ssa); merge_node *dest_node = get_merge_node(&phi->dest.ssa, state); nir_foreach_phi_src(src, phi) { assert(src->src.is_ssa); merge_node *src_node = get_merge_node(src->src.ssa, state); if (src_node->set != dest_node->set) merge_merge_sets(dest_node->set, src_node->set); } } return true; } static void aggressive_coalesce_parallel_copy(nir_parallel_copy_instr *pcopy, struct from_ssa_state *state) { nir_foreach_parallel_copy_entry(entry, pcopy) { if (!entry->src.is_ssa) continue; /* Since load_const instructions are SSA only, we can't replace their * destinations with registers and, therefore, can't coalesce them. */ if (entry->src.ssa->parent_instr->type == nir_instr_type_load_const) continue; /* Don't try and coalesce these */ if (entry->dest.ssa.num_components != entry->src.ssa->num_components) continue; merge_node *src_node = get_merge_node(entry->src.ssa, state); merge_node *dest_node = get_merge_node(&entry->dest.ssa, state); if (src_node->set == dest_node->set) continue; if (!merge_sets_interfere(src_node->set, dest_node->set)) merge_merge_sets(src_node->set, dest_node->set); } } static bool aggressive_coalesce_block(nir_block *block, struct from_ssa_state *state) { nir_parallel_copy_instr *start_pcopy = NULL; nir_foreach_instr(instr, block) { /* Phi nodes only ever come at the start of a block */ if (instr->type != nir_instr_type_phi) { if (instr->type != nir_instr_type_parallel_copy) break; /* The parallel copy must be right after the phis */ start_pcopy = nir_instr_as_parallel_copy(instr); aggressive_coalesce_parallel_copy(start_pcopy, state); break; } } nir_parallel_copy_instr *end_pcopy = get_parallel_copy_at_end_of_block(block); if (end_pcopy && end_pcopy != start_pcopy) aggressive_coalesce_parallel_copy(end_pcopy, state); return true; } static nir_register * create_reg_for_ssa_def(nir_ssa_def *def, nir_function_impl *impl) { nir_register *reg = nir_local_reg_create(impl); reg->name = def->name; reg->num_components = def->num_components; reg->bit_size = def->bit_size; reg->num_array_elems = 0; return reg; } static bool rewrite_ssa_def(nir_ssa_def *def, void *void_state) { struct from_ssa_state *state = void_state; nir_register *reg; struct hash_entry *entry = _mesa_hash_table_search(state->merge_node_table, def); if (entry) { /* In this case, we're part of a phi web. Use the web's register. */ merge_node *node = (merge_node *)entry->data; /* If it doesn't have a register yet, create one. Note that all of * the things in the merge set should be the same so it doesn't * matter which node's definition we use. */ if (node->set->reg == NULL) node->set->reg = create_reg_for_ssa_def(def, state->builder.impl); reg = node->set->reg; } else { if (state->phi_webs_only) return true; /* We leave load_const SSA values alone. They act as immediates to * the backend. If it got coalesced into a phi, that's ok. */ if (def->parent_instr->type == nir_instr_type_load_const) return true; reg = create_reg_for_ssa_def(def, state->builder.impl); } nir_ssa_def_rewrite_uses(def, nir_src_for_reg(reg)); assert(list_is_empty(&def->uses) && list_is_empty(&def->if_uses)); if (def->parent_instr->type == nir_instr_type_ssa_undef) { /* If it's an ssa_undef instruction, remove it since we know we just got * rid of all its uses. */ nir_instr *parent_instr = def->parent_instr; nir_instr_remove(parent_instr); ralloc_steal(state->dead_ctx, parent_instr); state->progress = true; return true; } assert(def->parent_instr->type != nir_instr_type_load_const); /* At this point we know a priori that this SSA def is part of a * nir_dest. We can use exec_node_data to get the dest pointer. */ nir_dest *dest = exec_node_data(nir_dest, def, ssa); nir_instr_rewrite_dest(state->instr, dest, nir_dest_for_reg(reg)); state->progress = true; return true; } /* Resolves ssa definitions to registers. While we're at it, we also * remove phi nodes. */ static void resolve_registers_block(nir_block *block, struct from_ssa_state *state) { nir_foreach_instr_safe(instr, block) { state->instr = instr; nir_foreach_ssa_def(instr, rewrite_ssa_def, state); if (instr->type == nir_instr_type_phi) { nir_instr_remove(instr); ralloc_steal(state->dead_ctx, instr); state->progress = true; } } state->instr = NULL; } static void emit_copy(nir_builder *b, nir_src src, nir_src dest_src) { assert(!dest_src.is_ssa && dest_src.reg.indirect == NULL && dest_src.reg.base_offset == 0); if (src.is_ssa) assert(src.ssa->num_components >= dest_src.reg.reg->num_components); else assert(src.reg.reg->num_components >= dest_src.reg.reg->num_components); nir_alu_instr *mov = nir_alu_instr_create(b->shader, nir_op_mov); nir_src_copy(&mov->src[0].src, &src, mov); mov->dest.dest = nir_dest_for_reg(dest_src.reg.reg); mov->dest.write_mask = (1 << dest_src.reg.reg->num_components) - 1; nir_builder_instr_insert(b, &mov->instr); } /* Resolves a single parallel copy operation into a sequence of movs * * This is based on Algorithm 1 from "Revisiting Out-of-SSA Translation for * Correctness, Code Quality, and Efficiency" by Boissinot et al. * However, I never got the algorithm to work as written, so this version * is slightly modified. * * The algorithm works by playing this little shell game with the values. * We start by recording where every source value is and which source value * each destination value should receive. We then grab any copy whose * destination is "empty", i.e. not used as a source, and do the following: * - Find where its source value currently lives * - Emit the move instruction * - Set the location of the source value to the destination * - Mark the location containing the source value * - Mark the destination as no longer needing to be copied * * When we run out of "empty" destinations, we have a cycle and so we * create a temporary register, copy to that register, and mark the value * we copied as living in that temporary. Now, the cycle is broken, so we * can continue with the above steps. */ static void resolve_parallel_copy(nir_parallel_copy_instr *pcopy, struct from_ssa_state *state) { unsigned num_copies = 0; nir_foreach_parallel_copy_entry(entry, pcopy) { /* Sources may be SSA */ if (!entry->src.is_ssa && entry->src.reg.reg == entry->dest.reg.reg) continue; num_copies++; } if (num_copies == 0) { /* Hooray, we don't need any copies! */ nir_instr_remove(&pcopy->instr); return; } /* The register/source corresponding to the given index */ NIR_VLA_ZERO(nir_src, values, num_copies * 2); /* The current location of a given piece of data. We will use -1 for "null" */ NIR_VLA_FILL(int, loc, num_copies * 2, -1); /* The piece of data that the given piece of data is to be copied from. We will use -1 for "null" */ NIR_VLA_FILL(int, pred, num_copies * 2, -1); /* The destinations we have yet to properly fill */ NIR_VLA(int, to_do, num_copies * 2); int to_do_idx = -1; state->builder.cursor = nir_before_instr(&pcopy->instr); /* Now we set everything up: * - All values get assigned a temporary index * - Current locations are set from sources * - Predicessors are recorded from sources and destinations */ int num_vals = 0; nir_foreach_parallel_copy_entry(entry, pcopy) { /* Sources may be SSA */ if (!entry->src.is_ssa && entry->src.reg.reg == entry->dest.reg.reg) continue; int src_idx = -1; for (int i = 0; i < num_vals; ++i) { if (nir_srcs_equal(values[i], entry->src)) src_idx = i; } if (src_idx < 0) { src_idx = num_vals++; values[src_idx] = entry->src; } nir_src dest_src = nir_src_for_reg(entry->dest.reg.reg); int dest_idx = -1; for (int i = 0; i < num_vals; ++i) { if (nir_srcs_equal(values[i], dest_src)) { /* Each destination of a parallel copy instruction should be * unique. A destination may get used as a source, so we still * have to walk the list. However, the predecessor should not, * at this point, be set yet, so we should have -1 here. */ assert(pred[i] == -1); dest_idx = i; } } if (dest_idx < 0) { dest_idx = num_vals++; values[dest_idx] = dest_src; } loc[src_idx] = src_idx; pred[dest_idx] = src_idx; to_do[++to_do_idx] = dest_idx; } /* Currently empty destinations we can go ahead and fill */ NIR_VLA(int, ready, num_copies * 2); int ready_idx = -1; /* Mark the ones that are ready for copying. We know an index is a * destination if it has a predecessor and it's ready for copying if * it's not marked as containing data. */ for (int i = 0; i < num_vals; i++) { if (pred[i] != -1 && loc[i] == -1) ready[++ready_idx] = i; } while (to_do_idx >= 0) { while (ready_idx >= 0) { int b = ready[ready_idx--]; int a = pred[b]; emit_copy(&state->builder, values[loc[a]], values[b]); /* If any other copies want a they can find it at b */ loc[a] = b; /* b has been filled, mark it as not needing to be copied */ pred[b] = -1; /* If a needs to be filled, it's ready for copying now */ if (pred[a] != -1) ready[++ready_idx] = a; } int b = to_do[to_do_idx--]; if (pred[b] == -1) continue; /* If we got here, then we don't have any more trivial copies that we * can do. We have to break a cycle, so we create a new temporary * register for that purpose. Normally, if going out of SSA after * register allocation, you would want to avoid creating temporary * registers. However, we are going out of SSA before register * allocation, so we would rather not create extra register * dependencies for the backend to deal with. If it wants, the * backend can coalesce the (possibly multiple) temporaries. */ assert(num_vals < num_copies * 2); nir_register *reg = nir_local_reg_create(state->builder.impl); reg->name = "copy_temp"; reg->num_array_elems = 0; if (values[b].is_ssa) { reg->num_components = values[b].ssa->num_components; reg->bit_size = values[b].ssa->bit_size; } else { reg->num_components = values[b].reg.reg->num_components; reg->bit_size = values[b].reg.reg->bit_size; } values[num_vals].is_ssa = false; values[num_vals].reg.reg = reg; emit_copy(&state->builder, values[b], values[num_vals]); loc[b] = num_vals; ready[++ready_idx] = b; num_vals++; } nir_instr_remove(&pcopy->instr); } /* Resolves the parallel copies in a block. Each block can have at most * two: One at the beginning, right after all the phi noces, and one at * the end (or right before the final jump if it exists). */ static bool resolve_parallel_copies_block(nir_block *block, struct from_ssa_state *state) { /* At this point, we have removed all of the phi nodes. If a parallel * copy existed right after the phi nodes in this block, it is now the * first instruction. */ nir_instr *first_instr = nir_block_first_instr(block); if (first_instr == NULL) return true; /* Empty, nothing to do. */ if (first_instr->type == nir_instr_type_parallel_copy) { nir_parallel_copy_instr *pcopy = nir_instr_as_parallel_copy(first_instr); resolve_parallel_copy(pcopy, state); } /* It's possible that the above code already cleaned up the end parallel * copy. However, doing so removed it form the instructions list so we * won't find it here. Therefore, it's safe to go ahead and just look * for one and clean it up if it exists. */ nir_parallel_copy_instr *end_pcopy = get_parallel_copy_at_end_of_block(block); if (end_pcopy) resolve_parallel_copy(end_pcopy, state); return true; } static bool nir_convert_from_ssa_impl(nir_function_impl *impl, bool phi_webs_only) { struct from_ssa_state state; nir_builder_init(&state.builder, impl); state.dead_ctx = ralloc_context(NULL); state.phi_webs_only = phi_webs_only; state.merge_node_table = _mesa_pointer_hash_table_create(NULL); state.progress = false; nir_foreach_block(block, impl) { add_parallel_copy_to_end_of_block(block, state.dead_ctx); } nir_foreach_block(block, impl) { isolate_phi_nodes_block(block, state.dead_ctx); } /* Mark metadata as dirty before we ask for liveness analysis */ nir_metadata_preserve(impl, nir_metadata_block_index | nir_metadata_dominance); nir_metadata_require(impl, nir_metadata_live_ssa_defs | nir_metadata_dominance); nir_foreach_block(block, impl) { coalesce_phi_nodes_block(block, &state); } nir_foreach_block(block, impl) { aggressive_coalesce_block(block, &state); } nir_foreach_block(block, impl) { resolve_registers_block(block, &state); } nir_foreach_block(block, impl) { resolve_parallel_copies_block(block, &state); } nir_metadata_preserve(impl, nir_metadata_block_index | nir_metadata_dominance); /* Clean up dead instructions and the hash tables */ _mesa_hash_table_destroy(state.merge_node_table, NULL); ralloc_free(state.dead_ctx); return state.progress; } bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only) { bool progress = false; nir_foreach_function(function, shader) { if (function->impl) progress |= nir_convert_from_ssa_impl(function->impl, phi_webs_only); } return progress; } static void place_phi_read(nir_shader *shader, nir_register *reg, nir_ssa_def *def, nir_block *block, unsigned depth) { if (block != def->parent_instr->block) { /* Try to go up the single-successor tree */ bool all_single_successors = true; set_foreach(block->predecessors, entry) { nir_block *pred = (nir_block *)entry->key; if (pred->successors[0] && pred->successors[1]) { all_single_successors = false; break; } } if (all_single_successors && depth < 32) { /* All predecessors of this block have exactly one successor and it * is this block so they must eventually lead here without * intersecting each other. Place the reads in the predecessors * instead of this block. * * We only let this function recurse 32 times because it can recurse * indefinitely in the presence of infinite loops. Because we're * crawling a single-successor chain, it doesn't matter where we * place it so it's ok to stop at an arbitrary distance. * * TODO: One day, we could detect back edges and avoid the recursion * that way. */ set_foreach(block->predecessors, entry) { place_phi_read(shader, reg, def, (nir_block *)entry->key, depth + 1); } return; } } nir_alu_instr *mov = nir_alu_instr_create(shader, nir_op_mov); mov->src[0].src = nir_src_for_ssa(def); mov->dest.dest = nir_dest_for_reg(reg); mov->dest.write_mask = (1 << reg->num_components) - 1; nir_instr_insert(nir_after_block_before_jump(block), &mov->instr); } /** Lower all of the phi nodes in a block to imovs to and from a register * * This provides a very quick-and-dirty out-of-SSA pass that you can run on a * single block to convert all of its phis to a register and some imovs. * The code that is generated, while not optimal for actual codegen in a * back-end, is easy to generate, correct, and will turn into the same set of * phis after you call regs_to_ssa and do some copy propagation. * * The one intelligent thing this pass does is that it places the moves from * the phi sources as high up the predecessor tree as possible instead of in * the exact predecessor. This means that, in particular, it will crawl into * the deepest nesting of any if-ladders. In order to ensure that doing so is * safe, it stops as soon as one of the predecessors has multiple successors. */ bool nir_lower_phis_to_regs_block(nir_block *block) { nir_function_impl *impl = nir_cf_node_get_function(&block->cf_node); nir_shader *shader = impl->function->shader; bool progress = false; nir_foreach_instr_safe(instr, block) { if (instr->type != nir_instr_type_phi) break; nir_phi_instr *phi = nir_instr_as_phi(instr); assert(phi->dest.is_ssa); nir_register *reg = create_reg_for_ssa_def(&phi->dest.ssa, impl); nir_alu_instr *mov = nir_alu_instr_create(shader, nir_op_mov); mov->src[0].src = nir_src_for_reg(reg); mov->dest.write_mask = (1 << phi->dest.ssa.num_components) - 1; nir_ssa_dest_init(&mov->instr, &mov->dest.dest, phi->dest.ssa.num_components, phi->dest.ssa.bit_size, phi->dest.ssa.name); nir_instr_insert(nir_after_instr(&phi->instr), &mov->instr); nir_ssa_def_rewrite_uses(&phi->dest.ssa, nir_src_for_ssa(&mov->dest.dest.ssa)); nir_foreach_phi_src(src, phi) { assert(src->src.is_ssa); place_phi_read(shader, reg, src->src.ssa, src->pred, 0); } nir_instr_remove(&phi->instr); progress = true; } return progress; } struct ssa_def_to_reg_state { nir_function_impl *impl; bool progress; }; static bool dest_replace_ssa_with_reg(nir_dest *dest, void *void_state) { struct ssa_def_to_reg_state *state = void_state; if (!dest->is_ssa) return true; nir_register *reg = create_reg_for_ssa_def(&dest->ssa, state->impl); nir_ssa_def_rewrite_uses(&dest->ssa, nir_src_for_reg(reg)); nir_instr *instr = dest->ssa.parent_instr; *dest = nir_dest_for_reg(reg); dest->reg.parent_instr = instr; list_addtail(&dest->reg.def_link, ®->defs); state->progress = true; return true; } static bool ssa_def_is_local_to_block(nir_ssa_def *def, UNUSED void *state) { nir_block *block = def->parent_instr->block; nir_foreach_use(use_src, def) { if (use_src->parent_instr->block != block || use_src->parent_instr->type == nir_instr_type_phi) { return false; } } if (!list_is_empty(&def->if_uses)) return false; return true; } /** Lower all of the SSA defs in a block to registers * * This performs the very simple operation of blindly replacing all of the SSA * defs in the given block with registers. If not used carefully, this may * result in phi nodes with register sources which is technically invalid. * Fortunately, the register-based into-SSA pass handles them anyway. */ bool nir_lower_ssa_defs_to_regs_block(nir_block *block) { nir_function_impl *impl = nir_cf_node_get_function(&block->cf_node); nir_shader *shader = impl->function->shader; struct ssa_def_to_reg_state state = { .impl = impl, .progress = false, }; nir_foreach_instr(instr, block) { if (instr->type == nir_instr_type_ssa_undef) { /* Undefs are just a read of something never written. */ nir_ssa_undef_instr *undef = nir_instr_as_ssa_undef(instr); nir_register *reg = create_reg_for_ssa_def(&undef->def, state.impl); nir_ssa_def_rewrite_uses(&undef->def, nir_src_for_reg(reg)); } else if (instr->type == nir_instr_type_load_const) { /* Constant loads are SSA-only, we need to insert a move */ nir_load_const_instr *load = nir_instr_as_load_const(instr); nir_register *reg = create_reg_for_ssa_def(&load->def, state.impl); nir_ssa_def_rewrite_uses(&load->def, nir_src_for_reg(reg)); nir_alu_instr *mov = nir_alu_instr_create(shader, nir_op_mov); mov->src[0].src = nir_src_for_ssa(&load->def); mov->dest.dest = nir_dest_for_reg(reg); mov->dest.write_mask = (1 << reg->num_components) - 1; nir_instr_insert(nir_after_instr(&load->instr), &mov->instr); } else if (nir_foreach_ssa_def(instr, ssa_def_is_local_to_block, NULL)) { /* If the SSA def produced by this instruction is only in the block * in which it is defined and is not used by ifs or phis, then we * don't have a reason to convert it to a register. */ } else { nir_foreach_dest(instr, dest_replace_ssa_with_reg, &state); } } return state.progress; }