/* * Copyright © 2016 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include "ir.h" #include "ir_builder.h" #include "ir_optimization.h" #include "ir_hierarchical_visitor.h" #include "program/prog_instruction.h" #include "program/prog_statevars.h" #include "util/bitscan.h" #include "builtin_functions.h" using namespace ir_builder; #define imm1(x) new(mem_ctx) ir_constant((float) (x), 1) #define imm3(x) new(mem_ctx) ir_constant((float) (x), 3) static ir_rvalue * blend_multiply(ir_variable *src, ir_variable *dst) { /* f(Cs,Cd) = Cs*Cd */ return mul(src, dst); } static ir_rvalue * blend_screen(ir_variable *src, ir_variable *dst) { /* f(Cs,Cd) = Cs+Cd-Cs*Cd */ return sub(add(src, dst), mul(src, dst)); } static ir_rvalue * blend_overlay(ir_variable *src, ir_variable *dst) { void *mem_ctx = ralloc_parent(src); /* f(Cs,Cd) = 2*Cs*Cd, if Cd <= 0.5 * 1-2*(1-Cs)*(1-Cd), otherwise */ ir_rvalue *rule_1 = mul(imm3(2), mul(src, dst)); ir_rvalue *rule_2 = sub(imm3(1), mul(imm3(2), mul(sub(imm3(1), src), sub(imm3(1), dst)))); return csel(lequal(dst, imm3(0.5f)), rule_1, rule_2); } static ir_rvalue * blend_darken(ir_variable *src, ir_variable *dst) { /* f(Cs,Cd) = min(Cs,Cd) */ return min2(src, dst); } static ir_rvalue * blend_lighten(ir_variable *src, ir_variable *dst) { /* f(Cs,Cd) = max(Cs,Cd) */ return max2(src, dst); } static ir_rvalue * blend_colordodge(ir_variable *src, ir_variable *dst) { void *mem_ctx = ralloc_parent(src); /* f(Cs,Cd) = * 0, if Cd <= 0 * min(1,Cd/(1-Cs)), if Cd > 0 and Cs < 1 * 1, if Cd > 0 and Cs >= 1 */ return csel(lequal(dst, imm3(0)), imm3(0), csel(gequal(src, imm3(1)), imm3(1), min2(imm3(1), div(dst, sub(imm3(1), src))))); } static ir_rvalue * blend_colorburn(ir_variable *src, ir_variable *dst) { void *mem_ctx = ralloc_parent(src); /* f(Cs,Cd) = * 1, if Cd >= 1 * 1 - min(1,(1-Cd)/Cs), if Cd < 1 and Cs > 0 * 0, if Cd < 1 and Cs <= 0 */ return csel(gequal(dst, imm3(1)), imm3(1), csel(lequal(src, imm3(0)), imm3(0), sub(imm3(1), min2(imm3(1), div(sub(imm3(1), dst), src))))); } static ir_rvalue * blend_hardlight(ir_variable *src, ir_variable *dst) { void *mem_ctx = ralloc_parent(src); /* f(Cs,Cd) = 2*Cs*Cd, if Cs <= 0.5 * 1-2*(1-Cs)*(1-Cd), otherwise */ ir_rvalue *rule_1 = mul(imm3(2), mul(src, dst)); ir_rvalue *rule_2 = sub(imm3(1), mul(imm3(2), mul(sub(imm3(1), src), sub(imm3(1), dst)))); return csel(lequal(src, imm3(0.5f)), rule_1, rule_2); } static ir_rvalue * blend_softlight(ir_variable *src, ir_variable *dst) { void *mem_ctx = ralloc_parent(src); /* f(Cs,Cd) = * Cd-(1-2*Cs)*Cd*(1-Cd), * if Cs <= 0.5 * Cd+(2*Cs-1)*Cd*((16*Cd-12)*Cd+3), * if Cs > 0.5 and Cd <= 0.25 * Cd+(2*Cs-1)*(sqrt(Cd)-Cd), * if Cs > 0.5 and Cd > 0.25 * * We can simplify this to * * f(Cs,Cd) = Cd+(2*Cs-1)*g(Cs,Cd) where * g(Cs,Cd) = Cd*Cd-Cd if Cs <= 0.5 * Cd*((16*Cd-12)*Cd+3) if Cs > 0.5 and Cd <= 0.25 * sqrt(Cd)-Cd, otherwise */ ir_rvalue *factor_1 = mul(dst, sub(imm3(1), dst)); ir_rvalue *factor_2 = mul(dst, add(mul(sub(mul(imm3(16), dst), imm3(12)), dst), imm3(3))); ir_rvalue *factor_3 = sub(sqrt(dst), dst); ir_rvalue *factor = csel(lequal(src, imm3(0.5f)), factor_1, csel(lequal(dst, imm3(0.25f)), factor_2, factor_3)); return add(dst, mul(sub(mul(imm3(2), src), imm3(1)), factor)); } static ir_rvalue * blend_difference(ir_variable *src, ir_variable *dst) { return abs(sub(dst, src)); } static ir_rvalue * blend_exclusion(ir_variable *src, ir_variable *dst) { void *mem_ctx = ralloc_parent(src); return add(src, sub(dst, mul(imm3(2), mul(src, dst)))); } /* Return the minimum of a vec3's components */ static ir_rvalue * minv3(ir_variable *v) { return min2(min2(swizzle_x(v), swizzle_y(v)), swizzle_z(v)); } /* Return the maximum of a vec3's components */ static ir_rvalue * maxv3(ir_variable *v) { return max2(max2(swizzle_x(v), swizzle_y(v)), swizzle_z(v)); } static ir_rvalue * lumv3(ir_variable *c) { ir_constant_data data; data.f[0] = 0.30; data.f[1] = 0.59; data.f[2] = 0.11; void *mem_ctx = ralloc_parent(c); /* dot(c, vec3(0.30, 0.59, 0.11)) */ return dot(c, new(mem_ctx) ir_constant(glsl_type::vec3_type, &data)); } static ir_rvalue * satv3(ir_variable *c) { return sub(maxv3(c), minv3(c)); } /* Take the base RGB color and override its luminosity with that * of the RGB color . * * This follows the equations given in the ES 3.2 (June 15th, 2016) * specification. Revision 16 of GL_KHR_blend_equation_advanced and * revision 9 of GL_NV_blend_equation_advanced specify a different set * of equations. Older revisions match ES 3.2's text, and dEQP expects * the ES 3.2 rules implemented here. */ static void set_lum(ir_factory *f, ir_variable *color, ir_variable *cbase, ir_variable *clum) { void *mem_ctx = f->mem_ctx; f->emit(assign(color, add(cbase, sub(lumv3(clum), lumv3(cbase))))); ir_variable *llum = f->make_temp(glsl_type::float_type, "__blend_lum"); ir_variable *mincol = f->make_temp(glsl_type::float_type, "__blend_mincol"); ir_variable *maxcol = f->make_temp(glsl_type::float_type, "__blend_maxcol"); f->emit(assign(llum, lumv3(color))); f->emit(assign(mincol, minv3(color))); f->emit(assign(maxcol, maxv3(color))); f->emit(if_tree(less(mincol, imm1(0)), assign(color, add(llum, div(mul(sub(color, llum), llum), sub(llum, mincol)))), if_tree(greater(maxcol, imm1(1)), assign(color, add(llum, div(mul(sub(color, llum), sub(imm3(1), llum)), sub(maxcol, llum))))))); } /* Take the base RGB color and override its saturation with * that of the RGB color . The override the luminosity of the * result with that of the RGB color . */ static void set_lum_sat(ir_factory *f, ir_variable *color, ir_variable *cbase, ir_variable *csat, ir_variable *clum) { void *mem_ctx = f->mem_ctx; ir_rvalue *minbase = minv3(cbase); ir_rvalue *ssat = satv3(csat); ir_variable *sbase = f->make_temp(glsl_type::float_type, "__blend_sbase"); f->emit(assign(sbase, satv3(cbase))); /* Equivalent (modulo rounding errors) to setting the * smallest (R,G,B) component to 0, the largest to , * and interpolating the "middle" component based on its * original value relative to the smallest/largest. */ f->emit(if_tree(greater(sbase, imm1(0)), assign(color, div(mul(sub(cbase, minbase), ssat), sbase)), assign(color, imm3(0)))); set_lum(f, color, color, clum); } static ir_rvalue * is_mode(ir_variable *mode, enum gl_advanced_blend_mode q) { return equal(mode, new(ralloc_parent(mode)) ir_constant(unsigned(q))); } static ir_variable * calc_blend_result(ir_factory f, ir_variable *mode, ir_variable *fb, ir_rvalue *blend_src, GLbitfield blend_qualifiers) { void *mem_ctx = f.mem_ctx; ir_variable *result = f.make_temp(glsl_type::vec4_type, "__blend_result"); /* Save blend_src to a temporary so we can reference it multiple times. */ ir_variable *src = f.make_temp(glsl_type::vec4_type, "__blend_src"); f.emit(assign(src, blend_src)); /* If we're not doing advanced blending, just write the original value. */ ir_if *if_blending = new(mem_ctx) ir_if(is_mode(mode, BLEND_NONE)); f.emit(if_blending); if_blending->then_instructions.push_tail(assign(result, src)); f.instructions = &if_blending->else_instructions; /* (Rs', Gs', Bs') = * (0, 0, 0), if As == 0 * (Rs/As, Gs/As, Bs/As), otherwise */ ir_variable *src_rgb = f.make_temp(glsl_type::vec3_type, "__blend_src_rgb"); ir_variable *src_alpha = f.make_temp(glsl_type::float_type, "__blend_src_a"); /* (Rd', Gd', Bd') = * (0, 0, 0), if Ad == 0 * (Rd/Ad, Gd/Ad, Bd/Ad), otherwise */ ir_variable *dst_rgb = f.make_temp(glsl_type::vec3_type, "__blend_dst_rgb"); ir_variable *dst_alpha = f.make_temp(glsl_type::float_type, "__blend_dst_a"); f.emit(assign(dst_alpha, swizzle_w(fb))); f.emit(if_tree(equal(dst_alpha, imm1(0)), assign(dst_rgb, imm3(0)), assign(dst_rgb, csel(equal(swizzle_xyz(fb), swizzle(fb, SWIZZLE_WWWW, 3)), imm3(1), div(swizzle_xyz(fb), dst_alpha))))); f.emit(assign(src_alpha, swizzle_w(src))); f.emit(if_tree(equal(src_alpha, imm1(0)), assign(src_rgb, imm3(0)), assign(src_rgb, csel(equal(swizzle_xyz(src), swizzle(src, SWIZZLE_WWWW, 3)), imm3(1), div(swizzle_xyz(src), src_alpha))))); ir_variable *factor = f.make_temp(glsl_type::vec3_type, "__blend_factor"); ir_factory casefactory = f; unsigned choices = blend_qualifiers; while (choices) { enum gl_advanced_blend_mode choice = (enum gl_advanced_blend_mode) (1u << u_bit_scan(&choices)); ir_if *iff = new(mem_ctx) ir_if(is_mode(mode, choice)); casefactory.emit(iff); casefactory.instructions = &iff->then_instructions; ir_rvalue *val = NULL; switch (choice) { case BLEND_MULTIPLY: val = blend_multiply(src_rgb, dst_rgb); break; case BLEND_SCREEN: val = blend_screen(src_rgb, dst_rgb); break; case BLEND_OVERLAY: val = blend_overlay(src_rgb, dst_rgb); break; case BLEND_DARKEN: val = blend_darken(src_rgb, dst_rgb); break; case BLEND_LIGHTEN: val = blend_lighten(src_rgb, dst_rgb); break; case BLEND_COLORDODGE: val = blend_colordodge(src_rgb, dst_rgb); break; case BLEND_COLORBURN: val = blend_colorburn(src_rgb, dst_rgb); break; case BLEND_HARDLIGHT: val = blend_hardlight(src_rgb, dst_rgb); break; case BLEND_SOFTLIGHT: val = blend_softlight(src_rgb, dst_rgb); break; case BLEND_DIFFERENCE: val = blend_difference(src_rgb, dst_rgb); break; case BLEND_EXCLUSION: val = blend_exclusion(src_rgb, dst_rgb); break; case BLEND_HSL_HUE: set_lum_sat(&casefactory, factor, src_rgb, dst_rgb, dst_rgb); break; case BLEND_HSL_SATURATION: set_lum_sat(&casefactory, factor, dst_rgb, src_rgb, dst_rgb); break; case BLEND_HSL_COLOR: set_lum(&casefactory, factor, src_rgb, dst_rgb); break; case BLEND_HSL_LUMINOSITY: set_lum(&casefactory, factor, dst_rgb, src_rgb); break; case BLEND_NONE: case BLEND_ALL: unreachable("not real cases"); } if (val) casefactory.emit(assign(factor, val)); casefactory.instructions = &iff->else_instructions; } /* p0(As,Ad) = As*Ad * p1(As,Ad) = As*(1-Ad) * p2(As,Ad) = Ad*(1-As) */ ir_variable *p0 = f.make_temp(glsl_type::float_type, "__blend_p0"); ir_variable *p1 = f.make_temp(glsl_type::float_type, "__blend_p1"); ir_variable *p2 = f.make_temp(glsl_type::float_type, "__blend_p2"); f.emit(assign(p0, mul(src_alpha, dst_alpha))); f.emit(assign(p1, mul(src_alpha, sub(imm1(1), dst_alpha)))); f.emit(assign(p2, mul(dst_alpha, sub(imm1(1), src_alpha)))); /* R = f(Rs',Rd')*p0(As,Ad) + Y*Rs'*p1(As,Ad) + Z*Rd'*p2(As,Ad) * G = f(Gs',Gd')*p0(As,Ad) + Y*Gs'*p1(As,Ad) + Z*Gd'*p2(As,Ad) * B = f(Bs',Bd')*p0(As,Ad) + Y*Bs'*p1(As,Ad) + Z*Bd'*p2(As,Ad) * A = X*p0(As,Ad) + Y*p1(As,Ad) + Z*p2(As,Ad) * * is always <1, 1, 1>, so we can ignore it. * * In vector form, this is: * RGB = factor * p0 + Cs * p1 + Cd * p2 * A = p0 + p1 + p2 */ f.emit(assign(result, add(add(mul(factor, p0), mul(src_rgb, p1)), mul(dst_rgb, p2)), WRITEMASK_XYZ)); f.emit(assign(result, add(add(p0, p1), p2), WRITEMASK_W)); return result; } /** * Dereference var, or var[0] if it's an array. */ static ir_dereference * deref_output(ir_variable *var) { void *mem_ctx = ralloc_parent(var); ir_dereference *val = new(mem_ctx) ir_dereference_variable(var); if (val->type->is_array()) { ir_constant *index = new(mem_ctx) ir_constant(0); val = new(mem_ctx) ir_dereference_array(val, index); } return val; } static ir_function_signature * get_main(gl_linked_shader *sh) { ir_function_signature *sig = NULL; /* We can't use _mesa_get_main_function_signature() because we don't * have a symbol table at this point. Just go find main() by hand. */ foreach_in_list(ir_instruction, ir, sh->ir) { ir_function *f = ir->as_function(); if (f && strcmp(f->name, "main") == 0) { exec_list void_parameters; sig = f->matching_signature(NULL, &void_parameters, false); break; } } assert(sig != NULL); /* main() must exist */ return sig; } bool lower_blend_equation_advanced(struct gl_linked_shader *sh) { if (sh->Program->sh.fs.BlendSupport == 0) return false; /* Lower early returns in main() so there's a single exit point * where we can insert our lowering code. */ do_lower_jumps(sh->ir, false, false, true, false, false); void *mem_ctx = ralloc_parent(sh->ir); ir_variable *fb = new(mem_ctx) ir_variable(glsl_type::vec4_type, "__blend_fb_fetch", ir_var_shader_out); fb->data.location = FRAG_RESULT_DATA0; fb->data.read_only = 1; fb->data.fb_fetch_output = 1; fb->data.how_declared = ir_var_hidden; ir_variable *mode = new(mem_ctx) ir_variable(glsl_type::uint_type, "gl_AdvancedBlendModeMESA", ir_var_uniform); mode->data.how_declared = ir_var_hidden; mode->allocate_state_slots(1); ir_state_slot *slot0 = &mode->get_state_slots()[0]; slot0->swizzle = SWIZZLE_XXXX; slot0->tokens[0] = STATE_INTERNAL; slot0->tokens[1] = STATE_ADVANCED_BLENDING_MODE; for (int i = 2; i < STATE_LENGTH; i++) slot0->tokens[i] = 0; sh->ir->push_head(fb); sh->ir->push_head(mode); /* Gather any output variables referring to render target 0. * * ARB_enhanced_layouts irritatingly allows the shader to specify * multiple output variables for the same render target, each of * which writes a subset of the components, starting at location_frac. * The variables can't overlap, thankfully. */ ir_variable *outputs[4] = { NULL, NULL, NULL, NULL }; foreach_in_list(ir_instruction, ir, sh->ir) { ir_variable *var = ir->as_variable(); if (!var || var->data.mode != ir_var_shader_out) continue; if (var->data.location == FRAG_RESULT_DATA0 || var->data.location == FRAG_RESULT_COLOR) { const int components = var->type->without_array()->vector_elements; for (int i = 0; i < components; i++) { outputs[var->data.location_frac + i] = var; } } } /* Combine values written to outputs into a single RGBA blend source. * We assign <0, 0, 0, 1> to any components with no corresponding output. */ ir_rvalue *blend_source; if (outputs[0] && outputs[0]->type->without_array()->vector_elements == 4) { blend_source = deref_output(outputs[0]); } else { ir_rvalue *blend_comps[4]; for (int i = 0; i < 4; i++) { ir_variable *var = outputs[i]; if (var) { blend_comps[i] = swizzle(deref_output(outputs[i]), i - outputs[i]->data.location_frac, 1); } else { blend_comps[i] = new(mem_ctx) ir_constant(i < 3 ? 0.0f : 1.0f); } } blend_source = new(mem_ctx) ir_expression(ir_quadop_vector, glsl_type::vec4_type, blend_comps[0], blend_comps[1], blend_comps[2], blend_comps[3]); } ir_function_signature *main = get_main(sh); ir_factory f(&main->body, mem_ctx); ir_variable *result_dest = calc_blend_result(f, mode, fb, blend_source, sh->Program->sh.fs.BlendSupport); /* Copy the result back to the original values. It would be simpler * to demote the program's output variables, and create a new vec4 * output for our result, but this pass runs before we create the * ARB_program_interface_query resource list. So we have to leave * the original outputs in place and use them. */ for (int i = 0; i < 4; i++) { if (!outputs[i]) continue; f.emit(assign(deref_output(outputs[i]), swizzle(result_dest, i, 1), 1 << i)); } validate_ir_tree(sh->ir); return true; }