/* * Copyright © 2014 Broadcom * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "util/ralloc.h" #include "util/register_allocate.h" #include "common/v3d_device_info.h" #include "v3d_compiler.h" #define QPU_R(i) { .magic = false, .index = i } #define ACC_INDEX 0 #define ACC_COUNT 6 #define PHYS_INDEX (ACC_INDEX + ACC_COUNT) #define PHYS_COUNT 64 static inline bool qinst_writes_tmu(const struct v3d_device_info *devinfo, struct qinst *inst) { return (inst->dst.file == QFILE_MAGIC && v3d_qpu_magic_waddr_is_tmu(devinfo, inst->dst.index)) || inst->qpu.sig.wrtmuc; } static bool is_end_of_tmu_sequence(const struct v3d_device_info *devinfo, struct qinst *inst, struct qblock *block) { if (inst->qpu.type == V3D_QPU_INSTR_TYPE_ALU && inst->qpu.alu.add.op == V3D_QPU_A_TMUWT) { return true; } if (!inst->qpu.sig.ldtmu) return false; list_for_each_entry_from(struct qinst, scan_inst, inst->link.next, &block->instructions, link) { if (scan_inst->qpu.sig.ldtmu) return false; if (inst->qpu.type == V3D_QPU_INSTR_TYPE_ALU && inst->qpu.alu.add.op == V3D_QPU_A_TMUWT) { return true; } if (qinst_writes_tmu(devinfo, scan_inst)) return true; } return true; } static bool vir_is_mov_uniform(struct v3d_compile *c, int temp) { struct qinst *def = c->defs[temp]; return def && def->qpu.sig.ldunif; } static int v3d_choose_spill_node(struct v3d_compile *c, struct ra_graph *g, uint32_t *temp_to_node) { const float tmu_scale = 5; float block_scale = 1.0; float spill_costs[c->num_temps]; bool in_tmu_operation = false; bool started_last_seg = false; for (unsigned i = 0; i < c->num_temps; i++) spill_costs[i] = 0.0; /* XXX: Scale the cost up when inside of a loop. */ vir_for_each_block(block, c) { vir_for_each_inst(inst, block) { /* We can't insert new thread switches after * starting output writes. */ bool no_spilling = c->threads > 1 && started_last_seg; /* Discourage spilling of TMU operations */ for (int i = 0; i < vir_get_nsrc(inst); i++) { if (inst->src[i].file != QFILE_TEMP) continue; int temp = inst->src[i].index; if (vir_is_mov_uniform(c, temp)) { spill_costs[temp] += block_scale; } else if (!no_spilling) { float tmu_op_scale = in_tmu_operation ? 3.0 : 1.0; spill_costs[temp] += (block_scale * tmu_scale * tmu_op_scale); } else { BITSET_CLEAR(c->spillable, temp); } } if (inst->dst.file == QFILE_TEMP) { int temp = inst->dst.index; if (vir_is_mov_uniform(c, temp)) { /* We just rematerialize the unform * later. */ } else if (!no_spilling) { spill_costs[temp] += (block_scale * tmu_scale); } else { BITSET_CLEAR(c->spillable, temp); } } /* Refuse to spill a ldvary's dst, because that means * that ldvary's r5 would end up being used across a * thrsw. */ if (inst->qpu.sig.ldvary) { assert(inst->dst.file == QFILE_TEMP); BITSET_CLEAR(c->spillable, inst->dst.index); } if (inst->is_last_thrsw) started_last_seg = true; if (v3d_qpu_writes_vpm(&inst->qpu) || v3d_qpu_uses_tlb(&inst->qpu)) started_last_seg = true; /* Track when we're in between a TMU setup and the * final LDTMU or TMUWT from that TMU setup. We * penalize spills during that time. */ if (is_end_of_tmu_sequence(c->devinfo, inst, block)) in_tmu_operation = false; if (qinst_writes_tmu(c->devinfo, inst)) in_tmu_operation = true; } } for (unsigned i = 0; i < c->num_temps; i++) { if (BITSET_TEST(c->spillable, i)) ra_set_node_spill_cost(g, temp_to_node[i], spill_costs[i]); } return ra_get_best_spill_node(g); } /* The spill offset for this thread takes a bit of setup, so do it once at * program start. */ void v3d_setup_spill_base(struct v3d_compile *c) { c->cursor = vir_before_block(vir_entry_block(c)); int start_num_temps = c->num_temps; /* Each thread wants to be in a separate region of the scratch space * so that the QPUs aren't fighting over cache lines. We have the * driver keep a single global spill BO rather than * per-spilling-program BOs, so we need a uniform from the driver for * what the per-thread scale is. */ struct qreg thread_offset = vir_UMUL(c, vir_TIDX(c), vir_uniform(c, QUNIFORM_SPILL_SIZE_PER_THREAD, 0)); /* Each channel in a reg is 4 bytes, so scale them up by that. */ struct qreg element_offset = vir_SHL(c, vir_EIDX(c), vir_uniform_ui(c, 2)); c->spill_base = vir_ADD(c, vir_ADD(c, thread_offset, element_offset), vir_uniform(c, QUNIFORM_SPILL_OFFSET, 0)); /* Make sure that we don't spill the spilling setup instructions. */ for (int i = start_num_temps; i < c->num_temps; i++) BITSET_CLEAR(c->spillable, i); c->cursor = vir_after_block(c->cur_block); } static void v3d_emit_spill_tmua(struct v3d_compile *c, uint32_t spill_offset) { vir_ADD_dest(c, vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_TMUA), c->spill_base, vir_uniform_ui(c, spill_offset)); } static void v3d_emit_tmu_spill(struct v3d_compile *c, struct qinst *inst, struct qinst *position, uint32_t spill_offset) { c->cursor = vir_after_inst(position); inst->dst = vir_get_temp(c); vir_MOV_dest(c, vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_TMUD), inst->dst); v3d_emit_spill_tmua(c, spill_offset); vir_emit_thrsw(c); vir_TMUWT(c); c->spills++; c->tmu_dirty_rcl = true; } static void v3d_spill_reg(struct v3d_compile *c, int spill_temp) { c->spill_count++; bool is_uniform = vir_is_mov_uniform(c, spill_temp); uint32_t spill_offset = 0; if (!is_uniform) { spill_offset = c->spill_size; c->spill_size += V3D_CHANNELS * sizeof(uint32_t); if (spill_offset == 0) v3d_setup_spill_base(c); } struct qinst *last_thrsw = c->last_thrsw; assert(!last_thrsw || last_thrsw->is_last_thrsw); int start_num_temps = c->num_temps; int uniform_index = ~0; if (is_uniform) { struct qinst *orig_unif = c->defs[spill_temp]; uniform_index = orig_unif->uniform; } /* We must disable the ldunif optimization if we are spilling uniforms */ bool had_disable_ldunif_opt = c->disable_ldunif_opt; c->disable_ldunif_opt = true; struct qinst *start_of_tmu_sequence = NULL; struct qinst *postponed_spill = NULL; vir_for_each_block(block, c) { vir_for_each_inst_safe(inst, block) { /* Track when we're in between a TMU setup and the final * LDTMU or TMUWT from that TMU setup. We can't spill/fill any * temps during that time, because that involves inserting a * new TMU setup/LDTMU sequence, so we postpone the spill or * move the fill up to not intrude in the middle of the TMU * sequence. */ if (is_end_of_tmu_sequence(c->devinfo, inst, block)) { if (postponed_spill) { v3d_emit_tmu_spill(c, postponed_spill, inst, spill_offset); } start_of_tmu_sequence = NULL; postponed_spill = NULL; } if (!start_of_tmu_sequence && qinst_writes_tmu(c->devinfo, inst)) { start_of_tmu_sequence = inst; } /* fills */ for (int i = 0; i < vir_get_nsrc(inst); i++) { if (inst->src[i].file != QFILE_TEMP || inst->src[i].index != spill_temp) { continue; } c->cursor = vir_before_inst(inst); if (is_uniform) { struct qreg unif = vir_uniform(c, c->uniform_contents[uniform_index], c->uniform_data[uniform_index]); inst->src[i] = unif; } else { /* If we have a postponed spill, we don't need * a fill as the temp would not have been * spilled yet. */ if (postponed_spill) continue; if (start_of_tmu_sequence) c->cursor = vir_before_inst(start_of_tmu_sequence); v3d_emit_spill_tmua(c, spill_offset); vir_emit_thrsw(c); inst->src[i] = vir_LDTMU(c); c->fills++; } } /* spills */ if (inst->dst.file == QFILE_TEMP && inst->dst.index == spill_temp) { if (is_uniform) { c->cursor.link = NULL; vir_remove_instruction(c, inst); } else { if (start_of_tmu_sequence) postponed_spill = inst; else v3d_emit_tmu_spill(c, inst, inst, spill_offset); } } /* If we didn't have a last-thrsw inserted by nir_to_vir and * we've been inserting thrsws, then insert a new last_thrsw * right before we start the vpm/tlb sequence for the last * thread segment. */ if (!is_uniform && !last_thrsw && c->last_thrsw && (v3d_qpu_writes_vpm(&inst->qpu) || v3d_qpu_uses_tlb(&inst->qpu))) { c->cursor = vir_before_inst(inst); vir_emit_thrsw(c); last_thrsw = c->last_thrsw; last_thrsw->is_last_thrsw = true; } } } /* Make sure c->last_thrsw is the actual last thrsw, not just one we * inserted in our most recent unspill. */ if (last_thrsw) c->last_thrsw = last_thrsw; /* Don't allow spilling of our spilling instructions. There's no way * they can help get things colored. */ for (int i = start_num_temps; i < c->num_temps; i++) BITSET_CLEAR(c->spillable, i); c->disable_ldunif_opt = had_disable_ldunif_opt; } struct node_to_temp_map { uint32_t temp; uint32_t priority; }; struct v3d_ra_select_callback_data { uint32_t next_acc; uint32_t next_phys; struct node_to_temp_map *map; }; /* Choosing accumulators improves chances of merging QPU instructions * due to these merges requiring that at most 2 rf registers are used * by the add and mul instructions. */ static bool v3d_ra_favor_accum(struct v3d_ra_select_callback_data *v3d_ra, BITSET_WORD *regs, int priority) { /* Favor accumulators if we have less that this number of physical * registers. Accumulators have more restrictions (like being * invalidated through thrsw), so running out of physical registers * even if we have accumulators available can lead to register * allocation failures. */ static const int available_rf_threshold = 5; int available_rf = 0 ; for (int i = 0; i < PHYS_COUNT; i++) { if (BITSET_TEST(regs, PHYS_INDEX + i)) available_rf++; if (available_rf >= available_rf_threshold) break; } if (available_rf < available_rf_threshold) return true; /* Favor accumulators for short-lived temps (our priority represents * liveness), to prevent long-lived temps from grabbing accumulators * and preventing follow-up instructions from using them, potentially * leading to large portions of the shader being unable to use * accumulators and therefore merge instructions successfully. */ static const int priority_threshold = 20; if (priority <= priority_threshold) return true; return false; } static bool v3d_ra_select_accum(struct v3d_ra_select_callback_data *v3d_ra, BITSET_WORD *regs, unsigned int *out) { /* Round-robin through our accumulators to give post-RA instruction * selection more options. */ for (int i = 0; i < ACC_COUNT; i++) { int acc_off = (v3d_ra->next_acc + i) % ACC_COUNT; int acc = ACC_INDEX + acc_off; if (BITSET_TEST(regs, acc)) { v3d_ra->next_acc = acc_off + 1; *out = acc; return true; } } return false; } static bool v3d_ra_select_rf(struct v3d_ra_select_callback_data *v3d_ra, BITSET_WORD *regs, unsigned int *out) { for (int i = 0; i < PHYS_COUNT; i++) { int phys_off = (v3d_ra->next_phys + i) % PHYS_COUNT; int phys = PHYS_INDEX + phys_off; if (BITSET_TEST(regs, phys)) { v3d_ra->next_phys = phys_off + 1; *out = phys; return true; } } return false; } static unsigned int v3d_ra_select_callback(unsigned int n, BITSET_WORD *regs, void *data) { struct v3d_ra_select_callback_data *v3d_ra = data; int r5 = ACC_INDEX + 5; /* Choose r5 for our ldunifs if possible (nobody else can load to that * reg, and it keeps the QPU cond field free from being occupied by * ldunifrf). */ if (BITSET_TEST(regs, r5)) return r5; unsigned int reg; if (v3d_ra_favor_accum(v3d_ra, regs, v3d_ra->map[n].priority) && v3d_ra_select_accum(v3d_ra, regs, ®)) { return reg; } if (v3d_ra_select_rf(v3d_ra, regs, ®)) return reg; /* If we ran out of physical registers try to assign an accumulator * if we didn't favor that option earlier. */ if (v3d_ra_select_accum(v3d_ra, regs, ®)) return reg; unreachable("RA must pass us at least one possible reg."); } bool vir_init_reg_sets(struct v3d_compiler *compiler) { /* Allocate up to 3 regfile classes, for the ways the physical * register file can be divided up for fragment shader threading. */ int max_thread_index = (compiler->devinfo->ver >= 40 ? 2 : 3); compiler->regs = ra_alloc_reg_set(compiler, PHYS_INDEX + PHYS_COUNT, false); if (!compiler->regs) return false; for (int threads = 0; threads < max_thread_index; threads++) { compiler->reg_class_any[threads] = ra_alloc_contig_reg_class(compiler->regs, 1); compiler->reg_class_r5[threads] = ra_alloc_contig_reg_class(compiler->regs, 1); compiler->reg_class_phys_or_acc[threads] = ra_alloc_contig_reg_class(compiler->regs, 1); compiler->reg_class_phys[threads] = ra_alloc_contig_reg_class(compiler->regs, 1); for (int i = PHYS_INDEX; i < PHYS_INDEX + (PHYS_COUNT >> threads); i++) { ra_class_add_reg(compiler->reg_class_phys_or_acc[threads], i); ra_class_add_reg(compiler->reg_class_phys[threads], i); ra_class_add_reg(compiler->reg_class_any[threads], i); } for (int i = ACC_INDEX + 0; i < ACC_INDEX + ACC_COUNT - 1; i++) { ra_class_add_reg(compiler->reg_class_phys_or_acc[threads], i); ra_class_add_reg(compiler->reg_class_any[threads], i); } /* r5 can only store a single 32-bit value, so not much can * use it. */ ra_class_add_reg(compiler->reg_class_r5[threads], ACC_INDEX + 5); ra_class_add_reg(compiler->reg_class_any[threads], ACC_INDEX + 5); } ra_set_finalize(compiler->regs, NULL); return true; } static int node_to_temp_priority(const void *in_a, const void *in_b) { const struct node_to_temp_map *a = in_a; const struct node_to_temp_map *b = in_b; return a->priority - b->priority; } /** * Computes the number of registers to spill in a batch after a register * allocation failure. */ static uint32_t get_spill_batch_size(struct v3d_compile *c) { /* Allow up to 10 spills in batches of 1 in any case to avoid any chance of * over-spilling if the program requires few spills to compile. */ if (c->spill_count < 10) return 1; /* If we have to spill more than that we assume performance is not going to * be great and we shift focus to batching spills to cut down compile * time at the expense of over-spilling. */ return 20; } /* Don't emit spills using the TMU until we've dropped thread count first. We, * may also disable spilling when certain optimizations that are known to * increase register pressure are active so we favor recompiling with * optimizations disabled instead of spilling. */ static inline bool tmu_spilling_allowed(struct v3d_compile *c, int thread_index) { return thread_index == 0 && c->tmu_spilling_allowed; } #define CLASS_BIT_PHYS (1 << 0) #define CLASS_BIT_ACC (1 << 1) #define CLASS_BIT_R5 (1 << 4) #define CLASS_BITS_ANY (CLASS_BIT_PHYS | \ CLASS_BIT_ACC | \ CLASS_BIT_R5) /** * Returns a mapping from QFILE_TEMP indices to struct qpu_regs. * * The return value should be freed by the caller. */ struct qpu_reg * v3d_register_allocate(struct v3d_compile *c, bool *spilled) { uint32_t UNUSED start_num_temps = c->num_temps; struct node_to_temp_map map[c->num_temps]; uint32_t temp_to_node[c->num_temps]; uint8_t class_bits[c->num_temps]; int acc_nodes[ACC_COUNT]; struct v3d_ra_select_callback_data callback_data = { .next_acc = 0, /* Start at RF3, to try to keep the TLB writes from using * RF0-2. */ .next_phys = 3, .map = map, }; *spilled = false; vir_calculate_live_intervals(c); /* Convert 1, 2, 4 threads to 0, 1, 2 index. * * V3D 4.x has double the physical register space, so 64 physical regs * are available at both 1x and 2x threading, and 4x has 32. */ int thread_index = ffs(c->threads) - 1; if (c->devinfo->ver >= 40) { if (thread_index >= 1) thread_index--; } struct ra_graph *g = ra_alloc_interference_graph(c->compiler->regs, c->num_temps + ARRAY_SIZE(acc_nodes)); ra_set_select_reg_callback(g, v3d_ra_select_callback, &callback_data); /* Make some fixed nodes for the accumulators, which we will need to * interfere with when ops have implied r3/r4 writes or for the thread * switches. We could represent these as classes for the nodes to * live in, but the classes take up a lot of memory to set up, so we * don't want to make too many. */ for (int i = 0; i < ARRAY_SIZE(acc_nodes); i++) { acc_nodes[i] = c->num_temps + i; ra_set_node_reg(g, acc_nodes[i], ACC_INDEX + i); } for (uint32_t i = 0; i < c->num_temps; i++) { map[i].temp = i; map[i].priority = c->temp_end[i] - c->temp_start[i]; } qsort(map, c->num_temps, sizeof(map[0]), node_to_temp_priority); for (uint32_t i = 0; i < c->num_temps; i++) { temp_to_node[map[i].temp] = i; } /* Figure out our register classes and preallocated registers. We * start with any temp being able to be in any file, then instructions * incrementally remove bits that the temp definitely can't be in. */ memset(class_bits, CLASS_BITS_ANY, sizeof(class_bits)); int ip = 0; vir_for_each_inst_inorder(inst, c) { /* If the instruction writes r3/r4 (and optionally moves its * result to a temp), nothing else can be stored in r3/r4 across * it. */ if (vir_writes_r3(c->devinfo, inst)) { for (int i = 0; i < c->num_temps; i++) { if (c->temp_start[i] < ip && c->temp_end[i] > ip) { ra_add_node_interference(g, temp_to_node[i], acc_nodes[3]); } } } if (vir_writes_r4(c->devinfo, inst)) { for (int i = 0; i < c->num_temps; i++) { if (c->temp_start[i] < ip && c->temp_end[i] > ip) { ra_add_node_interference(g, temp_to_node[i], acc_nodes[4]); } } } if (inst->qpu.type == V3D_QPU_INSTR_TYPE_ALU) { switch (inst->qpu.alu.add.op) { case V3D_QPU_A_LDVPMV_IN: case V3D_QPU_A_LDVPMV_OUT: case V3D_QPU_A_LDVPMD_IN: case V3D_QPU_A_LDVPMD_OUT: case V3D_QPU_A_LDVPMP: case V3D_QPU_A_LDVPMG_IN: case V3D_QPU_A_LDVPMG_OUT: /* LDVPMs only store to temps (the MA flag * decides whether the LDVPM is in or out) */ assert(inst->dst.file == QFILE_TEMP); class_bits[inst->dst.index] &= CLASS_BIT_PHYS; break; case V3D_QPU_A_RECIP: case V3D_QPU_A_RSQRT: case V3D_QPU_A_EXP: case V3D_QPU_A_LOG: case V3D_QPU_A_SIN: case V3D_QPU_A_RSQRT2: /* The SFU instructions write directly to the * phys regfile. */ assert(inst->dst.file == QFILE_TEMP); class_bits[inst->dst.index] &= CLASS_BIT_PHYS; break; default: break; } } if (inst->src[0].file == QFILE_REG) { switch (inst->src[0].index) { case 0: case 1: case 2: case 3: /* Payload setup instructions: Force allocate * the dst to the given register (so the MOV * will disappear). */ assert(inst->qpu.alu.mul.op == V3D_QPU_M_MOV); assert(inst->dst.file == QFILE_TEMP); ra_set_node_reg(g, temp_to_node[inst->dst.index], PHYS_INDEX + inst->src[0].index); break; } } if (inst->dst.file == QFILE_TEMP) { /* Only a ldunif gets to write to R5, which only has a * single 32-bit channel of storage. */ if (!inst->qpu.sig.ldunif) { class_bits[inst->dst.index] &= ~CLASS_BIT_R5; } else { /* Until V3D 4.x, we could only load a uniform * to r5, so we'll need to spill if uniform * loads interfere with each other. */ if (c->devinfo->ver < 40) { class_bits[inst->dst.index] &= CLASS_BIT_R5; } } } if (inst->qpu.sig.thrsw) { /* All accumulators are invalidated across a thread * switch. */ for (int i = 0; i < c->num_temps; i++) { if (c->temp_start[i] < ip && c->temp_end[i] > ip) class_bits[i] &= CLASS_BIT_PHYS; } } ip++; } for (uint32_t i = 0; i < c->num_temps; i++) { if (class_bits[i] == CLASS_BIT_PHYS) { ra_set_node_class(g, temp_to_node[i], c->compiler->reg_class_phys[thread_index]); } else if (class_bits[i] == (CLASS_BIT_R5)) { ra_set_node_class(g, temp_to_node[i], c->compiler->reg_class_r5[thread_index]); } else if (class_bits[i] == (CLASS_BIT_PHYS | CLASS_BIT_ACC)) { ra_set_node_class(g, temp_to_node[i], c->compiler->reg_class_phys_or_acc[thread_index]); } else { assert(class_bits[i] == CLASS_BITS_ANY); ra_set_node_class(g, temp_to_node[i], c->compiler->reg_class_any[thread_index]); } } for (uint32_t i = 0; i < c->num_temps; i++) { for (uint32_t j = i + 1; j < c->num_temps; j++) { if (!(c->temp_start[i] >= c->temp_end[j] || c->temp_start[j] >= c->temp_end[i])) { ra_add_node_interference(g, temp_to_node[i], temp_to_node[j]); } } } /* Debug code to force a bit of register spilling, for running across * conformance tests to make sure that spilling works. */ int force_register_spills = 0; if (c->spill_size < V3D_CHANNELS * sizeof(uint32_t) * force_register_spills) { int node = v3d_choose_spill_node(c, g, temp_to_node); if (node != -1) { v3d_spill_reg(c, map[node].temp); ralloc_free(g); *spilled = true; return NULL; } } bool ok = ra_allocate(g); if (!ok) { const uint32_t spill_batch_size = get_spill_batch_size(c); for (uint32_t i = 0; i < spill_batch_size; i++) { int node = v3d_choose_spill_node(c, g, temp_to_node); if (node == -1) break; /* TMU spills inject thrsw signals that invalidate * accumulators, so we can't batch them. */ bool is_uniform = vir_is_mov_uniform(c, map[node].temp); if (i > 0 && !is_uniform) break; if (is_uniform || tmu_spilling_allowed(c, thread_index)) { v3d_spill_reg(c, map[node].temp); /* Ask the outer loop to call back in. */ *spilled = true; /* See comment above about batching TMU spills. */ if (!is_uniform) { assert(i == 0); break; } } else { break; } } ralloc_free(g); return NULL; } /* Ensure that we are not accessing temp_to_node out of bounds. We * should never trigger this assertion because `c->num_temps` only * grows when we spill, in which case we return early and don't get * here. */ assert(start_num_temps == c->num_temps); struct qpu_reg *temp_registers = calloc(c->num_temps, sizeof(*temp_registers)); for (uint32_t i = 0; i < c->num_temps; i++) { int ra_reg = ra_get_node_reg(g, temp_to_node[i]); if (ra_reg < PHYS_INDEX) { temp_registers[i].magic = true; temp_registers[i].index = (V3D_QPU_WADDR_R0 + ra_reg - ACC_INDEX); } else { temp_registers[i].magic = false; temp_registers[i].index = ra_reg - PHYS_INDEX; } } ralloc_free(g); return temp_registers; }