/* * Copyright © 2018 Valve Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Daniel Schürmann (daniel.schuermann@campus.tu-berlin.de) * */ #include #include #include "aco_ir.h" #include "util/half_float.h" #include "util/u_math.h" namespace aco { /** * The optimizer works in 4 phases: * (1) The first pass collects information for each ssa-def, * propagates reg->reg operands of the same type, inline constants * and neg/abs input modifiers. * (2) The second pass combines instructions like mad, omod, clamp and * propagates sgpr's on VALU instructions. * This pass depends on information collected in the first pass. * (3) The third pass goes backwards, and selects instructions, * i.e. decides if a mad instruction is profitable and eliminates dead code. * (4) The fourth pass cleans up the sequence: literals get applied and dead * instructions are removed from the sequence. */ struct mad_info { aco_ptr add_instr; uint32_t mul_temp_id; uint16_t literal_idx; bool check_literal; mad_info(aco_ptr instr, uint32_t id) : add_instr(std::move(instr)), mul_temp_id(id), check_literal(false) {} }; enum Label { label_vec = 1 << 0, label_constant_32bit = 1 << 1, /* label_{abs,neg,mul,omod2,omod4,omod5,clamp} are used for both 16 and * 32-bit operations but this shouldn't cause any issues because we don't * look through any conversions */ label_abs = 1 << 2, label_neg = 1 << 3, label_mul = 1 << 4, label_temp = 1 << 5, label_literal = 1 << 6, label_mad = 1 << 7, label_omod2 = 1 << 8, label_omod4 = 1 << 9, label_omod5 = 1 << 10, label_omod_success = 1 << 11, label_clamp = 1 << 12, label_clamp_success = 1 << 13, label_undefined = 1 << 14, label_vcc = 1 << 15, label_b2f = 1 << 16, label_add_sub = 1 << 17, label_bitwise = 1 << 18, label_minmax = 1 << 19, label_vopc = 1 << 20, label_uniform_bool = 1 << 21, label_constant_64bit = 1 << 22, label_uniform_bitwise = 1 << 23, label_scc_invert = 1 << 24, label_vcc_hint = 1 << 25, label_scc_needed = 1 << 26, label_b2i = 1 << 27, label_constant_16bit = 1 << 29, }; static constexpr uint64_t instr_labels = label_vec | label_mul | label_mad | label_omod_success | label_clamp_success | label_add_sub | label_bitwise | label_uniform_bitwise | label_minmax | label_vopc; static constexpr uint64_t temp_labels = label_abs | label_neg | label_temp | label_vcc | label_b2f | label_uniform_bool | label_omod2 | label_omod4 | label_omod5 | label_clamp | label_scc_invert | label_b2i; static constexpr uint32_t val_labels = label_constant_32bit | label_constant_64bit | label_constant_16bit | label_literal; struct ssa_info { uint64_t label; union { uint32_t val; Temp temp; Instruction* instr; }; ssa_info() : label(0) {} void add_label(Label new_label) { /* Since all labels which use "instr" use it for the same thing * (indicating the defining instruction), there is no need to clear * any other instr labels. */ if (new_label & instr_labels) label &= ~(temp_labels | val_labels); /* instr, temp and val alias */ if (new_label & temp_labels) { label &= ~temp_labels; label &= ~(instr_labels | val_labels); /* instr, temp and val alias */ } uint32_t const_labels = label_literal | label_constant_32bit | label_constant_64bit | label_constant_16bit; if (new_label & const_labels) { label &= ~val_labels | const_labels; label &= ~(instr_labels | temp_labels); /* instr, temp and val alias */ } else if (new_label & val_labels) { label &= ~val_labels; label &= ~(instr_labels | temp_labels); /* instr, temp and val alias */ } label |= new_label; } void set_vec(Instruction* vec) { add_label(label_vec); instr = vec; } bool is_vec() { return label & label_vec; } void set_constant(chip_class chip, uint64_t constant) { Operand op16((uint16_t)constant); Operand op32((uint32_t)constant); add_label(label_literal); val = constant; if (chip >= GFX8 && !op16.isLiteral()) add_label(label_constant_16bit); if (!op32.isLiteral() || ((uint32_t)constant == 0x3e22f983 && chip >= GFX8)) add_label(label_constant_32bit); if (constant <= 64) { add_label(label_constant_64bit); } else if (constant >= 0xFFFFFFFFFFFFFFF0) { /* [-16 .. -1] */ add_label(label_constant_64bit); } else if (constant == 0x3FE0000000000000) { /* 0.5 */ add_label(label_constant_64bit); } else if (constant == 0xBFE0000000000000) { /* -0.5 */ add_label(label_constant_64bit); } else if (constant == 0x3FF0000000000000) { /* 1.0 */ add_label(label_constant_64bit); } else if (constant == 0xBFF0000000000000) { /* -1.0 */ add_label(label_constant_64bit); } else if (constant == 0x4000000000000000) { /* 2.0 */ add_label(label_constant_64bit); } else if (constant == 0xC000000000000000) { /* -2.0 */ add_label(label_constant_64bit); } else if (constant == 0x4010000000000000) { /* 4.0 */ add_label(label_constant_64bit); } else if (constant == 0xC010000000000000) { /* -4.0 */ add_label(label_constant_64bit); } if (label & label_constant_64bit) { val = Operand(constant).constantValue(); if (val != constant) label &= ~(label_literal | label_constant_16bit | label_constant_32bit); } } bool is_constant(unsigned bits) { switch (bits) { case 8: return label & label_literal; case 16: return label & label_constant_16bit; case 32: return label & label_constant_32bit; case 64: return label & label_constant_64bit; } return false; } bool is_literal(unsigned bits) { bool is_lit = label & label_literal; switch (bits) { case 8: return false; case 16: return is_lit && ~(label & label_constant_16bit); case 32: return is_lit && ~(label & label_constant_32bit); case 64: return false; } return false; } bool is_constant_or_literal(unsigned bits) { if (bits == 64) return label & label_constant_64bit; else return label & label_literal; } void set_abs(Temp abs_temp) { add_label(label_abs); temp = abs_temp; } bool is_abs() { return label & label_abs; } void set_neg(Temp neg_temp) { add_label(label_neg); temp = neg_temp; } bool is_neg() { return label & label_neg; } void set_neg_abs(Temp neg_abs_temp) { add_label((Label)((uint32_t)label_abs | (uint32_t)label_neg)); temp = neg_abs_temp; } void set_mul(Instruction* mul) { add_label(label_mul); instr = mul; } bool is_mul() { return label & label_mul; } void set_temp(Temp tmp) { add_label(label_temp); temp = tmp; } bool is_temp() { return label & label_temp; } void set_mad(Instruction* mad, uint32_t mad_info_idx) { add_label(label_mad); mad->pass_flags = mad_info_idx; instr = mad; } bool is_mad() { return label & label_mad; } void set_omod2(Temp def) { add_label(label_omod2); temp = def; } bool is_omod2() { return label & label_omod2; } void set_omod4(Temp def) { add_label(label_omod4); temp = def; } bool is_omod4() { return label & label_omod4; } void set_omod5(Temp def) { add_label(label_omod5); temp = def; } bool is_omod5() { return label & label_omod5; } void set_omod_success(Instruction* omod_instr) { add_label(label_omod_success); instr = omod_instr; } bool is_omod_success() { return label & label_omod_success; } void set_clamp(Temp def) { add_label(label_clamp); temp = def; } bool is_clamp() { return label & label_clamp; } void set_clamp_success(Instruction* clamp_instr) { add_label(label_clamp_success); instr = clamp_instr; } bool is_clamp_success() { return label & label_clamp_success; } void set_undefined() { add_label(label_undefined); } bool is_undefined() { return label & label_undefined; } void set_vcc(Temp vcc) { add_label(label_vcc); temp = vcc; } bool is_vcc() { return label & label_vcc; } void set_b2f(Temp val) { add_label(label_b2f); temp = val; } bool is_b2f() { return label & label_b2f; } void set_add_sub(Instruction *add_sub_instr) { add_label(label_add_sub); instr = add_sub_instr; } bool is_add_sub() { return label & label_add_sub; } void set_bitwise(Instruction *bitwise_instr) { add_label(label_bitwise); instr = bitwise_instr; } bool is_bitwise() { return label & label_bitwise; } void set_uniform_bitwise() { add_label(label_uniform_bitwise); } bool is_uniform_bitwise() { return label & label_uniform_bitwise; } void set_minmax(Instruction *minmax_instr) { add_label(label_minmax); instr = minmax_instr; } bool is_minmax() { return label & label_minmax; } void set_vopc(Instruction *vopc_instr) { add_label(label_vopc); instr = vopc_instr; } bool is_vopc() { return label & label_vopc; } void set_scc_needed() { add_label(label_scc_needed); } bool is_scc_needed() { return label & label_scc_needed; } void set_scc_invert(Temp scc_inv) { add_label(label_scc_invert); temp = scc_inv; } bool is_scc_invert() { return label & label_scc_invert; } void set_uniform_bool(Temp uniform_bool) { add_label(label_uniform_bool); temp = uniform_bool; } bool is_uniform_bool() { return label & label_uniform_bool; } void set_vcc_hint() { add_label(label_vcc_hint); } bool is_vcc_hint() { return label & label_vcc_hint; } void set_b2i(Temp val) { add_label(label_b2i); temp = val; } bool is_b2i() { return label & label_b2i; } }; struct opt_ctx { Program* program; std::vector> instructions; ssa_info* info; std::pair last_literal; std::vector mad_infos; std::vector uses; }; struct CmpInfo { aco_opcode ordered; aco_opcode unordered; aco_opcode ordered_swapped; aco_opcode unordered_swapped; aco_opcode inverse; aco_opcode f32; unsigned size; }; ALWAYS_INLINE bool get_cmp_info(aco_opcode op, CmpInfo *info); bool can_swap_operands(aco_ptr& instr) { if (instr->operands[0].isConstant() || (instr->operands[0].isTemp() && instr->operands[0].getTemp().type() == RegType::sgpr)) return false; switch (instr->opcode) { case aco_opcode::v_add_u32: case aco_opcode::v_add_co_u32: case aco_opcode::v_add_co_u32_e64: case aco_opcode::v_add_i32: case aco_opcode::v_add_f16: case aco_opcode::v_add_f32: case aco_opcode::v_mul_f16: case aco_opcode::v_mul_f32: case aco_opcode::v_or_b32: case aco_opcode::v_and_b32: case aco_opcode::v_xor_b32: case aco_opcode::v_max_f16: case aco_opcode::v_max_f32: case aco_opcode::v_min_f16: case aco_opcode::v_min_f32: case aco_opcode::v_max_i32: case aco_opcode::v_min_i32: case aco_opcode::v_max_u32: case aco_opcode::v_min_u32: case aco_opcode::v_max_i16: case aco_opcode::v_min_i16: case aco_opcode::v_max_u16: case aco_opcode::v_min_u16: case aco_opcode::v_max_i16_e64: case aco_opcode::v_min_i16_e64: case aco_opcode::v_max_u16_e64: case aco_opcode::v_min_u16_e64: return true; case aco_opcode::v_sub_f16: instr->opcode = aco_opcode::v_subrev_f16; return true; case aco_opcode::v_sub_f32: instr->opcode = aco_opcode::v_subrev_f32; return true; case aco_opcode::v_sub_co_u32: instr->opcode = aco_opcode::v_subrev_co_u32; return true; case aco_opcode::v_sub_u16: instr->opcode = aco_opcode::v_subrev_u16; return true; case aco_opcode::v_sub_u32: instr->opcode = aco_opcode::v_subrev_u32; return true; default: { CmpInfo info; get_cmp_info(instr->opcode, &info); if (info.ordered == instr->opcode) { instr->opcode = info.ordered_swapped; return true; } if (info.unordered == instr->opcode) { instr->opcode = info.unordered_swapped; return true; } return false; } } } bool can_use_VOP3(opt_ctx& ctx, const aco_ptr& instr) { if (instr->isVOP3()) return true; if (instr->operands.size() && instr->operands[0].isLiteral() && ctx.program->chip_class < GFX10) return false; if (instr->isDPP() || instr->isSDWA()) return false; return instr->opcode != aco_opcode::v_madmk_f32 && instr->opcode != aco_opcode::v_madak_f32 && instr->opcode != aco_opcode::v_madmk_f16 && instr->opcode != aco_opcode::v_madak_f16 && instr->opcode != aco_opcode::v_fmamk_f32 && instr->opcode != aco_opcode::v_fmaak_f32 && instr->opcode != aco_opcode::v_fmamk_f16 && instr->opcode != aco_opcode::v_fmaak_f16 && instr->opcode != aco_opcode::v_readlane_b32 && instr->opcode != aco_opcode::v_writelane_b32 && instr->opcode != aco_opcode::v_readfirstlane_b32; } bool can_apply_sgprs(aco_ptr& instr) { return instr->opcode != aco_opcode::v_readfirstlane_b32 && instr->opcode != aco_opcode::v_readlane_b32 && instr->opcode != aco_opcode::v_readlane_b32_e64 && instr->opcode != aco_opcode::v_writelane_b32 && instr->opcode != aco_opcode::v_writelane_b32_e64; } void to_VOP3(opt_ctx& ctx, aco_ptr& instr) { if (instr->isVOP3()) return; aco_ptr tmp = std::move(instr); Format format = asVOP3(tmp->format); instr.reset(create_instruction(tmp->opcode, format, tmp->operands.size(), tmp->definitions.size())); std::copy(tmp->operands.cbegin(), tmp->operands.cend(), instr->operands.begin()); for (unsigned i = 0; i < instr->definitions.size(); i++) { instr->definitions[i] = tmp->definitions[i]; if (instr->definitions[i].isTemp()) { ssa_info& info = ctx.info[instr->definitions[i].tempId()]; if (info.label & instr_labels && info.instr == tmp.get()) info.instr = instr.get(); } } } /* only covers special cases */ bool alu_can_accept_constant(aco_opcode opcode, unsigned operand) { switch (opcode) { case aco_opcode::v_interp_p2_f32: case aco_opcode::v_mac_f32: case aco_opcode::v_writelane_b32: case aco_opcode::v_writelane_b32_e64: case aco_opcode::v_cndmask_b32: return operand != 2; case aco_opcode::s_addk_i32: case aco_opcode::s_mulk_i32: case aco_opcode::p_wqm: case aco_opcode::p_extract_vector: case aco_opcode::p_split_vector: case aco_opcode::v_readlane_b32: case aco_opcode::v_readlane_b32_e64: case aco_opcode::v_readfirstlane_b32: return operand != 0; default: return true; } } bool valu_can_accept_vgpr(aco_ptr& instr, unsigned operand) { if (instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_readlane_b32_e64 || instr->opcode == aco_opcode::v_writelane_b32 || instr->opcode == aco_opcode::v_writelane_b32_e64) return operand != 1; return true; } /* check constant bus and literal limitations */ bool check_vop3_operands(opt_ctx& ctx, unsigned num_operands, Operand *operands) { int limit = ctx.program->chip_class >= GFX10 ? 2 : 1; Operand literal32(s1); Operand literal64(s2); unsigned num_sgprs = 0; unsigned sgpr[] = {0, 0}; for (unsigned i = 0; i < num_operands; i++) { Operand op = operands[i]; if (op.hasRegClass() && op.regClass().type() == RegType::sgpr) { /* two reads of the same SGPR count as 1 to the limit */ if (op.tempId() != sgpr[0] && op.tempId() != sgpr[1]) { if (num_sgprs < 2) sgpr[num_sgprs++] = op.tempId(); limit--; if (limit < 0) return false; } } else if (op.isLiteral()) { if (ctx.program->chip_class < GFX10) return false; if (!literal32.isUndefined() && literal32.constantValue() != op.constantValue()) return false; if (!literal64.isUndefined() && literal64.constantValue() != op.constantValue()) return false; /* Any number of 32-bit literals counts as only 1 to the limit. Same * (but separately) for 64-bit literals. */ if (op.size() == 1 && literal32.isUndefined()) { limit--; literal32 = op; } else if (op.size() == 2 && literal64.isUndefined()) { limit--; literal64 = op; } if (limit < 0) return false; } } return true; } bool parse_base_offset(opt_ctx &ctx, Instruction* instr, unsigned op_index, Temp *base, uint32_t *offset, bool prevent_overflow) { Operand op = instr->operands[op_index]; if (!op.isTemp()) return false; Temp tmp = op.getTemp(); if (!ctx.info[tmp.id()].is_add_sub()) return false; Instruction *add_instr = ctx.info[tmp.id()].instr; switch (add_instr->opcode) { case aco_opcode::v_add_u32: case aco_opcode::v_add_co_u32: case aco_opcode::v_add_co_u32_e64: case aco_opcode::s_add_i32: case aco_opcode::s_add_u32: break; default: return false; } if (prevent_overflow && !add_instr->definitions[0].isNUW()) return false; if (add_instr->usesModifiers()) return false; for (unsigned i = 0; i < 2; i++) { if (add_instr->operands[i].isConstant()) { *offset = add_instr->operands[i].constantValue(); } else if (add_instr->operands[i].isTemp() && ctx.info[add_instr->operands[i].tempId()].is_constant_or_literal(32)) { *offset = ctx.info[add_instr->operands[i].tempId()].val; } else { continue; } if (!add_instr->operands[!i].isTemp()) continue; uint32_t offset2 = 0; if (parse_base_offset(ctx, add_instr, !i, base, &offset2, prevent_overflow)) { *offset += offset2; } else { *base = add_instr->operands[!i].getTemp(); } return true; } return false; } unsigned get_operand_size(aco_ptr& instr, unsigned index) { if (instr->format == Format::PSEUDO) return instr->operands[index].bytes() * 8u; else if (instr->opcode == aco_opcode::v_mad_u64_u32 || instr->opcode == aco_opcode::v_mad_i64_i32) return index == 2 ? 64 : 32; else if (instr->isVALU() || instr->isSALU()) return instr_info.operand_size[(int)instr->opcode]; else return 0; } Operand get_constant_op(opt_ctx &ctx, ssa_info info, uint32_t bits) { if (bits == 8) return Operand((uint8_t)info.val); if (bits == 16) return Operand((uint16_t)info.val); // TODO: this functions shouldn't be needed if we store Operand instead of value. Operand op(info.val, bits == 64); if (info.is_literal(32) && info.val == 0x3e22f983 && ctx.program->chip_class >= GFX8) op.setFixed(PhysReg{248}); /* 1/2 PI can be an inline constant on GFX8+ */ return op; } bool fixed_to_exec(Operand op) { return op.isFixed() && op.physReg() == exec; } void label_instruction(opt_ctx &ctx, Block& block, aco_ptr& instr) { if (instr->isSALU() || instr->isVALU() || instr->format == Format::PSEUDO) { ASSERTED bool all_const = false; for (Operand& op : instr->operands) all_const = all_const && (!op.isTemp() || ctx.info[op.tempId()].is_constant_or_literal(32)); perfwarn(all_const, "All instruction operands are constant", instr.get()); } for (unsigned i = 0; i < instr->operands.size(); i++) { if (!instr->operands[i].isTemp()) continue; ssa_info info = ctx.info[instr->operands[i].tempId()]; /* propagate undef */ if (info.is_undefined() && is_phi(instr)) instr->operands[i] = Operand(instr->operands[i].regClass()); /* propagate reg->reg of same type */ if (info.is_temp() && info.temp.regClass() == instr->operands[i].getTemp().regClass()) { instr->operands[i].setTemp(ctx.info[instr->operands[i].tempId()].temp); info = ctx.info[info.temp.id()]; } /* SALU / PSEUDO: propagate inline constants */ if (instr->isSALU() || instr->format == Format::PSEUDO) { bool is_subdword = false; // TODO: optimize SGPR propagation for subdword pseudo instructions on gfx9+ if (instr->format == Format::PSEUDO) { is_subdword = std::any_of(instr->definitions.begin(), instr->definitions.end(), [] (const Definition& def) { return def.regClass().is_subdword();}); is_subdword = is_subdword || std::any_of(instr->operands.begin(), instr->operands.end(), [] (const Operand& op) { return op.hasRegClass() && op.regClass().is_subdword();}); if (is_subdword && ctx.program->chip_class < GFX9) continue; } if (info.is_temp() && info.temp.type() == RegType::sgpr) { instr->operands[i].setTemp(info.temp); info = ctx.info[info.temp.id()]; } else if (info.is_temp() && info.temp.type() == RegType::vgpr) { /* propagate vgpr if it can take it */ switch (instr->opcode) { case aco_opcode::p_create_vector: case aco_opcode::p_split_vector: case aco_opcode::p_extract_vector: case aco_opcode::p_phi: { const bool all_vgpr = std::none_of(instr->definitions.begin(), instr->definitions.end(), [] (const Definition& def) { return def.getTemp().type() != RegType::vgpr;}); if (all_vgpr) { instr->operands[i] = Operand(info.temp); info = ctx.info[info.temp.id()]; } break; } default: break; } } unsigned bits = get_operand_size(instr, i); if ((info.is_constant(bits) || (!is_subdword && info.is_literal(bits) && instr->format == Format::PSEUDO)) && !instr->operands[i].isFixed() && alu_can_accept_constant(instr->opcode, i)) { instr->operands[i] = get_constant_op(ctx, info, bits); continue; } } /* VALU: propagate neg, abs & inline constants */ else if (instr->isVALU()) { if (info.is_temp() && info.temp.type() == RegType::vgpr && valu_can_accept_vgpr(instr, i)) { instr->operands[i].setTemp(info.temp); info = ctx.info[info.temp.id()]; } /* for instructions other than v_cndmask_b32, the size of the instruction should match the operand size */ unsigned can_use_mod = instr->opcode != aco_opcode::v_cndmask_b32 || instr->operands[i].getTemp().bytes() == 4; can_use_mod = can_use_mod && instr_info.can_use_input_modifiers[(int)instr->opcode]; if (info.is_abs() && (can_use_VOP3(ctx, instr) || instr->isDPP()) && can_use_mod) { if (!instr->isDPP()) to_VOP3(ctx, instr); instr->operands[i] = Operand(info.temp); if (instr->isDPP()) static_cast(instr.get())->abs[i] = true; else static_cast(instr.get())->abs[i] = true; } if (info.is_neg() && instr->opcode == aco_opcode::v_add_f32) { instr->opcode = i ? aco_opcode::v_sub_f32 : aco_opcode::v_subrev_f32; instr->operands[i].setTemp(info.temp); continue; } else if (info.is_neg() && instr->opcode == aco_opcode::v_add_f16) { instr->opcode = i ? aco_opcode::v_sub_f16 : aco_opcode::v_subrev_f16; instr->operands[i].setTemp(info.temp); continue; } else if (info.is_neg() && (can_use_VOP3(ctx, instr) || instr->isDPP()) && can_use_mod) { if (!instr->isDPP()) to_VOP3(ctx, instr); instr->operands[i].setTemp(info.temp); if (instr->isDPP()) static_cast(instr.get())->neg[i] = true; else static_cast(instr.get())->neg[i] = true; continue; } unsigned bits = get_operand_size(instr, i); if (info.is_constant(bits) && alu_can_accept_constant(instr->opcode, i)) { Operand op = get_constant_op(ctx, info, bits); perfwarn(instr->opcode == aco_opcode::v_cndmask_b32 && i == 2, "v_cndmask_b32 with a constant selector", instr.get()); if (i == 0 || instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_writelane_b32) { instr->operands[i] = op; continue; } else if (!instr->isVOP3() && can_swap_operands(instr)) { instr->operands[i] = instr->operands[0]; instr->operands[0] = op; continue; } else if (can_use_VOP3(ctx, instr)) { to_VOP3(ctx, instr); instr->operands[i] = op; continue; } } } /* MUBUF: propagate constants and combine additions */ else if (instr->format == Format::MUBUF) { MUBUF_instruction *mubuf = static_cast(instr.get()); Temp base; uint32_t offset; while (info.is_temp()) info = ctx.info[info.temp.id()]; /* According to AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(), vaddr * overflow for scratch accesses works only on GFX9+ and saddr overflow * never works. Since swizzling is the only thing that separates * scratch accesses and other accesses and swizzling changing how * addressing works significantly, this probably applies to swizzled * MUBUF accesses. */ bool vaddr_prevent_overflow = mubuf->swizzled && ctx.program->chip_class < GFX9; bool saddr_prevent_overflow = mubuf->swizzled; if (mubuf->offen && i == 1 && info.is_constant_or_literal(32) && mubuf->offset + info.val < 4096) { assert(!mubuf->idxen); instr->operands[1] = Operand(v1); mubuf->offset += info.val; mubuf->offen = false; continue; } else if (i == 2 && info.is_constant_or_literal(32) && mubuf->offset + info.val < 4096) { instr->operands[2] = Operand((uint32_t) 0); mubuf->offset += info.val; continue; } else if (mubuf->offen && i == 1 && parse_base_offset(ctx, instr.get(), i, &base, &offset, vaddr_prevent_overflow) && base.regClass() == v1 && mubuf->offset + offset < 4096) { assert(!mubuf->idxen); instr->operands[1].setTemp(base); mubuf->offset += offset; continue; } else if (i == 2 && parse_base_offset(ctx, instr.get(), i, &base, &offset, saddr_prevent_overflow) && base.regClass() == s1 && mubuf->offset + offset < 4096) { instr->operands[i].setTemp(base); mubuf->offset += offset; continue; } } /* DS: combine additions */ else if (instr->format == Format::DS) { DS_instruction *ds = static_cast(instr.get()); Temp base; uint32_t offset; bool has_usable_ds_offset = ctx.program->chip_class >= GFX7; if (has_usable_ds_offset && i == 0 && parse_base_offset(ctx, instr.get(), i, &base, &offset, false) && base.regClass() == instr->operands[i].regClass() && instr->opcode != aco_opcode::ds_swizzle_b32) { if (instr->opcode == aco_opcode::ds_write2_b32 || instr->opcode == aco_opcode::ds_read2_b32 || instr->opcode == aco_opcode::ds_write2_b64 || instr->opcode == aco_opcode::ds_read2_b64) { unsigned mask = (instr->opcode == aco_opcode::ds_write2_b64 || instr->opcode == aco_opcode::ds_read2_b64) ? 0x7 : 0x3; unsigned shifts = (instr->opcode == aco_opcode::ds_write2_b64 || instr->opcode == aco_opcode::ds_read2_b64) ? 3 : 2; if ((offset & mask) == 0 && ds->offset0 + (offset >> shifts) <= 255 && ds->offset1 + (offset >> shifts) <= 255) { instr->operands[i].setTemp(base); ds->offset0 += offset >> shifts; ds->offset1 += offset >> shifts; } } else { if (ds->offset0 + offset <= 65535) { instr->operands[i].setTemp(base); ds->offset0 += offset; } } } } /* SMEM: propagate constants and combine additions */ else if (instr->format == Format::SMEM) { SMEM_instruction *smem = static_cast(instr.get()); Temp base; uint32_t offset; bool prevent_overflow = smem->operands[0].size() > 2 || smem->prevent_overflow; if (i == 1 && info.is_constant_or_literal(32) && ((ctx.program->chip_class == GFX6 && info.val <= 0x3FF) || (ctx.program->chip_class == GFX7 && info.val <= 0xFFFFFFFF) || (ctx.program->chip_class >= GFX8 && info.val <= 0xFFFFF))) { instr->operands[i] = Operand(info.val); continue; } else if (i == 1 && parse_base_offset(ctx, instr.get(), i, &base, &offset, prevent_overflow) && base.regClass() == s1 && offset <= 0xFFFFF && ctx.program->chip_class >= GFX9) { bool soe = smem->operands.size() >= (!smem->definitions.empty() ? 3 : 4); if (soe && (!ctx.info[smem->operands.back().tempId()].is_constant_or_literal(32) || ctx.info[smem->operands.back().tempId()].val != 0)) { continue; } if (soe) { smem->operands[1] = Operand(offset); smem->operands.back() = Operand(base); } else { SMEM_instruction *new_instr = create_instruction(smem->opcode, Format::SMEM, smem->operands.size() + 1, smem->definitions.size()); new_instr->operands[0] = smem->operands[0]; new_instr->operands[1] = Operand(offset); if (smem->definitions.empty()) new_instr->operands[2] = smem->operands[2]; new_instr->operands.back() = Operand(base); if (!smem->definitions.empty()) new_instr->definitions[0] = smem->definitions[0]; new_instr->sync = smem->sync; new_instr->glc = smem->glc; new_instr->dlc = smem->dlc; new_instr->nv = smem->nv; new_instr->disable_wqm = smem->disable_wqm; instr.reset(new_instr); smem = static_cast(instr.get()); } continue; } } else if (instr->format == Format::PSEUDO_BRANCH) { if (ctx.info[instr->operands[0].tempId()].is_scc_invert()) { /* Flip the branch instruction to get rid of the scc_invert instruction */ instr->opcode = instr->opcode == aco_opcode::p_cbranch_z ? aco_opcode::p_cbranch_nz : aco_opcode::p_cbranch_z; instr->operands[0].setTemp(ctx.info[instr->operands[0].tempId()].temp); } } } /* if this instruction doesn't define anything, return */ if (instr->definitions.empty()) return; if ((uint16_t) instr->format & (uint16_t) Format::VOPC) { ctx.info[instr->definitions[0].tempId()].set_vopc(instr.get()); return; } switch (instr->opcode) { case aco_opcode::p_create_vector: { bool copy_prop = instr->operands.size() == 1 && instr->operands[0].isTemp() && instr->operands[0].regClass() == instr->definitions[0].regClass(); if (copy_prop) { ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp()); break; } unsigned num_ops = instr->operands.size(); for (const Operand& op : instr->operands) { if (op.isTemp() && ctx.info[op.tempId()].is_vec()) num_ops += ctx.info[op.tempId()].instr->operands.size() - 1; } if (num_ops != instr->operands.size()) { aco_ptr old_vec = std::move(instr); instr.reset(create_instruction(aco_opcode::p_create_vector, Format::PSEUDO, num_ops, 1)); instr->definitions[0] = old_vec->definitions[0]; unsigned k = 0; for (Operand& old_op : old_vec->operands) { if (old_op.isTemp() && ctx.info[old_op.tempId()].is_vec()) { for (unsigned j = 0; j < ctx.info[old_op.tempId()].instr->operands.size(); j++) { Operand op = ctx.info[old_op.tempId()].instr->operands[j]; if (op.isTemp() && ctx.info[op.tempId()].is_temp() && ctx.info[op.tempId()].temp.type() == instr->definitions[0].regClass().type()) op.setTemp(ctx.info[op.tempId()].temp); instr->operands[k++] = op; } } else { instr->operands[k++] = old_op; } } assert(k == num_ops); } ctx.info[instr->definitions[0].tempId()].set_vec(instr.get()); break; } case aco_opcode::p_split_vector: { ssa_info& info = ctx.info[instr->operands[0].tempId()]; if (info.is_constant_or_literal(32)) { uint32_t val = info.val; for (Definition def : instr->definitions) { uint32_t mask = u_bit_consecutive(0, def.bytes() * 8u); ctx.info[def.tempId()].set_constant(ctx.program->chip_class, val & mask); val >>= def.bytes() * 8u; } break; } else if (!info.is_vec()) { break; } Instruction* vec = ctx.info[instr->operands[0].tempId()].instr; unsigned split_offset = 0; unsigned vec_offset = 0; unsigned vec_index = 0; for (unsigned i = 0; i < instr->definitions.size(); split_offset += instr->definitions[i++].bytes()) { while (vec_offset < split_offset && vec_index < vec->operands.size()) vec_offset += vec->operands[vec_index++].bytes(); if (vec_offset != split_offset || vec->operands[vec_index].bytes() != instr->definitions[i].bytes()) continue; Operand vec_op = vec->operands[vec_index]; if (vec_op.isConstant()) { ctx.info[instr->definitions[i].tempId()].set_constant(ctx.program->chip_class, vec_op.constantValue64()); } else if (vec_op.isUndefined()) { ctx.info[instr->definitions[i].tempId()].set_undefined(); } else { assert(vec_op.isTemp()); ctx.info[instr->definitions[i].tempId()].set_temp(vec_op.getTemp()); } } break; } case aco_opcode::p_extract_vector: { /* mov */ ssa_info& info = ctx.info[instr->operands[0].tempId()]; const unsigned index = instr->operands[1].constantValue(); const unsigned dst_offset = index * instr->definitions[0].bytes(); if (info.is_constant_or_literal(32)) { uint32_t mask = u_bit_consecutive(0, instr->definitions[0].bytes() * 8u); ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, (info.val >> (dst_offset * 8u)) & mask); break; } else if (!info.is_vec()) { break; } /* check if we index directly into a vector element */ Instruction* vec = info.instr; unsigned offset = 0; for (const Operand& op : vec->operands) { if (offset < dst_offset) { offset += op.bytes(); continue; } else if (offset != dst_offset || op.bytes() != instr->definitions[0].bytes()) { break; } /* convert this extract into a copy instruction */ instr->opcode = aco_opcode::p_parallelcopy; instr->operands.pop_back(); instr->operands[0] = op; if (op.isConstant()) { ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, op.constantValue64()); } else if (op.isUndefined()) { ctx.info[instr->definitions[0].tempId()].set_undefined(); } else { assert(op.isTemp()); ctx.info[instr->definitions[0].tempId()].set_temp(op.getTemp()); } break; } break; } case aco_opcode::s_mov_b32: /* propagate */ case aco_opcode::s_mov_b64: case aco_opcode::v_mov_b32: case aco_opcode::p_as_uniform: if (instr->definitions[0].isFixed()) { /* don't copy-propagate copies into fixed registers */ } else if (instr->usesModifiers()) { // TODO } else if (instr->operands[0].isConstant()) { ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, instr->operands[0].constantValue64()); } else if (instr->operands[0].isTemp()) { ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp()); } else { assert(instr->operands[0].isFixed()); } break; case aco_opcode::p_is_helper: if (!ctx.program->needs_wqm) ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, 0u); break; case aco_opcode::s_movk_i32: { uint32_t v = static_cast(instr.get())->imm; v = v & 0x8000 ? (v | 0xffff0000) : v; ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, v); break; } case aco_opcode::v_bfrev_b32: case aco_opcode::s_brev_b32: { if (instr->operands[0].isConstant()) { uint32_t v = util_bitreverse(instr->operands[0].constantValue()); ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, v); } break; } case aco_opcode::s_bfm_b32: { if (instr->operands[0].isConstant() && instr->operands[1].isConstant()) { unsigned size = instr->operands[0].constantValue() & 0x1f; unsigned start = instr->operands[1].constantValue() & 0x1f; uint32_t v = ((1u << size) - 1u) << start; ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, v); } break; } case aco_opcode::v_mul_f16: case aco_opcode::v_mul_f32: { /* omod */ /* TODO: try to move the negate/abs modifier to the consumer instead */ if (instr->usesModifiers()) break; bool fp16 = instr->opcode == aco_opcode::v_mul_f16; for (unsigned i = 0; i < 2; i++) { if (instr->operands[!i].isConstant() && instr->operands[i].isTemp()) { if (instr->operands[!i].constantValue() == (fp16 ? 0x4000 : 0x40000000)) { /* 2.0 */ ctx.info[instr->operands[i].tempId()].set_omod2(instr->definitions[0].getTemp()); } else if (instr->operands[!i].constantValue() == (fp16 ? 0x4400 : 0x40800000)) { /* 4.0 */ ctx.info[instr->operands[i].tempId()].set_omod4(instr->definitions[0].getTemp()); } else if (instr->operands[!i].constantValue() == (fp16 ? 0xb800 : 0x3f000000)) { /* 0.5 */ ctx.info[instr->operands[i].tempId()].set_omod5(instr->definitions[0].getTemp()); } else if (instr->operands[!i].constantValue() == (fp16 ? 0x3c00 : 0x3f800000) && !(fp16 ? block.fp_mode.must_flush_denorms16_64 : block.fp_mode.must_flush_denorms32)) { /* 1.0 */ ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[i].getTemp()); } else { continue; } break; } } break; } case aco_opcode::v_and_b32: { /* abs */ if (!instr->usesModifiers() && instr->operands[1].isTemp() && instr->operands[1].getTemp().type() == RegType::vgpr && ((instr->definitions[0].bytes() == 4 && instr->operands[0].constantEquals(0x7FFFFFFFu)) || (instr->definitions[0].bytes() == 2 && instr->operands[0].constantEquals(0x7FFFu)))) ctx.info[instr->definitions[0].tempId()].set_abs(instr->operands[1].getTemp()); else ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get()); break; } case aco_opcode::v_xor_b32: { /* neg */ if (!instr->usesModifiers() && instr->operands[1].isTemp() && ((instr->definitions[0].bytes() == 4 && instr->operands[0].constantEquals(0x80000000u)) || (instr->definitions[0].bytes() == 2 && instr->operands[0].constantEquals(0x8000u)))) { if (ctx.info[instr->operands[1].tempId()].is_neg()) { ctx.info[instr->definitions[0].tempId()].set_temp(ctx.info[instr->operands[1].tempId()].temp); } else if (instr->operands[1].getTemp().type() == RegType::vgpr) { if (ctx.info[instr->operands[1].tempId()].is_abs()) { /* neg(abs(x)) */ instr->operands[1].setTemp(ctx.info[instr->operands[1].tempId()].temp); instr->opcode = aco_opcode::v_or_b32; ctx.info[instr->definitions[0].tempId()].set_neg_abs(instr->operands[1].getTemp()); } else { ctx.info[instr->definitions[0].tempId()].set_neg(instr->operands[1].getTemp()); } } } else { ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get()); } break; } case aco_opcode::v_med3_f16: case aco_opcode::v_med3_f32: { /* clamp */ VOP3A_instruction* vop3 = static_cast(instr.get()); if (vop3->abs[0] || vop3->abs[1] || vop3->abs[2] || vop3->neg[0] || vop3->neg[1] || vop3->neg[2] || vop3->omod != 0 || vop3->opsel != 0) break; unsigned idx = 0; bool found_zero = false, found_one = false; bool is_fp16 = instr->opcode == aco_opcode::v_med3_f16; for (unsigned i = 0; i < 3; i++) { if (instr->operands[i].constantEquals(0)) found_zero = true; else if (instr->operands[i].constantEquals(is_fp16 ? 0x3c00 : 0x3f800000)) /* 1.0 */ found_one = true; else idx = i; } if (found_zero && found_one && instr->operands[idx].isTemp()) { ctx.info[instr->operands[idx].tempId()].set_clamp(instr->definitions[0].getTemp()); } break; } case aco_opcode::v_cndmask_b32: if (instr->operands[0].constantEquals(0) && instr->operands[1].constantEquals(0xFFFFFFFF)) ctx.info[instr->definitions[0].tempId()].set_vcc(instr->operands[2].getTemp()); else if (instr->operands[0].constantEquals(0) && instr->operands[1].constantEquals(0x3f800000u)) ctx.info[instr->definitions[0].tempId()].set_b2f(instr->operands[2].getTemp()); else if (instr->operands[0].constantEquals(0) && instr->operands[1].constantEquals(1)) ctx.info[instr->definitions[0].tempId()].set_b2i(instr->operands[2].getTemp()); ctx.info[instr->operands[2].tempId()].set_vcc_hint(); break; case aco_opcode::v_cmp_lg_u32: if (instr->format == Format::VOPC && /* don't optimize VOP3 / SDWA / DPP */ instr->operands[0].constantEquals(0) && instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_vcc()) ctx.info[instr->definitions[0].tempId()].set_temp(ctx.info[instr->operands[1].tempId()].temp); break; case aco_opcode::p_phi: case aco_opcode::p_linear_phi: { /* lower_bool_phis() can create phis like this */ bool all_same_temp = instr->operands[0].isTemp(); /* this check is needed when moving uniform loop counters out of a divergent loop */ if (all_same_temp) all_same_temp = instr->definitions[0].regClass() == instr->operands[0].regClass(); for (unsigned i = 1; all_same_temp && (i < instr->operands.size()); i++) { if (!instr->operands[i].isTemp() || instr->operands[i].tempId() != instr->operands[0].tempId()) all_same_temp = false; } if (all_same_temp) { ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp()); } else { bool all_undef = instr->operands[0].isUndefined(); for (unsigned i = 1; all_undef && (i < instr->operands.size()); i++) { if (!instr->operands[i].isUndefined()) all_undef = false; } if (all_undef) ctx.info[instr->definitions[0].tempId()].set_undefined(); } break; } case aco_opcode::v_add_u32: case aco_opcode::v_add_co_u32: case aco_opcode::v_add_co_u32_e64: case aco_opcode::s_add_i32: case aco_opcode::s_add_u32: ctx.info[instr->definitions[0].tempId()].set_add_sub(instr.get()); break; case aco_opcode::s_not_b32: case aco_opcode::s_not_b64: if (ctx.info[instr->operands[0].tempId()].is_uniform_bool()) { ctx.info[instr->definitions[0].tempId()].set_uniform_bitwise(); ctx.info[instr->definitions[1].tempId()].set_scc_invert(ctx.info[instr->operands[0].tempId()].temp); } else if (ctx.info[instr->operands[0].tempId()].is_uniform_bitwise()) { ctx.info[instr->definitions[0].tempId()].set_uniform_bitwise(); ctx.info[instr->definitions[1].tempId()].set_scc_invert(ctx.info[instr->operands[0].tempId()].instr->definitions[1].getTemp()); } ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get()); break; case aco_opcode::s_and_b32: case aco_opcode::s_and_b64: if (fixed_to_exec(instr->operands[1]) && instr->operands[0].isTemp()) { if (ctx.info[instr->operands[0].tempId()].is_uniform_bool()) { /* Try to get rid of the superfluous s_cselect + s_and_b64 that comes from turning a uniform bool into divergent */ ctx.info[instr->definitions[1].tempId()].set_temp(ctx.info[instr->operands[0].tempId()].temp); ctx.info[instr->definitions[0].tempId()].set_uniform_bool(ctx.info[instr->operands[0].tempId()].temp); break; } else if (ctx.info[instr->operands[0].tempId()].is_uniform_bitwise()) { /* Try to get rid of the superfluous s_and_b64, since the uniform bitwise instruction already produces the same SCC */ ctx.info[instr->definitions[1].tempId()].set_temp(ctx.info[instr->operands[0].tempId()].instr->definitions[1].getTemp()); ctx.info[instr->definitions[0].tempId()].set_uniform_bool(ctx.info[instr->operands[0].tempId()].instr->definitions[1].getTemp()); break; } else if (ctx.info[instr->operands[0].tempId()].is_vopc()) { Instruction* vopc_instr = ctx.info[instr->operands[0].tempId()].instr; /* Remove superfluous s_and when the VOPC instruction uses the same exec and thus already produces the same result */ if (vopc_instr->pass_flags == instr->pass_flags) { assert(instr->pass_flags > 0); ctx.info[instr->definitions[0].tempId()].set_temp(vopc_instr->definitions[0].getTemp()); break; } } } /* fallthrough */ case aco_opcode::s_or_b32: case aco_opcode::s_or_b64: case aco_opcode::s_xor_b32: case aco_opcode::s_xor_b64: if (std::all_of(instr->operands.begin(), instr->operands.end(), [&ctx](const Operand& op) { return op.isTemp() && (ctx.info[op.tempId()].is_uniform_bool() || ctx.info[op.tempId()].is_uniform_bitwise()); })) { ctx.info[instr->definitions[0].tempId()].set_uniform_bitwise(); } /* fallthrough */ case aco_opcode::s_lshl_b32: case aco_opcode::v_or_b32: case aco_opcode::v_lshlrev_b32: ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get()); break; case aco_opcode::v_min_f32: case aco_opcode::v_min_f16: case aco_opcode::v_min_u32: case aco_opcode::v_min_i32: case aco_opcode::v_min_u16: case aco_opcode::v_min_i16: case aco_opcode::v_max_f32: case aco_opcode::v_max_f16: case aco_opcode::v_max_u32: case aco_opcode::v_max_i32: case aco_opcode::v_max_u16: case aco_opcode::v_max_i16: ctx.info[instr->definitions[0].tempId()].set_minmax(instr.get()); break; case aco_opcode::s_cselect_b64: case aco_opcode::s_cselect_b32: if (instr->operands[0].constantEquals((unsigned) -1) && instr->operands[1].constantEquals(0)) { /* Found a cselect that operates on a uniform bool that comes from eg. s_cmp */ ctx.info[instr->definitions[0].tempId()].set_uniform_bool(instr->operands[2].getTemp()); } if (instr->operands[2].isTemp() && ctx.info[instr->operands[2].tempId()].is_scc_invert()) { /* Flip the operands to get rid of the scc_invert instruction */ std::swap(instr->operands[0], instr->operands[1]); instr->operands[2].setTemp(ctx.info[instr->operands[2].tempId()].temp); } break; case aco_opcode::p_wqm: if (instr->operands[0].isTemp() && ctx.info[instr->operands[0].tempId()].is_scc_invert()) { ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp()); } break; default: break; } } ALWAYS_INLINE bool get_cmp_info(aco_opcode op, CmpInfo *info) { info->ordered = aco_opcode::num_opcodes; info->unordered = aco_opcode::num_opcodes; info->ordered_swapped = aco_opcode::num_opcodes; info->unordered_swapped = aco_opcode::num_opcodes; switch (op) { #define CMP2(ord, unord, ord_swap, unord_swap, sz) \ case aco_opcode::v_cmp_##ord##_f##sz:\ case aco_opcode::v_cmp_n##unord##_f##sz:\ info->ordered = aco_opcode::v_cmp_##ord##_f##sz;\ info->unordered = aco_opcode::v_cmp_n##unord##_f##sz;\ info->ordered_swapped = aco_opcode::v_cmp_##ord_swap##_f##sz;\ info->unordered_swapped = aco_opcode::v_cmp_n##unord_swap##_f##sz;\ info->inverse = op == aco_opcode::v_cmp_n##unord##_f##sz ? aco_opcode::v_cmp_##unord##_f##sz : aco_opcode::v_cmp_n##ord##_f##sz;\ info->f32 = op == aco_opcode::v_cmp_##ord##_f##sz ? aco_opcode::v_cmp_##ord##_f32 : aco_opcode::v_cmp_n##unord##_f32;\ info->size = sz;\ return true; #define CMP(ord, unord, ord_swap, unord_swap) \ CMP2(ord, unord, ord_swap, unord_swap, 16)\ CMP2(ord, unord, ord_swap, unord_swap, 32)\ CMP2(ord, unord, ord_swap, unord_swap, 64) CMP(lt, /*n*/ge, gt, /*n*/le) CMP(eq, /*n*/lg, eq, /*n*/lg) CMP(le, /*n*/gt, ge, /*n*/lt) CMP(gt, /*n*/le, lt, /*n*/le) CMP(lg, /*n*/eq, lg, /*n*/eq) CMP(ge, /*n*/lt, le, /*n*/gt) #undef CMP #undef CMP2 #define ORD_TEST(sz) \ case aco_opcode::v_cmp_u_f##sz:\ info->f32 = aco_opcode::v_cmp_u_f32;\ info->inverse = aco_opcode::v_cmp_o_f##sz;\ info->size = sz;\ return true;\ case aco_opcode::v_cmp_o_f##sz:\ info->f32 = aco_opcode::v_cmp_o_f32;\ info->inverse = aco_opcode::v_cmp_u_f##sz;\ info->size = sz;\ return true; ORD_TEST(16) ORD_TEST(32) ORD_TEST(64) #undef ORD_TEST default: return false; } } aco_opcode get_ordered(aco_opcode op) { CmpInfo info; return get_cmp_info(op, &info) ? info.ordered : aco_opcode::num_opcodes; } aco_opcode get_unordered(aco_opcode op) { CmpInfo info; return get_cmp_info(op, &info) ? info.unordered : aco_opcode::num_opcodes; } aco_opcode get_inverse(aco_opcode op) { CmpInfo info; return get_cmp_info(op, &info) ? info.inverse : aco_opcode::num_opcodes; } aco_opcode get_f32_cmp(aco_opcode op) { CmpInfo info; return get_cmp_info(op, &info) ? info.f32 : aco_opcode::num_opcodes; } unsigned get_cmp_bitsize(aco_opcode op) { CmpInfo info; return get_cmp_info(op, &info) ? info.size : 0; } bool is_cmp(aco_opcode op) { CmpInfo info; return get_cmp_info(op, &info) && info.ordered != aco_opcode::num_opcodes; } unsigned original_temp_id(opt_ctx &ctx, Temp tmp) { if (ctx.info[tmp.id()].is_temp()) return ctx.info[tmp.id()].temp.id(); else return tmp.id(); } void decrease_uses(opt_ctx &ctx, Instruction* instr) { if (!--ctx.uses[instr->definitions[0].tempId()]) { for (const Operand& op : instr->operands) { if (op.isTemp()) ctx.uses[op.tempId()]--; } } } Instruction *follow_operand(opt_ctx &ctx, Operand op, bool ignore_uses=false) { if (!op.isTemp() || !(ctx.info[op.tempId()].label & instr_labels)) return nullptr; if (!ignore_uses && ctx.uses[op.tempId()] > 1) return nullptr; Instruction *instr = ctx.info[op.tempId()].instr; if (instr->definitions.size() == 2) { assert(instr->definitions[0].isTemp() && instr->definitions[0].tempId() == op.tempId()); if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()]) return nullptr; } return instr; } /* s_or_b64(neq(a, a), neq(b, b)) -> v_cmp_u_f32(a, b) * s_and_b64(eq(a, a), eq(b, b)) -> v_cmp_o_f32(a, b) */ bool combine_ordering_test(opt_ctx &ctx, aco_ptr& instr) { if (instr->definitions[0].regClass() != ctx.program->lane_mask) return false; if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()]) return false; bool is_or = instr->opcode == aco_opcode::s_or_b64 || instr->opcode == aco_opcode::s_or_b32; bool neg[2] = {false, false}; bool abs[2] = {false, false}; uint8_t opsel = 0; Instruction *op_instr[2]; Temp op[2]; unsigned bitsize = 0; for (unsigned i = 0; i < 2; i++) { op_instr[i] = follow_operand(ctx, instr->operands[i], true); if (!op_instr[i]) return false; aco_opcode expected_cmp = is_or ? aco_opcode::v_cmp_neq_f32 : aco_opcode::v_cmp_eq_f32; unsigned op_bitsize = get_cmp_bitsize(op_instr[i]->opcode); if (get_f32_cmp(op_instr[i]->opcode) != expected_cmp) return false; if (bitsize && op_bitsize != bitsize) return false; if (!op_instr[i]->operands[0].isTemp() || !op_instr[i]->operands[1].isTemp()) return false; if (op_instr[i]->isVOP3()) { VOP3A_instruction *vop3 = static_cast(op_instr[i]); if (vop3->neg[0] != vop3->neg[1] || vop3->abs[0] != vop3->abs[1] || vop3->opsel == 1 || vop3->opsel == 2) return false; neg[i] = vop3->neg[0]; abs[i] = vop3->abs[0]; opsel |= (vop3->opsel & 1) << i; } Temp op0 = op_instr[i]->operands[0].getTemp(); Temp op1 = op_instr[i]->operands[1].getTemp(); if (original_temp_id(ctx, op0) != original_temp_id(ctx, op1)) return false; op[i] = op1; bitsize = op_bitsize; } if (op[1].type() == RegType::sgpr) std::swap(op[0], op[1]); unsigned num_sgprs = (op[0].type() == RegType::sgpr) + (op[1].type() == RegType::sgpr); if (num_sgprs > (ctx.program->chip_class >= GFX10 ? 2 : 1)) return false; ctx.uses[op[0].id()]++; ctx.uses[op[1].id()]++; decrease_uses(ctx, op_instr[0]); decrease_uses(ctx, op_instr[1]); aco_opcode new_op = aco_opcode::num_opcodes; switch (bitsize) { case 16: new_op = is_or ? aco_opcode::v_cmp_u_f16 : aco_opcode::v_cmp_o_f16; break; case 32: new_op = is_or ? aco_opcode::v_cmp_u_f32 : aco_opcode::v_cmp_o_f32; break; case 64: new_op = is_or ? aco_opcode::v_cmp_u_f64 : aco_opcode::v_cmp_o_f64; break; } Instruction *new_instr; if (neg[0] || neg[1] || abs[0] || abs[1] || opsel || num_sgprs > 1) { VOP3A_instruction *vop3 = create_instruction(new_op, asVOP3(Format::VOPC), 2, 1); for (unsigned i = 0; i < 2; i++) { vop3->neg[i] = neg[i]; vop3->abs[i] = abs[i]; } vop3->opsel = opsel; new_instr = static_cast(vop3); } else { new_instr = create_instruction(new_op, Format::VOPC, 2, 1); } new_instr->operands[0] = Operand(op[0]); new_instr->operands[1] = Operand(op[1]); new_instr->definitions[0] = instr->definitions[0]; ctx.info[instr->definitions[0].tempId()].label = 0; ctx.info[instr->definitions[0].tempId()].set_vopc(new_instr); instr.reset(new_instr); return true; } /* s_or_b64(v_cmp_u_f32(a, b), cmp(a, b)) -> get_unordered(cmp)(a, b) * s_and_b64(v_cmp_o_f32(a, b), cmp(a, b)) -> get_ordered(cmp)(a, b) */ bool combine_comparison_ordering(opt_ctx &ctx, aco_ptr& instr) { if (instr->definitions[0].regClass() != ctx.program->lane_mask) return false; if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()]) return false; bool is_or = instr->opcode == aco_opcode::s_or_b64 || instr->opcode == aco_opcode::s_or_b32; aco_opcode expected_nan_test = is_or ? aco_opcode::v_cmp_u_f32 : aco_opcode::v_cmp_o_f32; Instruction *nan_test = follow_operand(ctx, instr->operands[0], true); Instruction *cmp = follow_operand(ctx, instr->operands[1], true); if (!nan_test || !cmp) return false; if (get_f32_cmp(cmp->opcode) == expected_nan_test) std::swap(nan_test, cmp); else if (get_f32_cmp(nan_test->opcode) != expected_nan_test) return false; if (!is_cmp(cmp->opcode) || get_cmp_bitsize(cmp->opcode) != get_cmp_bitsize(nan_test->opcode)) return false; if (!nan_test->operands[0].isTemp() || !nan_test->operands[1].isTemp()) return false; if (!cmp->operands[0].isTemp() || !cmp->operands[1].isTemp()) return false; unsigned prop_cmp0 = original_temp_id(ctx, cmp->operands[0].getTemp()); unsigned prop_cmp1 = original_temp_id(ctx, cmp->operands[1].getTemp()); unsigned prop_nan0 = original_temp_id(ctx, nan_test->operands[0].getTemp()); unsigned prop_nan1 = original_temp_id(ctx, nan_test->operands[1].getTemp()); if (prop_cmp0 != prop_nan0 && prop_cmp0 != prop_nan1) return false; if (prop_cmp1 != prop_nan0 && prop_cmp1 != prop_nan1) return false; ctx.uses[cmp->operands[0].tempId()]++; ctx.uses[cmp->operands[1].tempId()]++; decrease_uses(ctx, nan_test); decrease_uses(ctx, cmp); aco_opcode new_op = is_or ? get_unordered(cmp->opcode) : get_ordered(cmp->opcode); Instruction *new_instr; if (cmp->isVOP3()) { VOP3A_instruction *new_vop3 = create_instruction(new_op, asVOP3(Format::VOPC), 2, 1); VOP3A_instruction *cmp_vop3 = static_cast(cmp); memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs)); memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg)); new_vop3->clamp = cmp_vop3->clamp; new_vop3->omod = cmp_vop3->omod; new_vop3->opsel = cmp_vop3->opsel; new_instr = new_vop3; } else { new_instr = create_instruction(new_op, Format::VOPC, 2, 1); } new_instr->operands[0] = cmp->operands[0]; new_instr->operands[1] = cmp->operands[1]; new_instr->definitions[0] = instr->definitions[0]; ctx.info[instr->definitions[0].tempId()].label = 0; ctx.info[instr->definitions[0].tempId()].set_vopc(new_instr); instr.reset(new_instr); return true; } /* s_or_b64(v_cmp_neq_f32(a, a), cmp(a, #b)) and b is not NaN -> get_unordered(cmp)(a, b) * s_and_b64(v_cmp_eq_f32(a, a), cmp(a, #b)) and b is not NaN -> get_ordered(cmp)(a, b) */ bool combine_constant_comparison_ordering(opt_ctx &ctx, aco_ptr& instr) { if (instr->definitions[0].regClass() != ctx.program->lane_mask) return false; if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()]) return false; bool is_or = instr->opcode == aco_opcode::s_or_b64 || instr->opcode == aco_opcode::s_or_b32; Instruction *nan_test = follow_operand(ctx, instr->operands[0], true); Instruction *cmp = follow_operand(ctx, instr->operands[1], true); if (!nan_test || !cmp) return false; aco_opcode expected_nan_test = is_or ? aco_opcode::v_cmp_neq_f32 : aco_opcode::v_cmp_eq_f32; if (get_f32_cmp(cmp->opcode) == expected_nan_test) std::swap(nan_test, cmp); else if (get_f32_cmp(nan_test->opcode) != expected_nan_test) return false; if (!is_cmp(cmp->opcode) || get_cmp_bitsize(cmp->opcode) != get_cmp_bitsize(nan_test->opcode)) return false; if (!nan_test->operands[0].isTemp() || !nan_test->operands[1].isTemp()) return false; if (!cmp->operands[0].isTemp() && !cmp->operands[1].isTemp()) return false; unsigned prop_nan0 = original_temp_id(ctx, nan_test->operands[0].getTemp()); unsigned prop_nan1 = original_temp_id(ctx, nan_test->operands[1].getTemp()); if (prop_nan0 != prop_nan1) return false; if (nan_test->isVOP3()) { VOP3A_instruction *vop3 = static_cast(nan_test); if (vop3->neg[0] != vop3->neg[1] || vop3->abs[0] != vop3->abs[1] || vop3->opsel == 1 || vop3->opsel == 2) return false; } int constant_operand = -1; for (unsigned i = 0; i < 2; i++) { if (cmp->operands[i].isTemp() && original_temp_id(ctx, cmp->operands[i].getTemp()) == prop_nan0) { constant_operand = !i; break; } } if (constant_operand == -1) return false; uint32_t constant; if (cmp->operands[constant_operand].isConstant()) { constant = cmp->operands[constant_operand].constantValue(); } else if (cmp->operands[constant_operand].isTemp()) { Temp tmp = cmp->operands[constant_operand].getTemp(); unsigned id = original_temp_id(ctx, tmp); if (!ctx.info[id].is_constant_or_literal(32)) return false; constant = ctx.info[id].val; } else { return false; } float constantf; memcpy(&constantf, &constant, 4); if (isnan(constantf)) return false; if (cmp->operands[0].isTemp()) ctx.uses[cmp->operands[0].tempId()]++; if (cmp->operands[1].isTemp()) ctx.uses[cmp->operands[1].tempId()]++; decrease_uses(ctx, nan_test); decrease_uses(ctx, cmp); aco_opcode new_op = is_or ? get_unordered(cmp->opcode) : get_ordered(cmp->opcode); Instruction *new_instr; if (cmp->isVOP3()) { VOP3A_instruction *new_vop3 = create_instruction(new_op, asVOP3(Format::VOPC), 2, 1); VOP3A_instruction *cmp_vop3 = static_cast(cmp); memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs)); memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg)); new_vop3->clamp = cmp_vop3->clamp; new_vop3->omod = cmp_vop3->omod; new_vop3->opsel = cmp_vop3->opsel; new_instr = new_vop3; } else { new_instr = create_instruction(new_op, Format::VOPC, 2, 1); } new_instr->operands[0] = cmp->operands[0]; new_instr->operands[1] = cmp->operands[1]; new_instr->definitions[0] = instr->definitions[0]; ctx.info[instr->definitions[0].tempId()].label = 0; ctx.info[instr->definitions[0].tempId()].set_vopc(new_instr); instr.reset(new_instr); return true; } /* s_not_b64(cmp(a, b) -> get_inverse(cmp)(a, b) */ bool combine_inverse_comparison(opt_ctx &ctx, aco_ptr& instr) { if (instr->opcode != aco_opcode::s_not_b64) return false; if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()]) return false; if (!instr->operands[0].isTemp()) return false; Instruction *cmp = follow_operand(ctx, instr->operands[0]); if (!cmp) return false; aco_opcode new_opcode = get_inverse(cmp->opcode); if (new_opcode == aco_opcode::num_opcodes) return false; if (cmp->operands[0].isTemp()) ctx.uses[cmp->operands[0].tempId()]++; if (cmp->operands[1].isTemp()) ctx.uses[cmp->operands[1].tempId()]++; decrease_uses(ctx, cmp); Instruction *new_instr; if (cmp->isVOP3()) { VOP3A_instruction *new_vop3 = create_instruction(new_opcode, asVOP3(Format::VOPC), 2, 1); VOP3A_instruction *cmp_vop3 = static_cast(cmp); memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs)); memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg)); new_vop3->clamp = cmp_vop3->clamp; new_vop3->omod = cmp_vop3->omod; new_vop3->opsel = cmp_vop3->opsel; new_instr = new_vop3; } else { new_instr = create_instruction(new_opcode, Format::VOPC, 2, 1); } new_instr->operands[0] = cmp->operands[0]; new_instr->operands[1] = cmp->operands[1]; new_instr->definitions[0] = instr->definitions[0]; ctx.info[instr->definitions[0].tempId()].label = 0; ctx.info[instr->definitions[0].tempId()].set_vopc(new_instr); instr.reset(new_instr); return true; } /* op1(op2(1, 2), 0) if swap = false * op1(0, op2(1, 2)) if swap = true */ bool match_op3_for_vop3(opt_ctx &ctx, aco_opcode op1, aco_opcode op2, Instruction* op1_instr, bool swap, const char *shuffle_str, Operand operands[3], bool neg[3], bool abs[3], uint8_t *opsel, bool *op1_clamp, uint8_t *op1_omod, bool *inbetween_neg, bool *inbetween_abs, bool *inbetween_opsel) { /* checks */ if (op1_instr->opcode != op1) return false; Instruction *op2_instr = follow_operand(ctx, op1_instr->operands[swap]); if (!op2_instr || op2_instr->opcode != op2) return false; if (fixed_to_exec(op2_instr->operands[0]) || fixed_to_exec(op2_instr->operands[1])) return false; VOP3A_instruction *op1_vop3 = op1_instr->isVOP3() ? static_cast(op1_instr) : NULL; VOP3A_instruction *op2_vop3 = op2_instr->isVOP3() ? static_cast(op2_instr) : NULL; /* don't support inbetween clamp/omod */ if (op2_vop3 && (op2_vop3->clamp || op2_vop3->omod)) return false; /* get operands and modifiers and check inbetween modifiers */ *op1_clamp = op1_vop3 ? op1_vop3->clamp : false; *op1_omod = op1_vop3 ? op1_vop3->omod : 0u; if (inbetween_neg) *inbetween_neg = op1_vop3 ? op1_vop3->neg[swap] : false; else if (op1_vop3 && op1_vop3->neg[swap]) return false; if (inbetween_abs) *inbetween_abs = op1_vop3 ? op1_vop3->abs[swap] : false; else if (op1_vop3 && op1_vop3->abs[swap]) return false; if (inbetween_opsel) *inbetween_opsel = op1_vop3 ? op1_vop3->opsel & (1 << swap) : false; else if (op1_vop3 && op1_vop3->opsel & (1 << swap)) return false; int shuffle[3]; shuffle[shuffle_str[0] - '0'] = 0; shuffle[shuffle_str[1] - '0'] = 1; shuffle[shuffle_str[2] - '0'] = 2; operands[shuffle[0]] = op1_instr->operands[!swap]; neg[shuffle[0]] = op1_vop3 ? op1_vop3->neg[!swap] : false; abs[shuffle[0]] = op1_vop3 ? op1_vop3->abs[!swap] : false; if (op1_vop3 && op1_vop3->opsel & (1 << !swap)) *opsel |= 1 << shuffle[0]; for (unsigned i = 0; i < 2; i++) { operands[shuffle[i + 1]] = op2_instr->operands[i]; neg[shuffle[i + 1]] = op2_vop3 ? op2_vop3->neg[i] : false; abs[shuffle[i + 1]] = op2_vop3 ? op2_vop3->abs[i] : false; if (op2_vop3 && op2_vop3->opsel & (1 << i)) *opsel |= 1 << shuffle[i + 1]; } /* check operands */ if (!check_vop3_operands(ctx, 3, operands)) return false; return true; } void create_vop3_for_op3(opt_ctx& ctx, aco_opcode opcode, aco_ptr& instr, Operand operands[3], bool neg[3], bool abs[3], uint8_t opsel, bool clamp, unsigned omod) { VOP3A_instruction *new_instr = create_instruction(opcode, Format::VOP3A, 3, 1); memcpy(new_instr->abs, abs, sizeof(bool[3])); memcpy(new_instr->neg, neg, sizeof(bool[3])); new_instr->clamp = clamp; new_instr->omod = omod; new_instr->opsel = opsel; new_instr->operands[0] = operands[0]; new_instr->operands[1] = operands[1]; new_instr->operands[2] = operands[2]; new_instr->definitions[0] = instr->definitions[0]; ctx.info[instr->definitions[0].tempId()].label = 0; instr.reset(new_instr); } bool combine_three_valu_op(opt_ctx& ctx, aco_ptr& instr, aco_opcode op2, aco_opcode new_op, const char *shuffle, uint8_t ops) { uint64_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label & (label_omod_success | label_clamp_success); for (unsigned swap = 0; swap < 2; swap++) { if (!((1 << swap) & ops)) continue; Operand operands[3]; bool neg[3], abs[3], clamp; uint8_t opsel = 0, omod = 0; if (match_op3_for_vop3(ctx, instr->opcode, op2, instr.get(), swap, shuffle, operands, neg, abs, &opsel, &clamp, &omod, NULL, NULL, NULL)) { ctx.uses[instr->operands[swap].tempId()]--; create_vop3_for_op3(ctx, new_op, instr, operands, neg, abs, opsel, clamp, omod); if (omod_clamp & label_omod_success) ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get()); if (omod_clamp & label_clamp_success) ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get()); return true; } } return false; } bool combine_minmax(opt_ctx& ctx, aco_ptr& instr, aco_opcode opposite, aco_opcode minmax3) { if (combine_three_valu_op(ctx, instr, instr->opcode, minmax3, "012", 1 | 2)) return true; uint64_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label & (label_omod_success | label_clamp_success); /* min(-max(a, b), c) -> min3(-a, -b, c) * * max(-min(a, b), c) -> max3(-a, -b, c) */ for (unsigned swap = 0; swap < 2; swap++) { Operand operands[3]; bool neg[3], abs[3], clamp; uint8_t opsel = 0, omod = 0; bool inbetween_neg; if (match_op3_for_vop3(ctx, instr->opcode, opposite, instr.get(), swap, "012", operands, neg, abs, &opsel, &clamp, &omod, &inbetween_neg, NULL, NULL) && inbetween_neg) { ctx.uses[instr->operands[swap].tempId()]--; neg[1] = true; neg[2] = true; create_vop3_for_op3(ctx, minmax3, instr, operands, neg, abs, opsel, clamp, omod); if (omod_clamp & label_omod_success) ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get()); if (omod_clamp & label_clamp_success) ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get()); return true; } } return false; } /* s_not_b32(s_and_b32(a, b)) -> s_nand_b32(a, b) * s_not_b32(s_or_b32(a, b)) -> s_nor_b32(a, b) * s_not_b32(s_xor_b32(a, b)) -> s_xnor_b32(a, b) * s_not_b64(s_and_b64(a, b)) -> s_nand_b64(a, b) * s_not_b64(s_or_b64(a, b)) -> s_nor_b64(a, b) * s_not_b64(s_xor_b64(a, b)) -> s_xnor_b64(a, b) */ bool combine_salu_not_bitwise(opt_ctx& ctx, aco_ptr& instr) { /* checks */ if (!instr->operands[0].isTemp()) return false; if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()]) return false; Instruction *op2_instr = follow_operand(ctx, instr->operands[0]); if (!op2_instr) return false; switch (op2_instr->opcode) { case aco_opcode::s_and_b32: case aco_opcode::s_or_b32: case aco_opcode::s_xor_b32: case aco_opcode::s_and_b64: case aco_opcode::s_or_b64: case aco_opcode::s_xor_b64: break; default: return false; } /* create instruction */ std::swap(instr->definitions[0], op2_instr->definitions[0]); std::swap(instr->definitions[1], op2_instr->definitions[1]); ctx.uses[instr->operands[0].tempId()]--; ctx.info[op2_instr->definitions[0].tempId()].label = 0; switch (op2_instr->opcode) { case aco_opcode::s_and_b32: op2_instr->opcode = aco_opcode::s_nand_b32; break; case aco_opcode::s_or_b32: op2_instr->opcode = aco_opcode::s_nor_b32; break; case aco_opcode::s_xor_b32: op2_instr->opcode = aco_opcode::s_xnor_b32; break; case aco_opcode::s_and_b64: op2_instr->opcode = aco_opcode::s_nand_b64; break; case aco_opcode::s_or_b64: op2_instr->opcode = aco_opcode::s_nor_b64; break; case aco_opcode::s_xor_b64: op2_instr->opcode = aco_opcode::s_xnor_b64; break; default: break; } return true; } /* s_and_b32(a, s_not_b32(b)) -> s_andn2_b32(a, b) * s_or_b32(a, s_not_b32(b)) -> s_orn2_b32(a, b) * s_and_b64(a, s_not_b64(b)) -> s_andn2_b64(a, b) * s_or_b64(a, s_not_b64(b)) -> s_orn2_b64(a, b) */ bool combine_salu_n2(opt_ctx& ctx, aco_ptr& instr) { if (instr->definitions[0].isTemp() && ctx.info[instr->definitions[0].tempId()].is_uniform_bool()) return false; for (unsigned i = 0; i < 2; i++) { Instruction *op2_instr = follow_operand(ctx, instr->operands[i]); if (!op2_instr || (op2_instr->opcode != aco_opcode::s_not_b32 && op2_instr->opcode != aco_opcode::s_not_b64)) continue; if (ctx.uses[op2_instr->definitions[1].tempId()] || fixed_to_exec(op2_instr->operands[0])) continue; if (instr->operands[!i].isLiteral() && op2_instr->operands[0].isLiteral() && instr->operands[!i].constantValue() != op2_instr->operands[0].constantValue()) continue; ctx.uses[instr->operands[i].tempId()]--; instr->operands[0] = instr->operands[!i]; instr->operands[1] = op2_instr->operands[0]; ctx.info[instr->definitions[0].tempId()].label = 0; switch (instr->opcode) { case aco_opcode::s_and_b32: instr->opcode = aco_opcode::s_andn2_b32; break; case aco_opcode::s_or_b32: instr->opcode = aco_opcode::s_orn2_b32; break; case aco_opcode::s_and_b64: instr->opcode = aco_opcode::s_andn2_b64; break; case aco_opcode::s_or_b64: instr->opcode = aco_opcode::s_orn2_b64; break; default: break; } return true; } return false; } /* s_add_{i32,u32}(a, s_lshl_b32(b, )) -> s_lshl_add_u32(a, b) */ bool combine_salu_lshl_add(opt_ctx& ctx, aco_ptr& instr) { if (instr->opcode == aco_opcode::s_add_i32 && ctx.uses[instr->definitions[1].tempId()]) return false; for (unsigned i = 0; i < 2; i++) { Instruction *op2_instr = follow_operand(ctx, instr->operands[i]); if (!op2_instr || op2_instr->opcode != aco_opcode::s_lshl_b32 || ctx.uses[op2_instr->definitions[1].tempId()]) continue; if (!op2_instr->operands[1].isConstant() || fixed_to_exec(op2_instr->operands[0])) continue; uint32_t shift = op2_instr->operands[1].constantValue(); if (shift < 1 || shift > 4) continue; if (instr->operands[!i].isLiteral() && op2_instr->operands[0].isLiteral() && instr->operands[!i].constantValue() != op2_instr->operands[0].constantValue()) continue; ctx.uses[instr->operands[i].tempId()]--; instr->operands[1] = instr->operands[!i]; instr->operands[0] = op2_instr->operands[0]; ctx.info[instr->definitions[0].tempId()].label = 0; instr->opcode = ((aco_opcode[]){aco_opcode::s_lshl1_add_u32, aco_opcode::s_lshl2_add_u32, aco_opcode::s_lshl3_add_u32, aco_opcode::s_lshl4_add_u32})[shift - 1]; return true; } return false; } bool combine_add_sub_b2i(opt_ctx& ctx, aco_ptr& instr, aco_opcode new_op, uint8_t ops) { if (instr->usesModifiers()) return false; for (unsigned i = 0; i < 2; i++) { if (!((1 << i) & ops)) continue; if (instr->operands[i].isTemp() && ctx.info[instr->operands[i].tempId()].is_b2i() && ctx.uses[instr->operands[i].tempId()] == 1) { aco_ptr new_instr; if (instr->operands[!i].isTemp() && instr->operands[!i].getTemp().type() == RegType::vgpr) { new_instr.reset(create_instruction(new_op, Format::VOP2, 3, 2)); } else if (ctx.program->chip_class >= GFX10 || (instr->operands[!i].isConstant() && !instr->operands[!i].isLiteral())) { new_instr.reset(create_instruction(new_op, asVOP3(Format::VOP2), 3, 2)); } else { return false; } ctx.uses[instr->operands[i].tempId()]--; new_instr->definitions[0] = instr->definitions[0]; new_instr->definitions[1] = instr->definitions.size() == 2 ? instr->definitions[1] : Definition(ctx.program->allocateId(), ctx.program->lane_mask); new_instr->definitions[1].setHint(vcc); new_instr->operands[0] = Operand(0u); new_instr->operands[1] = instr->operands[!i]; new_instr->operands[2] = Operand(ctx.info[instr->operands[i].tempId()].temp); instr = std::move(new_instr); ctx.info[instr->definitions[0].tempId()].label = 0; return true; } } return false; } bool get_minmax_info(aco_opcode op, aco_opcode *min, aco_opcode *max, aco_opcode *min3, aco_opcode *max3, aco_opcode *med3, bool *some_gfx9_only) { switch (op) { #define MINMAX(type, gfx9) \ case aco_opcode::v_min_##type:\ case aco_opcode::v_max_##type:\ case aco_opcode::v_med3_##type:\ *min = aco_opcode::v_min_##type;\ *max = aco_opcode::v_max_##type;\ *med3 = aco_opcode::v_med3_##type;\ *min3 = aco_opcode::v_min3_##type;\ *max3 = aco_opcode::v_max3_##type;\ *some_gfx9_only = gfx9;\ return true; MINMAX(f32, false) MINMAX(u32, false) MINMAX(i32, false) MINMAX(f16, true) MINMAX(u16, true) MINMAX(i16, true) #undef MINMAX default: return false; } } /* v_min_{f,u,i}{16,32}(v_max_{f,u,i}{16,32}(a, lb), ub) -> v_med3_{f,u,i}{16,32}(a, lb, ub) when ub > lb * v_max_{f,u,i}{16,32}(v_min_{f,u,i}{16,32}(a, ub), lb) -> v_med3_{f,u,i}{16,32}(a, lb, ub) when ub > lb */ bool combine_clamp(opt_ctx& ctx, aco_ptr& instr, aco_opcode min, aco_opcode max, aco_opcode med) { /* TODO: GLSL's clamp(x, minVal, maxVal) and SPIR-V's * FClamp(x, minVal, maxVal)/NClamp(x, minVal, maxVal) are undefined if * minVal > maxVal, which means we can always select it to a v_med3_f32 */ aco_opcode other_op; if (instr->opcode == min) other_op = max; else if (instr->opcode == max) other_op = min; else return false; uint64_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label & (label_omod_success | label_clamp_success); for (unsigned swap = 0; swap < 2; swap++) { Operand operands[3]; bool neg[3], abs[3], clamp; uint8_t opsel = 0, omod = 0; if (match_op3_for_vop3(ctx, instr->opcode, other_op, instr.get(), swap, "012", operands, neg, abs, &opsel, &clamp, &omod, NULL, NULL, NULL)) { int const0_idx = -1, const1_idx = -1; uint32_t const0 = 0, const1 = 0; for (int i = 0; i < 3; i++) { uint32_t val; if (operands[i].isConstant()) { val = operands[i].constantValue(); } else if (operands[i].isTemp() && ctx.info[operands[i].tempId()].is_constant_or_literal(32)) { val = ctx.info[operands[i].tempId()].val; } else { continue; } if (const0_idx >= 0) { const1_idx = i; const1 = val; } else { const0_idx = i; const0 = val; } } if (const0_idx < 0 || const1_idx < 0) continue; if (opsel & (1 << const0_idx)) const0 >>= 16; if (opsel & (1 << const1_idx)) const1 >>= 16; int lower_idx = const0_idx; switch (min) { case aco_opcode::v_min_f32: case aco_opcode::v_min_f16: { float const0_f, const1_f; if (min == aco_opcode::v_min_f32) { memcpy(&const0_f, &const0, 4); memcpy(&const1_f, &const1, 4); } else { const0_f = _mesa_half_to_float(const0); const1_f = _mesa_half_to_float(const1); } if (abs[const0_idx]) const0_f = fabsf(const0_f); if (abs[const1_idx]) const1_f = fabsf(const1_f); if (neg[const0_idx]) const0_f = -const0_f; if (neg[const1_idx]) const1_f = -const1_f; lower_idx = const0_f < const1_f ? const0_idx : const1_idx; break; } case aco_opcode::v_min_u32: { lower_idx = const0 < const1 ? const0_idx : const1_idx; break; } case aco_opcode::v_min_u16: { lower_idx = (uint16_t)const0 < (uint16_t)const1 ? const0_idx : const1_idx; break; } case aco_opcode::v_min_i32: { int32_t const0_i = const0 & 0x80000000u ? -2147483648 + (int32_t)(const0 & 0x7fffffffu) : const0; int32_t const1_i = const1 & 0x80000000u ? -2147483648 + (int32_t)(const1 & 0x7fffffffu) : const1; lower_idx = const0_i < const1_i ? const0_idx : const1_idx; break; } case aco_opcode::v_min_i16: { int16_t const0_i = const0 & 0x8000u ? -32768 + (int16_t)(const0 & 0x7fffu) : const0; int16_t const1_i = const1 & 0x8000u ? -32768 + (int16_t)(const1 & 0x7fffu) : const1; lower_idx = const0_i < const1_i ? const0_idx : const1_idx; break; } default: break; } int upper_idx = lower_idx == const0_idx ? const1_idx : const0_idx; if (instr->opcode == min) { if (upper_idx != 0 || lower_idx == 0) return false; } else { if (upper_idx == 0 || lower_idx != 0) return false; } ctx.uses[instr->operands[swap].tempId()]--; create_vop3_for_op3(ctx, med, instr, operands, neg, abs, opsel, clamp, omod); if (omod_clamp & label_omod_success) ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get()); if (omod_clamp & label_clamp_success) ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get()); return true; } } return false; } void apply_sgprs(opt_ctx &ctx, aco_ptr& instr) { bool is_shift64 = instr->opcode == aco_opcode::v_lshlrev_b64 || instr->opcode == aco_opcode::v_lshrrev_b64 || instr->opcode == aco_opcode::v_ashrrev_i64; /* find candidates and create the set of sgprs already read */ unsigned sgpr_ids[2] = {0, 0}; uint32_t operand_mask = 0; bool has_literal = false; for (unsigned i = 0; i < instr->operands.size(); i++) { if (instr->operands[i].isLiteral()) has_literal = true; if (!instr->operands[i].isTemp()) continue; if (instr->operands[i].getTemp().type() == RegType::sgpr) { if (instr->operands[i].tempId() != sgpr_ids[0]) sgpr_ids[!!sgpr_ids[0]] = instr->operands[i].tempId(); } ssa_info& info = ctx.info[instr->operands[i].tempId()]; if (info.is_temp() && info.temp.type() == RegType::sgpr) operand_mask |= 1u << i; } unsigned max_sgprs = 1; if (ctx.program->chip_class >= GFX10 && !is_shift64) max_sgprs = 2; if (has_literal) max_sgprs--; unsigned num_sgprs = !!sgpr_ids[0] + !!sgpr_ids[1]; /* keep on applying sgprs until there is nothing left to be done */ while (operand_mask) { uint32_t sgpr_idx = 0; uint32_t sgpr_info_id = 0; uint32_t mask = operand_mask; /* choose a sgpr */ while (mask) { unsigned i = u_bit_scan(&mask); uint16_t uses = ctx.uses[instr->operands[i].tempId()]; if (sgpr_info_id == 0 || uses < ctx.uses[sgpr_info_id]) { sgpr_idx = i; sgpr_info_id = instr->operands[i].tempId(); } } operand_mask &= ~(1u << sgpr_idx); /* Applying two sgprs require making it VOP3, so don't do it unless it's * definitively beneficial. * TODO: this is too conservative because later the use count could be reduced to 1 */ if (num_sgprs && ctx.uses[sgpr_info_id] > 1 && !instr->isVOP3()) break; Temp sgpr = ctx.info[sgpr_info_id].temp; bool new_sgpr = sgpr.id() != sgpr_ids[0] && sgpr.id() != sgpr_ids[1]; if (new_sgpr && num_sgprs >= max_sgprs) continue; if (sgpr_idx == 0 || instr->isVOP3()) { instr->operands[sgpr_idx] = Operand(sgpr); } else if (can_swap_operands(instr)) { instr->operands[sgpr_idx] = instr->operands[0]; instr->operands[0] = Operand(sgpr); /* swap bits using a 4-entry LUT */ uint32_t swapped = (0x3120 >> (operand_mask & 0x3)) & 0xf; operand_mask = (operand_mask & ~0x3) | swapped; } else if (can_use_VOP3(ctx, instr)) { to_VOP3(ctx, instr); instr->operands[sgpr_idx] = Operand(sgpr); } else { continue; } if (new_sgpr) sgpr_ids[num_sgprs++] = sgpr.id(); ctx.uses[sgpr_info_id]--; ctx.uses[sgpr.id()]++; } } bool apply_omod_clamp(opt_ctx &ctx, Block& block, aco_ptr& instr) { /* check if we could apply omod on predecessor */ if (instr->opcode == aco_opcode::v_mul_f32 || instr->opcode == aco_opcode::v_mul_f16) { bool op0 = instr->operands[0].isTemp() && ctx.info[instr->operands[0].tempId()].is_omod_success(); bool op1 = instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_omod_success(); if (op0 || op1) { unsigned idx = op0 ? 0 : 1; /* omod was successfully applied */ /* if the omod instruction is v_mad, we also have to change the original add */ if (ctx.info[instr->operands[idx].tempId()].is_mad()) { Instruction* add_instr = ctx.mad_infos[ctx.info[instr->operands[idx].tempId()].instr->pass_flags].add_instr.get(); if (ctx.info[instr->definitions[0].tempId()].is_clamp()) static_cast(add_instr)->clamp = true; add_instr->definitions[0] = instr->definitions[0]; } Instruction* omod_instr = ctx.info[instr->operands[idx].tempId()].instr; /* check if we have an additional clamp modifier */ if (ctx.info[instr->definitions[0].tempId()].is_clamp() && ctx.uses[instr->definitions[0].tempId()] == 1 && ctx.uses[ctx.info[instr->definitions[0].tempId()].temp.id()]) { static_cast(omod_instr)->clamp = true; ctx.info[instr->definitions[0].tempId()].set_clamp_success(omod_instr); } /* change definition ssa-id of modified instruction */ omod_instr->definitions[0] = instr->definitions[0]; /* change the definition of instr to something unused, e.g. the original omod def */ instr->definitions[0] = Definition(instr->operands[idx].getTemp()); ctx.uses[instr->definitions[0].tempId()] = 0; return true; } if (!ctx.info[instr->definitions[0].tempId()].label) { /* in all other cases, label this instruction as option for multiply-add */ ctx.info[instr->definitions[0].tempId()].set_mul(instr.get()); } } /* check if we could apply clamp on predecessor */ if (instr->opcode == aco_opcode::v_med3_f32 || instr->opcode == aco_opcode::v_med3_f16) { bool is_fp16 = instr->opcode == aco_opcode::v_med3_f16; unsigned idx = 0; bool found_zero = false, found_one = false; for (unsigned i = 0; i < 3; i++) { if (instr->operands[i].constantEquals(0)) found_zero = true; else if (instr->operands[i].constantEquals(is_fp16 ? 0x3c00 : 0x3f800000)) /* 1.0 */ found_one = true; else idx = i; } if (found_zero && found_one && instr->operands[idx].isTemp() && ctx.info[instr->operands[idx].tempId()].is_clamp_success()) { /* clamp was successfully applied */ /* if the clamp instruction is v_mad, we also have to change the original add */ if (ctx.info[instr->operands[idx].tempId()].is_mad()) { Instruction* add_instr = ctx.mad_infos[ctx.info[instr->operands[idx].tempId()].instr->pass_flags].add_instr.get(); add_instr->definitions[0] = instr->definitions[0]; } Instruction* clamp_instr = ctx.info[instr->operands[idx].tempId()].instr; /* change definition ssa-id of modified instruction */ clamp_instr->definitions[0] = instr->definitions[0]; /* change the definition of instr to something unused, e.g. the original omod def */ instr->definitions[0] = Definition(instr->operands[idx].getTemp()); ctx.uses[instr->definitions[0].tempId()] = 0; return true; } } /* omod has no effect if denormals are enabled */ /* apply omod / clamp modifiers if the def is used only once and the instruction can have modifiers */ if (!instr->definitions.empty() && ctx.uses[instr->definitions[0].tempId()] == 1 && can_use_VOP3(ctx, instr) && instr_info.can_use_output_modifiers[(int)instr->opcode]) { bool can_use_omod = (instr->definitions[0].bytes() == 4 ? block.fp_mode.denorm32 : block.fp_mode.denorm16_64) == 0; ssa_info& def_info = ctx.info[instr->definitions[0].tempId()]; if (can_use_omod && def_info.is_omod2() && ctx.uses[def_info.temp.id()]) { to_VOP3(ctx, instr); static_cast(instr.get())->omod = 1; def_info.set_omod_success(instr.get()); } else if (can_use_omod && def_info.is_omod4() && ctx.uses[def_info.temp.id()]) { to_VOP3(ctx, instr); static_cast(instr.get())->omod = 2; def_info.set_omod_success(instr.get()); } else if (can_use_omod && def_info.is_omod5() && ctx.uses[def_info.temp.id()]) { to_VOP3(ctx, instr); static_cast(instr.get())->omod = 3; def_info.set_omod_success(instr.get()); } else if (def_info.is_clamp() && ctx.uses[def_info.temp.id()]) { to_VOP3(ctx, instr); static_cast(instr.get())->clamp = true; def_info.set_clamp_success(instr.get()); } } return false; } // TODO: we could possibly move the whole label_instruction pass to combine_instruction: // this would mean that we'd have to fix the instruction uses while value propagation void combine_instruction(opt_ctx &ctx, Block& block, aco_ptr& instr) { if (instr->definitions.empty() || is_dead(ctx.uses, instr.get())) return; if (instr->isVALU()) { if (can_apply_sgprs(instr)) apply_sgprs(ctx, instr); if (apply_omod_clamp(ctx, block, instr)) return; } if (ctx.info[instr->definitions[0].tempId()].is_vcc_hint()) { instr->definitions[0].setHint(vcc); } /* TODO: There are still some peephole optimizations that could be done: * - abs(a - b) -> s_absdiff_i32 * - various patterns for s_bitcmp{0,1}_b32 and s_bitset{0,1}_b32 * - patterns for v_alignbit_b32 and v_alignbyte_b32 * These aren't probably too interesting though. * There are also patterns for v_cmp_class_f{16,32,64}. This is difficult but * probably more useful than the previously mentioned optimizations. * The various comparison optimizations also currently only work with 32-bit * floats. */ /* neg(mul(a, b)) -> mul(neg(a), b) */ if (ctx.info[instr->definitions[0].tempId()].is_neg() && ctx.uses[instr->operands[1].tempId()] == 1) { Temp val = ctx.info[instr->definitions[0].tempId()].temp; if (!ctx.info[val.id()].is_mul()) return; Instruction* mul_instr = ctx.info[val.id()].instr; if (mul_instr->operands[0].isLiteral()) return; if (mul_instr->isVOP3() && static_cast(mul_instr)->clamp) return; /* convert to mul(neg(a), b) */ ctx.uses[mul_instr->definitions[0].tempId()]--; Definition def = instr->definitions[0]; /* neg(abs(mul(a, b))) -> mul(neg(abs(a)), abs(b)) */ bool is_abs = ctx.info[instr->definitions[0].tempId()].is_abs(); instr.reset(create_instruction(mul_instr->opcode, asVOP3(Format::VOP2), 2, 1)); instr->operands[0] = mul_instr->operands[0]; instr->operands[1] = mul_instr->operands[1]; instr->definitions[0] = def; VOP3A_instruction* new_mul = static_cast(instr.get()); if (mul_instr->isVOP3()) { VOP3A_instruction* mul = static_cast(mul_instr); new_mul->neg[0] = mul->neg[0] && !is_abs; new_mul->neg[1] = mul->neg[1] && !is_abs; new_mul->abs[0] = mul->abs[0] || is_abs; new_mul->abs[1] = mul->abs[1] || is_abs; new_mul->omod = mul->omod; } new_mul->neg[0] ^= true; new_mul->clamp = false; ctx.info[instr->definitions[0].tempId()].set_mul(instr.get()); return; } /* combine mul+add -> mad */ bool mad32 = instr->opcode == aco_opcode::v_add_f32 || instr->opcode == aco_opcode::v_sub_f32 || instr->opcode == aco_opcode::v_subrev_f32; bool mad16 = instr->opcode == aco_opcode::v_add_f16 || instr->opcode == aco_opcode::v_sub_f16 || instr->opcode == aco_opcode::v_subrev_f16; if (mad16 || mad32) { bool need_fma = mad32 ? (block.fp_mode.denorm32 != 0 || ctx.program->chip_class >= GFX10_3) : (block.fp_mode.denorm16_64 != 0 || ctx.program->chip_class >= GFX10); if (need_fma && instr->definitions[0].isPrecise()) return; if (need_fma && mad32 && !ctx.program->has_fast_fma32) return; uint32_t uses_src0 = UINT32_MAX; uint32_t uses_src1 = UINT32_MAX; Instruction* mul_instr = nullptr; unsigned add_op_idx; /* check if any of the operands is a multiplication */ ssa_info *op0_info = instr->operands[0].isTemp() ? &ctx.info[instr->operands[0].tempId()] : NULL; ssa_info *op1_info = instr->operands[1].isTemp() ? &ctx.info[instr->operands[1].tempId()] : NULL; if (op0_info && op0_info->is_mul() && (!need_fma || !op0_info->instr->definitions[0].isPrecise())) uses_src0 = ctx.uses[instr->operands[0].tempId()]; if (op1_info && op1_info->is_mul() && (!need_fma || !op1_info->instr->definitions[0].isPrecise())) uses_src1 = ctx.uses[instr->operands[1].tempId()]; /* find the 'best' mul instruction to combine with the add */ if (uses_src0 < uses_src1) { mul_instr = op0_info->instr; add_op_idx = 1; } else if (uses_src1 < uses_src0) { mul_instr = op1_info->instr; add_op_idx = 0; } else if (uses_src0 != UINT32_MAX) { /* tiebreaker: quite random what to pick */ if (op0_info->instr->operands[0].isLiteral()) { mul_instr = op1_info->instr; add_op_idx = 0; } else { mul_instr = op0_info->instr; add_op_idx = 1; } } if (mul_instr) { Operand op[3] = {Operand(v1), Operand(v1), Operand(v1)}; bool neg[3] = {false, false, false}; bool abs[3] = {false, false, false}; unsigned omod = 0; bool clamp = false; op[0] = mul_instr->operands[0]; op[1] = mul_instr->operands[1]; op[2] = instr->operands[add_op_idx]; // TODO: would be better to check this before selecting a mul instr? if (!check_vop3_operands(ctx, 3, op)) return; if (mul_instr->isVOP3()) { VOP3A_instruction* vop3 = static_cast (mul_instr); neg[0] = vop3->neg[0]; neg[1] = vop3->neg[1]; abs[0] = vop3->abs[0]; abs[1] = vop3->abs[1]; /* we cannot use these modifiers between mul and add */ if (vop3->clamp || vop3->omod) return; } /* convert to mad */ ctx.uses[mul_instr->definitions[0].tempId()]--; if (ctx.uses[mul_instr->definitions[0].tempId()]) { if (op[0].isTemp()) ctx.uses[op[0].tempId()]++; if (op[1].isTemp()) ctx.uses[op[1].tempId()]++; } if (instr->isVOP3()) { VOP3A_instruction* vop3 = static_cast (instr.get()); neg[2] = vop3->neg[add_op_idx]; abs[2] = vop3->abs[add_op_idx]; omod = vop3->omod; clamp = vop3->clamp; /* abs of the multiplication result */ if (vop3->abs[1 - add_op_idx]) { neg[0] = false; neg[1] = false; abs[0] = true; abs[1] = true; } /* neg of the multiplication result */ neg[1] = neg[1] ^ vop3->neg[1 - add_op_idx]; } if (instr->opcode == aco_opcode::v_sub_f32 || instr->opcode == aco_opcode::v_sub_f16) neg[1 + add_op_idx] = neg[1 + add_op_idx] ^ true; else if (instr->opcode == aco_opcode::v_subrev_f32 || instr->opcode == aco_opcode::v_subrev_f16) neg[2 - add_op_idx] = neg[2 - add_op_idx] ^ true; aco_opcode mad_op = need_fma ? aco_opcode::v_fma_f32 : aco_opcode::v_mad_f32; if (mad16) mad_op = need_fma ? (ctx.program->chip_class == GFX8 ? aco_opcode::v_fma_legacy_f16 : aco_opcode::v_fma_f16) : (ctx.program->chip_class == GFX8 ? aco_opcode::v_mad_legacy_f16 : aco_opcode::v_mad_f16); aco_ptr mad{create_instruction(mad_op, Format::VOP3A, 3, 1)}; for (unsigned i = 0; i < 3; i++) { mad->operands[i] = op[i]; mad->neg[i] = neg[i]; mad->abs[i] = abs[i]; } mad->omod = omod; mad->clamp = clamp; mad->definitions[0] = instr->definitions[0]; /* mark this ssa_def to be re-checked for profitability and literals */ ctx.mad_infos.emplace_back(std::move(instr), mul_instr->definitions[0].tempId()); ctx.info[mad->definitions[0].tempId()].set_mad(mad.get(), ctx.mad_infos.size() - 1); instr.reset(mad.release()); return; } } /* v_mul_f32(v_cndmask_b32(0, 1.0, cond), a) -> v_cndmask_b32(0, a, cond) */ else if (instr->opcode == aco_opcode::v_mul_f32 && !instr->isVOP3()) { for (unsigned i = 0; i < 2; i++) { if (instr->operands[i].isTemp() && ctx.info[instr->operands[i].tempId()].is_b2f() && ctx.uses[instr->operands[i].tempId()] == 1 && instr->operands[!i].isTemp() && instr->operands[!i].getTemp().type() == RegType::vgpr) { ctx.uses[instr->operands[i].tempId()]--; ctx.uses[ctx.info[instr->operands[i].tempId()].temp.id()]++; aco_ptr new_instr{create_instruction(aco_opcode::v_cndmask_b32, Format::VOP2, 3, 1)}; new_instr->operands[0] = Operand(0u); new_instr->operands[1] = instr->operands[!i]; new_instr->operands[2] = Operand(ctx.info[instr->operands[i].tempId()].temp); new_instr->definitions[0] = instr->definitions[0]; instr.reset(new_instr.release()); ctx.info[instr->definitions[0].tempId()].label = 0; return; } } } else if (instr->opcode == aco_opcode::v_or_b32 && ctx.program->chip_class >= GFX9) { if (combine_three_valu_op(ctx, instr, aco_opcode::s_or_b32, aco_opcode::v_or3_b32, "012", 1 | 2)) ; else if (combine_three_valu_op(ctx, instr, aco_opcode::v_or_b32, aco_opcode::v_or3_b32, "012", 1 | 2)) ; else if (combine_three_valu_op(ctx, instr, aco_opcode::s_and_b32, aco_opcode::v_and_or_b32, "120", 1 | 2)) ; else if (combine_three_valu_op(ctx, instr, aco_opcode::v_and_b32, aco_opcode::v_and_or_b32, "120", 1 | 2)) ; else if (combine_three_valu_op(ctx, instr, aco_opcode::s_lshl_b32, aco_opcode::v_lshl_or_b32, "120", 1 | 2)) ; else combine_three_valu_op(ctx, instr, aco_opcode::v_lshlrev_b32, aco_opcode::v_lshl_or_b32, "210", 1 | 2); } else if (instr->opcode == aco_opcode::v_xor_b32 && ctx.program->chip_class >= GFX10) { if (combine_three_valu_op(ctx, instr, aco_opcode::v_xor_b32, aco_opcode::v_xor3_b32, "012", 1 | 2)) ; else combine_three_valu_op(ctx, instr, aco_opcode::s_xor_b32, aco_opcode::v_xor3_b32, "012", 1 | 2); } else if (instr->opcode == aco_opcode::v_add_u32) { if (combine_add_sub_b2i(ctx, instr, aco_opcode::v_addc_co_u32, 1 | 2)) ; else if (ctx.program->chip_class >= GFX9) { if (combine_three_valu_op(ctx, instr, aco_opcode::s_xor_b32, aco_opcode::v_xad_u32, "120", 1 | 2)) ; else if (combine_three_valu_op(ctx, instr, aco_opcode::v_xor_b32, aco_opcode::v_xad_u32, "120", 1 | 2)) ; else if (combine_three_valu_op(ctx, instr, aco_opcode::s_add_i32, aco_opcode::v_add3_u32, "012", 1 | 2)) ; else if (combine_three_valu_op(ctx, instr, aco_opcode::s_add_u32, aco_opcode::v_add3_u32, "012", 1 | 2)) ; else if (combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add3_u32, "012", 1 | 2)) ; else if (combine_three_valu_op(ctx, instr, aco_opcode::s_lshl_b32, aco_opcode::v_lshl_add_u32, "120", 1 | 2)) ; else combine_three_valu_op(ctx, instr, aco_opcode::v_lshlrev_b32, aco_opcode::v_lshl_add_u32, "210", 1 | 2); } } else if (instr->opcode == aco_opcode::v_add_co_u32 || instr->opcode == aco_opcode::v_add_co_u32_e64) { combine_add_sub_b2i(ctx, instr, aco_opcode::v_addc_co_u32, 1 | 2); } else if (instr->opcode == aco_opcode::v_sub_u32 || instr->opcode == aco_opcode::v_sub_co_u32 || instr->opcode == aco_opcode::v_sub_co_u32_e64) { combine_add_sub_b2i(ctx, instr, aco_opcode::v_subbrev_co_u32, 2); } else if (instr->opcode == aco_opcode::v_subrev_u32 || instr->opcode == aco_opcode::v_subrev_co_u32 || instr->opcode == aco_opcode::v_subrev_co_u32_e64) { combine_add_sub_b2i(ctx, instr, aco_opcode::v_subbrev_co_u32, 1); } else if (instr->opcode == aco_opcode::v_lshlrev_b32 && ctx.program->chip_class >= GFX9) { combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add_lshl_u32, "120", 2); } else if ((instr->opcode == aco_opcode::s_add_u32 || instr->opcode == aco_opcode::s_add_i32) && ctx.program->chip_class >= GFX9) { combine_salu_lshl_add(ctx, instr); } else if (instr->opcode == aco_opcode::s_not_b32) { combine_salu_not_bitwise(ctx, instr); } else if (instr->opcode == aco_opcode::s_not_b64) { if (combine_inverse_comparison(ctx, instr)) ; else combine_salu_not_bitwise(ctx, instr); } else if (instr->opcode == aco_opcode::s_and_b32 || instr->opcode == aco_opcode::s_or_b32 || instr->opcode == aco_opcode::s_and_b64 || instr->opcode == aco_opcode::s_or_b64) { if (combine_ordering_test(ctx, instr)) ; else if (combine_comparison_ordering(ctx, instr)) ; else if (combine_constant_comparison_ordering(ctx, instr)) ; else combine_salu_n2(ctx, instr); } else { aco_opcode min, max, min3, max3, med3; bool some_gfx9_only; if (get_minmax_info(instr->opcode, &min, &max, &min3, &max3, &med3, &some_gfx9_only) && (!some_gfx9_only || ctx.program->chip_class >= GFX9)) { if (combine_minmax(ctx, instr, instr->opcode == min ? max : min, instr->opcode == min ? min3 : max3)) ; else combine_clamp(ctx, instr, min, max, med3); } } } bool to_uniform_bool_instr(opt_ctx &ctx, aco_ptr &instr) { switch (instr->opcode) { case aco_opcode::s_and_b32: case aco_opcode::s_and_b64: instr->opcode = aco_opcode::s_and_b32; break; case aco_opcode::s_or_b32: case aco_opcode::s_or_b64: instr->opcode = aco_opcode::s_or_b32; break; case aco_opcode::s_xor_b32: case aco_opcode::s_xor_b64: instr->opcode = aco_opcode::s_absdiff_i32; break; default: /* Don't transform other instructions. They are very unlikely to appear here. */ return false; } for (Operand &op : instr->operands) { ctx.uses[op.tempId()]--; if (ctx.info[op.tempId()].is_uniform_bool()) { /* Just use the uniform boolean temp. */ op.setTemp(ctx.info[op.tempId()].temp); } else if (ctx.info[op.tempId()].is_uniform_bitwise()) { /* Use the SCC definition of the predecessor instruction. * This allows the predecessor to get picked up by the same optimization (if it has no divergent users), * and it also makes sure that the current instruction will keep working even if the predecessor won't be transformed. */ Instruction *pred_instr = ctx.info[op.tempId()].instr; assert(pred_instr->definitions.size() >= 2); assert(pred_instr->definitions[1].isFixed() && pred_instr->definitions[1].physReg() == scc); op.setTemp(pred_instr->definitions[1].getTemp()); } else { unreachable("Invalid operand on uniform bitwise instruction."); } ctx.uses[op.tempId()]++; } instr->definitions[0].setTemp(Temp(instr->definitions[0].tempId(), s1)); assert(instr->operands[0].regClass() == s1); assert(instr->operands[1].regClass() == s1); return true; } void select_instruction(opt_ctx &ctx, aco_ptr& instr) { const uint32_t threshold = 4; if (is_dead(ctx.uses, instr.get())) { instr.reset(); return; } /* convert split_vector into a copy or extract_vector if only one definition is ever used */ if (instr->opcode == aco_opcode::p_split_vector) { unsigned num_used = 0; unsigned idx = 0; unsigned split_offset = 0; for (unsigned i = 0, offset = 0; i < instr->definitions.size(); offset += instr->definitions[i++].bytes()) { if (ctx.uses[instr->definitions[i].tempId()]) { num_used++; idx = i; split_offset = offset; } } bool done = false; if (num_used == 1 && ctx.info[instr->operands[0].tempId()].is_vec() && ctx.uses[instr->operands[0].tempId()] == 1) { Instruction *vec = ctx.info[instr->operands[0].tempId()].instr; unsigned off = 0; Operand op; for (Operand& vec_op : vec->operands) { if (off == split_offset) { op = vec_op; break; } off += vec_op.bytes(); } if (off != instr->operands[0].bytes() && op.bytes() == instr->definitions[idx].bytes()) { ctx.uses[instr->operands[0].tempId()]--; for (Operand& vec_op : vec->operands) { if (vec_op.isTemp()) ctx.uses[vec_op.tempId()]--; } if (op.isTemp()) ctx.uses[op.tempId()]++; aco_ptr extract{create_instruction(aco_opcode::p_create_vector, Format::PSEUDO, 1, 1)}; extract->operands[0] = op; extract->definitions[0] = instr->definitions[idx]; instr.reset(extract.release()); done = true; } } if (!done && num_used == 1 && instr->operands[0].bytes() % instr->definitions[idx].bytes() == 0 && split_offset % instr->definitions[idx].bytes() == 0) { aco_ptr extract{create_instruction(aco_opcode::p_extract_vector, Format::PSEUDO, 2, 1)}; extract->operands[0] = instr->operands[0]; extract->operands[1] = Operand((uint32_t) split_offset / instr->definitions[idx].bytes()); extract->definitions[0] = instr->definitions[idx]; instr.reset(extract.release()); } } mad_info* mad_info = NULL; if (!instr->definitions.empty() && ctx.info[instr->definitions[0].tempId()].is_mad()) { mad_info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].instr->pass_flags]; /* re-check mad instructions */ if (ctx.uses[mad_info->mul_temp_id]) { ctx.uses[mad_info->mul_temp_id]++; if (instr->operands[0].isTemp()) ctx.uses[instr->operands[0].tempId()]--; if (instr->operands[1].isTemp()) ctx.uses[instr->operands[1].tempId()]--; instr.swap(mad_info->add_instr); mad_info = NULL; } /* check literals */ else if (!instr->usesModifiers()) { /* FMA can only take literals on GFX10+ */ if ((instr->opcode == aco_opcode::v_fma_f32 || instr->opcode == aco_opcode::v_fma_f16) && ctx.program->chip_class < GFX10) return; bool sgpr_used = false; uint32_t literal_idx = 0; uint32_t literal_uses = UINT32_MAX; for (unsigned i = 0; i < instr->operands.size(); i++) { if (instr->operands[i].isConstant() && i > 0) { literal_uses = UINT32_MAX; break; } if (!instr->operands[i].isTemp()) continue; unsigned bits = get_operand_size(instr, i); /* if one of the operands is sgpr, we cannot add a literal somewhere else on pre-GFX10 or operands other than the 1st */ if (instr->operands[i].getTemp().type() == RegType::sgpr && (i > 0 || ctx.program->chip_class < GFX10)) { if (!sgpr_used && ctx.info[instr->operands[i].tempId()].is_literal(bits)) { literal_uses = ctx.uses[instr->operands[i].tempId()]; literal_idx = i; } else { literal_uses = UINT32_MAX; } sgpr_used = true; /* don't break because we still need to check constants */ } else if (!sgpr_used && ctx.info[instr->operands[i].tempId()].is_literal(bits) && ctx.uses[instr->operands[i].tempId()] < literal_uses) { literal_uses = ctx.uses[instr->operands[i].tempId()]; literal_idx = i; } } /* Limit the number of literals to apply to not increase the code * size too much, but always apply literals for v_mad->v_madak * because both instructions are 64-bit and this doesn't increase * code size. * TODO: try to apply the literals earlier to lower the number of * uses below threshold */ if (literal_uses < threshold || literal_idx == 2) { ctx.uses[instr->operands[literal_idx].tempId()]--; mad_info->check_literal = true; mad_info->literal_idx = literal_idx; return; } } } /* Mark SCC needed, so the uniform boolean transformation won't swap the definitions when it isn't beneficial */ if (instr->format == Format::PSEUDO_BRANCH && instr->operands.size() && instr->operands[0].isTemp()) { ctx.info[instr->operands[0].tempId()].set_scc_needed(); return; } else if ((instr->opcode == aco_opcode::s_cselect_b64 || instr->opcode == aco_opcode::s_cselect_b32) && instr->operands[2].isTemp()) { ctx.info[instr->operands[2].tempId()].set_scc_needed(); } /* check for literals */ if (!instr->isSALU() && !instr->isVALU()) return; /* Transform uniform bitwise boolean operations to 32-bit when there are no divergent uses. */ if (instr->definitions.size() && ctx.uses[instr->definitions[0].tempId()] == 0 && ctx.info[instr->definitions[0].tempId()].is_uniform_bitwise()) { bool transform_done = to_uniform_bool_instr(ctx, instr); if (transform_done && !ctx.info[instr->definitions[1].tempId()].is_scc_needed()) { /* Swap the two definition IDs in order to avoid overusing the SCC. This reduces extra moves generated by RA. */ uint32_t def0_id = instr->definitions[0].getTemp().id(); uint32_t def1_id = instr->definitions[1].getTemp().id(); instr->definitions[0].setTemp(Temp(def1_id, s1)); instr->definitions[1].setTemp(Temp(def0_id, s1)); } return; } if (instr->isSDWA() || instr->isDPP() || (instr->isVOP3() && ctx.program->chip_class < GFX10)) return; /* some encodings can't ever take literals */ /* we do not apply the literals yet as we don't know if it is profitable */ Operand current_literal(s1); unsigned literal_id = 0; unsigned literal_uses = UINT32_MAX; Operand literal(s1); unsigned num_operands = 1; if (instr->isSALU() || (ctx.program->chip_class >= GFX10 && can_use_VOP3(ctx, instr))) num_operands = instr->operands.size(); /* catch VOP2 with a 3rd SGPR operand (e.g. v_cndmask_b32, v_addc_co_u32) */ else if (instr->isVALU() && instr->operands.size() >= 3) return; unsigned sgpr_ids[2] = {0, 0}; bool is_literal_sgpr = false; uint32_t mask = 0; /* choose a literal to apply */ for (unsigned i = 0; i < num_operands; i++) { Operand op = instr->operands[i]; unsigned bits = get_operand_size(instr, i); if (instr->isVALU() && op.isTemp() && op.getTemp().type() == RegType::sgpr && op.tempId() != sgpr_ids[0]) sgpr_ids[!!sgpr_ids[0]] = op.tempId(); if (op.isLiteral()) { current_literal = op; continue; } else if (!op.isTemp() || !ctx.info[op.tempId()].is_literal(bits)) { continue; } if (!alu_can_accept_constant(instr->opcode, i)) continue; if (ctx.uses[op.tempId()] < literal_uses) { is_literal_sgpr = op.getTemp().type() == RegType::sgpr; mask = 0; literal = Operand(ctx.info[op.tempId()].val); literal_uses = ctx.uses[op.tempId()]; literal_id = op.tempId(); } mask |= (op.tempId() == literal_id) << i; } /* don't go over the constant bus limit */ bool is_shift64 = instr->opcode == aco_opcode::v_lshlrev_b64 || instr->opcode == aco_opcode::v_lshrrev_b64 || instr->opcode == aco_opcode::v_ashrrev_i64; unsigned const_bus_limit = instr->isVALU() ? 1 : UINT32_MAX; if (ctx.program->chip_class >= GFX10 && !is_shift64) const_bus_limit = 2; unsigned num_sgprs = !!sgpr_ids[0] + !!sgpr_ids[1]; if (num_sgprs == const_bus_limit && !is_literal_sgpr) return; if (literal_id && literal_uses < threshold && (current_literal.isUndefined() || (current_literal.size() == literal.size() && current_literal.constantValue() == literal.constantValue()))) { /* mark the literal to be applied */ while (mask) { unsigned i = u_bit_scan(&mask); if (instr->operands[i].isTemp() && instr->operands[i].tempId() == literal_id) ctx.uses[instr->operands[i].tempId()]--; } } } void apply_literals(opt_ctx &ctx, aco_ptr& instr) { /* Cleanup Dead Instructions */ if (!instr) return; /* apply literals on MAD */ if (!instr->definitions.empty() && ctx.info[instr->definitions[0].tempId()].is_mad()) { mad_info* info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].instr->pass_flags]; if (info->check_literal && (ctx.uses[instr->operands[info->literal_idx].tempId()] == 0 || info->literal_idx == 2)) { aco_ptr new_mad; aco_opcode new_op = info->literal_idx == 2 ? aco_opcode::v_madak_f32 : aco_opcode::v_madmk_f32; if (instr->opcode == aco_opcode::v_fma_f32) new_op = info->literal_idx == 2 ? aco_opcode::v_fmaak_f32 : aco_opcode::v_fmamk_f32; else if (instr->opcode == aco_opcode::v_mad_f16 || instr->opcode == aco_opcode::v_mad_legacy_f16) new_op = info->literal_idx == 2 ? aco_opcode::v_madak_f16 : aco_opcode::v_madmk_f16; else if (instr->opcode == aco_opcode::v_fma_f16) new_op = info->literal_idx == 2 ? aco_opcode::v_fmaak_f16 : aco_opcode::v_fmamk_f16; new_mad.reset(create_instruction(new_op, Format::VOP2, 3, 1)); if (info->literal_idx == 2) { /* add literal -> madak */ new_mad->operands[0] = instr->operands[0]; new_mad->operands[1] = instr->operands[1]; } else { /* mul literal -> madmk */ new_mad->operands[0] = instr->operands[1 - info->literal_idx]; new_mad->operands[1] = instr->operands[2]; } new_mad->operands[2] = Operand(ctx.info[instr->operands[info->literal_idx].tempId()].val); new_mad->definitions[0] = instr->definitions[0]; ctx.instructions.emplace_back(std::move(new_mad)); return; } } /* apply literals on other SALU/VALU */ if (instr->isSALU() || instr->isVALU()) { for (unsigned i = 0; i < instr->operands.size(); i++) { Operand op = instr->operands[i]; unsigned bits = get_operand_size(instr, i); if (op.isTemp() && ctx.info[op.tempId()].is_literal(bits) && ctx.uses[op.tempId()] == 0) { Operand literal(ctx.info[op.tempId()].val); if (instr->isVALU() && i > 0) to_VOP3(ctx, instr); instr->operands[i] = literal; } } } ctx.instructions.emplace_back(std::move(instr)); } void optimize(Program* program) { opt_ctx ctx; ctx.program = program; std::vector info(program->peekAllocationId()); ctx.info = info.data(); /* 1. Bottom-Up DAG pass (forward) to label all ssa-defs */ for (Block& block : program->blocks) { for (aco_ptr& instr : block.instructions) label_instruction(ctx, block, instr); } ctx.uses = dead_code_analysis(program); /* 2. Combine v_mad, omod, clamp and propagate sgpr on VALU instructions */ for (Block& block : program->blocks) { for (aco_ptr& instr : block.instructions) combine_instruction(ctx, block, instr); } /* 3. Top-Down DAG pass (backward) to select instructions (includes DCE) */ for (std::vector::reverse_iterator it = program->blocks.rbegin(); it != program->blocks.rend(); ++it) { Block* block = &(*it); for (std::vector>::reverse_iterator it = block->instructions.rbegin(); it != block->instructions.rend(); ++it) select_instruction(ctx, *it); } /* 4. Add literals to instructions */ for (Block& block : program->blocks) { ctx.instructions.clear(); for (aco_ptr& instr : block.instructions) apply_literals(ctx, instr); block.instructions.swap(ctx.instructions); } } }