/* * Copyright © 2018 Valve Corporation * Copyright © 2018 Google * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include #include #include #include #include "ac_shader_util.h" #include "aco_ir.h" #include "aco_builder.h" #include "aco_interface.h" #include "aco_instruction_selection_setup.cpp" #include "util/fast_idiv_by_const.h" namespace aco { namespace { class loop_info_RAII { isel_context* ctx; unsigned header_idx_old; Block* exit_old; bool divergent_cont_old; bool divergent_branch_old; bool divergent_if_old; public: loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit) : ctx(ctx), header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit), divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue), divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch), divergent_if_old(ctx->cf_info.parent_if.is_divergent) { ctx->cf_info.parent_loop.header_idx = loop_header_idx; ctx->cf_info.parent_loop.exit = loop_exit; ctx->cf_info.parent_loop.has_divergent_continue = false; ctx->cf_info.parent_loop.has_divergent_branch = false; ctx->cf_info.parent_if.is_divergent = false; ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1; } ~loop_info_RAII() { ctx->cf_info.parent_loop.header_idx = header_idx_old; ctx->cf_info.parent_loop.exit = exit_old; ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old; ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old; ctx->cf_info.parent_if.is_divergent = divergent_if_old; ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1; if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) ctx->cf_info.exec_potentially_empty_discard = false; } }; struct if_context { Temp cond; bool divergent_old; bool exec_potentially_empty_discard_old; bool exec_potentially_empty_break_old; uint16_t exec_potentially_empty_break_depth_old; unsigned BB_if_idx; unsigned invert_idx; bool uniform_has_then_branch; bool then_branch_divergent; Block BB_invert; Block BB_endif; }; static bool visit_cf_list(struct isel_context *ctx, struct exec_list *list); static void add_logical_edge(unsigned pred_idx, Block *succ) { succ->logical_preds.emplace_back(pred_idx); } static void add_linear_edge(unsigned pred_idx, Block *succ) { succ->linear_preds.emplace_back(pred_idx); } static void add_edge(unsigned pred_idx, Block *succ) { add_logical_edge(pred_idx, succ); add_linear_edge(pred_idx, succ); } static void append_logical_start(Block *b) { Builder(NULL, b).pseudo(aco_opcode::p_logical_start); } static void append_logical_end(Block *b) { Builder(NULL, b).pseudo(aco_opcode::p_logical_end); } Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def) { assert(ctx->allocated[def->index].id()); return ctx->allocated[def->index]; } Temp emit_mbcnt(isel_context *ctx, Definition dst, Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1)) { Builder bld(ctx->program, ctx->block); Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1); Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u)); if (ctx->program->wave_size == 32) { return thread_id_lo; } else if (ctx->program->chip_class <= GFX7) { Temp thread_id_hi = bld.vop2(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo); return thread_id_hi; } else { Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32_e64, dst, mask_hi, thread_id_lo); return thread_id_hi; } } Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false) { Builder bld(ctx->program, ctx->block); if (!dst.id()) dst = bld.tmp(src.regClass()); assert(src.size() == dst.size()); if (ctx->stage != fragment_fs) { if (!dst.id()) return src; bld.copy(Definition(dst), src); return dst; } bld.pseudo(aco_opcode::p_wqm, Definition(dst), src); ctx->program->needs_wqm |= program_needs_wqm; return dst; } static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data) { if (index.regClass() == s1) return bld.readlane(bld.def(s1), data, index); if (ctx->options->chip_class <= GFX7) { /* GFX6-7: there is no bpermute instruction */ Operand index_op(index); Operand input_data(data); index_op.setLateKill(true); input_data.setLateKill(true); return bld.pseudo(aco_opcode::p_bpermute, bld.def(v1), bld.def(bld.lm), bld.def(bld.lm, vcc), index_op, input_data); } else if (ctx->options->chip_class >= GFX10 && ctx->program->wave_size == 64) { /* GFX10 wave64 mode: emulate full-wave bpermute */ if (!ctx->has_gfx10_wave64_bpermute) { ctx->has_gfx10_wave64_bpermute = true; ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */ ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */ } Temp index_is_lo = bld.vopc(aco_opcode::v_cmp_ge_u32, bld.def(bld.lm), Operand(31u), index); Builder::Result index_is_lo_split = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), index_is_lo); Temp index_is_lo_n1 = bld.sop1(aco_opcode::s_not_b32, bld.def(s1), bld.def(s1, scc), index_is_lo_split.def(1).getTemp()); Operand same_half = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), index_is_lo_split.def(0).getTemp(), index_is_lo_n1); Operand index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index); Operand input_data(data); index_x4.setLateKill(true); input_data.setLateKill(true); same_half.setLateKill(true); return bld.pseudo(aco_opcode::p_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc), index_x4, input_data, same_half); } else { /* GFX8-9 or GFX10 wave32: bpermute works normally */ Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index); return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data); } } static Temp emit_masked_swizzle(isel_context *ctx, Builder &bld, Temp src, unsigned mask) { if (ctx->options->chip_class >= GFX8) { unsigned and_mask = mask & 0x1f; unsigned or_mask = (mask >> 5) & 0x1f; unsigned xor_mask = (mask >> 10) & 0x1f; uint16_t dpp_ctrl = 0xffff; // TODO: we could use DPP8 for some swizzles if (and_mask == 0x1f && or_mask < 4 && xor_mask < 4) { unsigned res[4] = {0, 1, 2, 3}; for (unsigned i = 0; i < 4; i++) res[i] = ((res[i] | or_mask) ^ xor_mask) & 0x3; dpp_ctrl = dpp_quad_perm(res[0], res[1], res[2], res[3]); } else if (and_mask == 0x1f && !or_mask && xor_mask == 8) { dpp_ctrl = dpp_row_rr(8); } else if (and_mask == 0x1f && !or_mask && xor_mask == 0xf) { dpp_ctrl = dpp_row_mirror; } else if (and_mask == 0x1f && !or_mask && xor_mask == 0x7) { dpp_ctrl = dpp_row_half_mirror; } if (dpp_ctrl != 0xffff) return bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl); } return bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false); } Temp as_vgpr(isel_context *ctx, Temp val) { if (val.type() == RegType::sgpr) { Builder bld(ctx->program, ctx->block); return bld.copy(bld.def(RegType::vgpr, val.size()), val); } assert(val.type() == RegType::vgpr); return val; } //assumes a != 0xffffffff void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b) { assert(b != 0); Builder bld(ctx->program, ctx->block); if (util_is_power_of_two_or_zero(b)) { bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a); return; } util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32); assert(info.multiplier <= 0xffffffff); bool pre_shift = info.pre_shift != 0; bool increment = info.increment != 0; bool multiply = true; bool post_shift = info.post_shift != 0; if (!pre_shift && !increment && !multiply && !post_shift) { bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a); return; } Temp pre_shift_dst = a; if (pre_shift) { pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst; bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a); } Temp increment_dst = pre_shift_dst; if (increment) { increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst; bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst); } Temp multiply_dst = increment_dst; if (multiply) { multiply_dst = post_shift ? bld.tmp(v1) : dst; bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst, bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier))); } if (post_shift) { bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst); } } void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst) { Builder bld(ctx->program, ctx->block); bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx)); } Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc) { /* no need to extract the whole vector */ if (src.regClass() == dst_rc) { assert(idx == 0); return src; } assert(src.bytes() > (idx * dst_rc.bytes())); Builder bld(ctx->program, ctx->block); auto it = ctx->allocated_vec.find(src.id()); if (it != ctx->allocated_vec.end() && dst_rc.bytes() == it->second[idx].regClass().bytes()) { if (it->second[idx].regClass() == dst_rc) { return it->second[idx]; } else { assert(!dst_rc.is_subdword()); assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr); return bld.copy(bld.def(dst_rc), it->second[idx]); } } if (dst_rc.is_subdword()) src = as_vgpr(ctx, src); if (src.bytes() == dst_rc.bytes()) { assert(idx == 0); return bld.copy(bld.def(dst_rc), src); } else { Temp dst = bld.tmp(dst_rc); emit_extract_vector(ctx, src, idx, dst); return dst; } } void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components) { if (num_components == 1) return; if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end()) return; RegClass rc; if (num_components > vec_src.size()) { if (vec_src.type() == RegType::sgpr) { /* should still help get_alu_src() */ emit_split_vector(ctx, vec_src, vec_src.size()); return; } /* sub-dword split */ rc = RegClass(RegType::vgpr, vec_src.bytes() / num_components).as_subdword(); } else { rc = RegClass(vec_src.type(), vec_src.size() / num_components); } aco_ptr split{create_instruction(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)}; split->operands[0] = Operand(vec_src); std::array elems; for (unsigned i = 0; i < num_components; i++) { elems[i] = {ctx->program->allocateId(), rc}; split->definitions[i] = Definition(elems[i]); } ctx->block->instructions.emplace_back(std::move(split)); ctx->allocated_vec.emplace(vec_src.id(), elems); } /* This vector expansion uses a mask to determine which elements in the new vector * come from the original vector. The other elements are undefined. */ void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask) { emit_split_vector(ctx, vec_src, util_bitcount(mask)); if (vec_src == dst) return; Builder bld(ctx->program, ctx->block); if (num_components == 1) { if (dst.type() == RegType::sgpr) bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src); else bld.copy(Definition(dst), vec_src); return; } unsigned component_size = dst.size() / num_components; std::array elems; aco_ptr vec{create_instruction(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)}; vec->definitions[0] = Definition(dst); unsigned k = 0; for (unsigned i = 0; i < num_components; i++) { if (mask & (1 << i)) { Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size)); if (dst.type() == RegType::sgpr) src = bld.as_uniform(src); vec->operands[i] = Operand(src); } else { vec->operands[i] = Operand(0u); } elems[i] = vec->operands[i].getTemp(); } ctx->block->instructions.emplace_back(std::move(vec)); ctx->allocated_vec.emplace(dst.id(), elems); } /* adjust misaligned small bit size loads */ void byte_align_scalar(isel_context *ctx, Temp vec, Operand offset, Temp dst) { Builder bld(ctx->program, ctx->block); Operand shift; Temp select = Temp(); if (offset.isConstant()) { assert(offset.constantValue() && offset.constantValue() < 4); shift = Operand(offset.constantValue() * 8); } else { /* bit_offset = 8 * (offset & 0x3) */ Temp tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), offset, Operand(3u)); select = bld.tmp(s1); shift = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.scc(Definition(select)), tmp, Operand(3u)); } if (vec.size() == 1) { bld.sop2(aco_opcode::s_lshr_b32, Definition(dst), bld.def(s1, scc), vec, shift); } else if (vec.size() == 2) { Temp tmp = dst.size() == 2 ? dst : bld.tmp(s2); bld.sop2(aco_opcode::s_lshr_b64, Definition(tmp), bld.def(s1, scc), vec, shift); if (tmp == dst) emit_split_vector(ctx, dst, 2); else emit_extract_vector(ctx, tmp, 0, dst); } else if (vec.size() == 4) { Temp lo = bld.tmp(s2), hi = bld.tmp(s2); bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), vec); hi = bld.pseudo(aco_opcode::p_extract_vector, bld.def(s1), hi, Operand(0u)); if (select != Temp()) hi = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), hi, Operand(0u), bld.scc(select)); lo = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), lo, shift); Temp mid = bld.tmp(s1); lo = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), Definition(mid), lo); hi = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), hi, shift); mid = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), hi, mid); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, mid); emit_split_vector(ctx, dst, 2); } } void byte_align_vector(isel_context *ctx, Temp vec, Operand offset, Temp dst, unsigned component_size) { Builder bld(ctx->program, ctx->block); if (offset.isTemp()) { Temp tmp[4] = {vec, vec, vec, vec}; if (vec.size() == 4) { tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1), tmp[3] = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), Definition(tmp[2]), Definition(tmp[3]), vec); } else if (vec.size() == 3) { tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), Definition(tmp[2]), vec); } else if (vec.size() == 2) { tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = tmp[1]; bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), vec); } for (unsigned i = 0; i < dst.size(); i++) tmp[i] = bld.vop3(aco_opcode::v_alignbyte_b32, bld.def(v1), tmp[i + 1], tmp[i], offset); vec = tmp[0]; if (dst.size() == 2) vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), tmp[0], tmp[1]); offset = Operand(0u); } unsigned num_components = vec.bytes() / component_size; if (vec.regClass() == dst.regClass()) { assert(offset.constantValue() == 0); bld.copy(Definition(dst), vec); emit_split_vector(ctx, dst, num_components); return; } emit_split_vector(ctx, vec, num_components); std::array elems; RegClass rc = RegClass(RegType::vgpr, component_size).as_subdword(); assert(offset.constantValue() % component_size == 0); unsigned skip = offset.constantValue() / component_size; for (unsigned i = skip; i < num_components; i++) elems[i - skip] = emit_extract_vector(ctx, vec, i, rc); /* if dst is vgpr - split the src and create a shrunk version according to the mask. */ if (dst.type() == RegType::vgpr) { num_components = dst.bytes() / component_size; aco_ptr create_vec{create_instruction(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)}; for (unsigned i = 0; i < num_components; i++) create_vec->operands[i] = Operand(elems[i]); create_vec->definitions[0] = Definition(dst); bld.insert(std::move(create_vec)); /* if dst is sgpr - split the src, but move the original to sgpr. */ } else if (skip) { vec = bld.pseudo(aco_opcode::p_as_uniform, bld.def(RegClass(RegType::sgpr, vec.size())), vec); byte_align_scalar(ctx, vec, offset, dst); } else { assert(dst.size() == vec.size()); bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec); } ctx->allocated_vec.emplace(dst.id(), elems); } Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2)) { Builder bld(ctx->program, ctx->block); if (!dst.id()) dst = bld.tmp(bld.lm); assert(val.regClass() == s1); assert(dst.regClass() == bld.lm); return bld.sop2(Builder::s_cselect, Definition(dst), Operand((uint32_t) -1), Operand(0u), bld.scc(val)); } Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1)) { Builder bld(ctx->program, ctx->block); if (!dst.id()) dst = bld.tmp(s1); assert(val.regClass() == bld.lm); assert(dst.regClass() == s1); /* if we're currently in WQM mode, ensure that the source is also computed in WQM */ Temp tmp = bld.tmp(s1); bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm)); return emit_wqm(ctx, tmp, dst); } Temp convert_int(isel_context *ctx, Builder& bld, Temp src, unsigned src_bits, unsigned dst_bits, bool is_signed, Temp dst=Temp()) { if (!dst.id()) { if (dst_bits % 32 == 0 || src.type() == RegType::sgpr) dst = bld.tmp(src.type(), DIV_ROUND_UP(dst_bits, 32u)); else dst = bld.tmp(RegClass(RegType::vgpr, dst_bits / 8u).as_subdword()); } if (dst.bytes() == src.bytes() && dst_bits < src_bits) return bld.copy(Definition(dst), src); else if (dst.bytes() < src.bytes()) return bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(0u)); Temp tmp = dst; if (dst_bits == 64) tmp = src_bits == 32 ? src : bld.tmp(src.type(), 1); if (tmp == src) { } else if (src.regClass() == s1) { if (is_signed) bld.sop1(src_bits == 8 ? aco_opcode::s_sext_i32_i8 : aco_opcode::s_sext_i32_i16, Definition(tmp), src); else bld.sop2(aco_opcode::s_and_b32, Definition(tmp), bld.def(s1, scc), Operand(src_bits == 8 ? 0xFFu : 0xFFFFu), src); } else if (ctx->options->chip_class >= GFX8) { assert(src_bits != 8 || src.regClass() == v1b); assert(src_bits != 16 || src.regClass() == v2b); aco_ptr sdwa{create_instruction(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)}; sdwa->operands[0] = Operand(src); sdwa->definitions[0] = Definition(tmp); if (is_signed) sdwa->sel[0] = src_bits == 8 ? sdwa_sbyte : sdwa_sword; else sdwa->sel[0] = src_bits == 8 ? sdwa_ubyte : sdwa_uword; sdwa->dst_sel = tmp.bytes() == 2 ? sdwa_uword : sdwa_udword; bld.insert(std::move(sdwa)); } else { assert(ctx->options->chip_class == GFX6 || ctx->options->chip_class == GFX7); aco_opcode opcode = is_signed ? aco_opcode::v_bfe_i32 : aco_opcode::v_bfe_u32; bld.vop3(opcode, Definition(tmp), src, Operand(0u), Operand(src_bits == 8 ? 8u : 16u)); } if (dst_bits == 64) { if (is_signed && dst.regClass() == s2) { Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), tmp, Operand(31u)); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, high); } else if (is_signed && dst.regClass() == v2) { Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), tmp); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, high); } else { bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, Operand(0u)); } } return dst; } enum sgpr_extract_mode { sgpr_extract_sext, sgpr_extract_zext, sgpr_extract_undef, }; Temp extract_8_16_bit_sgpr_element(isel_context *ctx, Temp dst, nir_alu_src *src, sgpr_extract_mode mode) { Temp vec = get_ssa_temp(ctx, src->src.ssa); unsigned src_size = src->src.ssa->bit_size; unsigned swizzle = src->swizzle[0]; if (vec.size() > 1) { assert(src_size == 16); vec = emit_extract_vector(ctx, vec, swizzle / 2, s1); swizzle = swizzle & 1; } Builder bld(ctx->program, ctx->block); unsigned offset = src_size * swizzle; Temp tmp = dst.regClass() == s2 ? bld.tmp(s1) : dst; if (mode == sgpr_extract_undef && swizzle == 0) { bld.copy(Definition(tmp), vec); } else if (mode == sgpr_extract_undef || (offset == 24 && mode == sgpr_extract_zext)) { bld.sop2(aco_opcode::s_lshr_b32, Definition(tmp), bld.def(s1, scc), vec, Operand(offset)); } else if (src_size == 8 && swizzle == 0 && mode == sgpr_extract_sext) { bld.sop1(aco_opcode::s_sext_i32_i8, Definition(tmp), vec); } else if (src_size == 16 && swizzle == 0 && mode == sgpr_extract_sext) { bld.sop1(aco_opcode::s_sext_i32_i16, Definition(tmp), vec); } else { aco_opcode op = mode == sgpr_extract_zext ? aco_opcode::s_bfe_u32 : aco_opcode::s_bfe_i32; bld.sop2(op, Definition(tmp), bld.def(s1, scc), vec, Operand((src_size << 16) | offset)); } if (dst.regClass() == s2) convert_int(ctx, bld, tmp, 32, 64, mode == sgpr_extract_sext, dst); return dst; } Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1) { if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1) return get_ssa_temp(ctx, src.src.ssa); if (src.src.ssa->num_components == size) { bool identity_swizzle = true; for (unsigned i = 0; identity_swizzle && i < size; i++) { if (src.swizzle[i] != i) identity_swizzle = false; } if (identity_swizzle) return get_ssa_temp(ctx, src.src.ssa); } Temp vec = get_ssa_temp(ctx, src.src.ssa); unsigned elem_size = vec.bytes() / src.src.ssa->num_components; assert(elem_size > 0); assert(vec.bytes() % elem_size == 0); if (elem_size < 4 && vec.type() == RegType::sgpr) { assert(src.src.ssa->bit_size == 8 || src.src.ssa->bit_size == 16); assert(size == 1); return extract_8_16_bit_sgpr_element( ctx, Temp(ctx->program->allocateId(), s1), &src, sgpr_extract_undef); } RegClass elem_rc = elem_size < 4 ? RegClass(vec.type(), elem_size).as_subdword() : RegClass(vec.type(), elem_size / 4); if (size == 1) { return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc); } else { assert(size <= 4); std::array elems; aco_ptr vec_instr{create_instruction(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)}; for (unsigned i = 0; i < size; ++i) { elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc); vec_instr->operands[i] = Operand{elems[i]}; } Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size / 4)}; vec_instr->definitions[0] = Definition(dst); ctx->block->instructions.emplace_back(std::move(vec_instr)); ctx->allocated_vec.emplace(dst.id(), elems); return dst; } } Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr) { if (ptr.size() == 2) return ptr; Builder bld(ctx->program, ctx->block); if (ptr.type() == RegType::vgpr) ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr); return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), ptr, Operand((unsigned)ctx->options->address32_hi)); } void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc) { aco_ptr sop2{create_instruction(op, Format::SOP2, 2, writes_scc ? 2 : 1)}; sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0])); sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1])); sop2->definitions[0] = Definition(dst); if (instr->no_unsigned_wrap) sop2->definitions[0].setNUW(true); if (writes_scc) sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1); ctx->block->instructions.emplace_back(std::move(sop2)); } void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool commutative, bool swap_srcs=false, bool flush_denorms = false) { Builder bld(ctx->program, ctx->block); bld.is_precise = instr->exact; Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]); Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]); if (src1.type() == RegType::sgpr) { if (commutative && src0.type() == RegType::vgpr) { Temp t = src0; src0 = src1; src1 = t; } else { src1 = as_vgpr(ctx, src1); } } if (flush_denorms && ctx->program->chip_class < GFX9) { assert(dst.size() == 1); Temp tmp = bld.vop2(op, bld.def(v1), src0, src1); bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp); } else { bld.vop2(op, Definition(dst), src0, src1); } } void emit_vop2_instruction_logic64(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst) { Builder bld(ctx->program, ctx->block); bld.is_precise = instr->exact; Temp src0 = get_alu_src(ctx, instr->src[0]); Temp src1 = get_alu_src(ctx, instr->src[1]); if (src1.type() == RegType::sgpr) { assert(src0.type() == RegType::vgpr); std::swap(src0, src1); } Temp src00 = bld.tmp(src0.type(), 1); Temp src01 = bld.tmp(src0.type(), 1); bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0); Temp src10 = bld.tmp(v1); Temp src11 = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1); Temp lo = bld.vop2(op, bld.def(v1), src00, src10); Temp hi = bld.vop2(op, bld.def(v1), src01, src11); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi); } void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool flush_denorms = false) { Temp src0 = get_alu_src(ctx, instr->src[0]); Temp src1 = get_alu_src(ctx, instr->src[1]); Temp src2 = get_alu_src(ctx, instr->src[2]); /* ensure that the instruction has at most 1 sgpr operand * The optimizer will inline constants for us */ if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr) src0 = as_vgpr(ctx, src0); if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr) src1 = as_vgpr(ctx, src1); if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr) src2 = as_vgpr(ctx, src2); Builder bld(ctx->program, ctx->block); bld.is_precise = instr->exact; if (flush_denorms && ctx->program->chip_class < GFX9) { assert(dst.size() == 1); Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2); bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp); } else { bld.vop3(op, Definition(dst), src0, src1, src2); } } void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst) { Builder bld(ctx->program, ctx->block); bld.is_precise = instr->exact; if (dst.type() == RegType::sgpr) bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), bld.vop1(op, bld.def(RegType::vgpr, dst.size()), get_alu_src(ctx, instr->src[0]))); else bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0])); } void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst) { Temp src0 = get_alu_src(ctx, instr->src[0]); Temp src1 = get_alu_src(ctx, instr->src[1]); assert(src0.size() == src1.size()); aco_ptr vopc; if (src1.type() == RegType::sgpr) { if (src0.type() == RegType::vgpr) { /* to swap the operands, we might also have to change the opcode */ switch (op) { case aco_opcode::v_cmp_lt_f16: op = aco_opcode::v_cmp_gt_f16; break; case aco_opcode::v_cmp_ge_f16: op = aco_opcode::v_cmp_le_f16; break; case aco_opcode::v_cmp_lt_i16: op = aco_opcode::v_cmp_gt_i16; break; case aco_opcode::v_cmp_ge_i16: op = aco_opcode::v_cmp_le_i16; break; case aco_opcode::v_cmp_lt_u16: op = aco_opcode::v_cmp_gt_u16; break; case aco_opcode::v_cmp_ge_u16: op = aco_opcode::v_cmp_le_u16; break; case aco_opcode::v_cmp_lt_f32: op = aco_opcode::v_cmp_gt_f32; break; case aco_opcode::v_cmp_ge_f32: op = aco_opcode::v_cmp_le_f32; break; case aco_opcode::v_cmp_lt_i32: op = aco_opcode::v_cmp_gt_i32; break; case aco_opcode::v_cmp_ge_i32: op = aco_opcode::v_cmp_le_i32; break; case aco_opcode::v_cmp_lt_u32: op = aco_opcode::v_cmp_gt_u32; break; case aco_opcode::v_cmp_ge_u32: op = aco_opcode::v_cmp_le_u32; break; case aco_opcode::v_cmp_lt_f64: op = aco_opcode::v_cmp_gt_f64; break; case aco_opcode::v_cmp_ge_f64: op = aco_opcode::v_cmp_le_f64; break; case aco_opcode::v_cmp_lt_i64: op = aco_opcode::v_cmp_gt_i64; break; case aco_opcode::v_cmp_ge_i64: op = aco_opcode::v_cmp_le_i64; break; case aco_opcode::v_cmp_lt_u64: op = aco_opcode::v_cmp_gt_u64; break; case aco_opcode::v_cmp_ge_u64: op = aco_opcode::v_cmp_le_u64; break; default: /* eq and ne are commutative */ break; } Temp t = src0; src0 = src1; src1 = t; } else { src1 = as_vgpr(ctx, src1); } } Builder bld(ctx->program, ctx->block); bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1); } void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst) { Temp src0 = get_alu_src(ctx, instr->src[0]); Temp src1 = get_alu_src(ctx, instr->src[1]); Builder bld(ctx->program, ctx->block); assert(dst.regClass() == bld.lm); assert(src0.type() == RegType::sgpr); assert(src1.type() == RegType::sgpr); assert(src0.regClass() == src1.regClass()); /* Emit the SALU comparison instruction */ Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1); /* Turn the result into a per-lane bool */ bool_to_vector_condition(ctx, cmp, dst); } void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst, aco_opcode v16_op, aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes) { aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : instr->src[0].src.ssa->bit_size == 32 ? s32_op : aco_opcode::num_opcodes; aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : instr->src[0].src.ssa->bit_size == 32 ? v32_op : v16_op; bool use_valu = s_op == aco_opcode::num_opcodes || nir_dest_is_divergent(instr->dest.dest) || ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr || ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr; aco_opcode op = use_valu ? v_op : s_op; assert(op != aco_opcode::num_opcodes); assert(dst.regClass() == ctx->program->lane_mask); if (use_valu) emit_vopc_instruction(ctx, instr, op, dst); else emit_sopc_instruction(ctx, instr, op, dst); } void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst) { Builder bld(ctx->program, ctx->block); Temp src0 = get_alu_src(ctx, instr->src[0]); Temp src1 = get_alu_src(ctx, instr->src[1]); assert(dst.regClass() == bld.lm); assert(src0.regClass() == bld.lm); assert(src1.regClass() == bld.lm); bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1); } void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst) { Builder bld(ctx->program, ctx->block); Temp cond = get_alu_src(ctx, instr->src[0]); Temp then = get_alu_src(ctx, instr->src[1]); Temp els = get_alu_src(ctx, instr->src[2]); assert(cond.regClass() == bld.lm); if (dst.type() == RegType::vgpr) { aco_ptr bcsel; if (dst.size() == 1) { then = as_vgpr(ctx, then); els = as_vgpr(ctx, els); bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond); } else if (dst.size() == 2) { Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then); Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els); Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond); Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } return; } if (instr->dest.dest.ssa.bit_size == 1) { assert(dst.regClass() == bld.lm); assert(then.regClass() == bld.lm); assert(els.regClass() == bld.lm); } if (!nir_src_is_divergent(instr->src[0].src)) { /* uniform condition and values in sgpr */ if (dst.regClass() == s1 || dst.regClass() == s2) { assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass()); assert(dst.size() == then.size()); aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64; bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond))); } else { fprintf(stderr, "Unimplemented uniform bcsel bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } return; } /* divergent boolean bcsel * this implements bcsel on bools: dst = s0 ? s1 : s2 * are going to be: dst = (s0 & s1) | (~s0 & s2) */ assert(instr->dest.dest.ssa.bit_size == 1); if (cond.id() != then.id()) then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then); if (cond.id() == els.id()) bld.sop1(Builder::s_mov, Definition(dst), then); else bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then, bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond)); } void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val, aco_opcode op, uint32_t undo) { /* multiply by 16777216 to handle denormals */ Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)), as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4)))); Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val); scaled = bld.vop1(op, bld.def(v1), scaled); scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled); Temp not_scaled = bld.vop1(op, bld.def(v1), val); bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal); } void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val) { if (ctx->block->fp_mode.denorm32 == 0) { bld.vop1(aco_opcode::v_rcp_f32, dst, val); return; } emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u); } void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val) { if (ctx->block->fp_mode.denorm32 == 0) { bld.vop1(aco_opcode::v_rsq_f32, dst, val); return; } emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u); } void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val) { if (ctx->block->fp_mode.denorm32 == 0) { bld.vop1(aco_opcode::v_sqrt_f32, dst, val); return; } emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u); } void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val) { if (ctx->block->fp_mode.denorm32 == 0) { bld.vop1(aco_opcode::v_log_f32, dst, val); return; } emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u); } Temp emit_trunc_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val) { if (ctx->options->chip_class >= GFX7) return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val); /* GFX6 doesn't support V_TRUNC_F64, lower it. */ /* TODO: create more efficient code! */ if (val.type() == RegType::sgpr) val = as_vgpr(ctx, val); /* Split the input value. */ Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val); /* Extract the exponent and compute the unbiased value. */ Temp exponent = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), val_hi, Operand(20u), Operand(11u)); exponent = bld.vsub32(bld.def(v1), exponent, Operand(1023u)); /* Extract the fractional part. */ Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x000fffffu)); fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent); Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), fract_mask); Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1); Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo); fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp); tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi); fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp); /* Get the sign bit. */ Temp sign = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x80000000u), val_hi); /* Decide the operation to apply depending on the unbiased exponent. */ Temp exp_lt0 = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)), exponent, Operand(0u)); Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, bld.copy(bld.def(v1), Operand(0u)), exp_lt0); Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0); Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand(51u)); dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51); dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51); return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi); } Temp emit_floor_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val) { if (ctx->options->chip_class >= GFX7) return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val); /* GFX6 doesn't support V_FLOOR_F64, lower it (note that it's actually * lowered at NIR level for precision reasons). */ Temp src0 = as_vgpr(ctx, val); Temp mask = bld.copy(bld.def(s1), Operand(3u)); /* isnan */ Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(-1u), Operand(0x3fefffffu)); Temp isnan = bld.vopc_e64(aco_opcode::v_cmp_class_f64, bld.hint_vcc(bld.def(bld.lm)), src0, mask); Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0); Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val); Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0); Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min); Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan); Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan); Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1); Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v); static_cast(add)->neg[1] = true; return add->definitions[0].getTemp(); } void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr) { if (!instr->dest.dest.is_ssa) { fprintf(stderr, "nir alu dst not in ssa: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); abort(); } Builder bld(ctx->program, ctx->block); bld.is_precise = instr->exact; Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa); switch(instr->op) { case nir_op_vec2: case nir_op_vec3: case nir_op_vec4: { std::array elems; unsigned num = instr->dest.dest.ssa.num_components; for (unsigned i = 0; i < num; ++i) elems[i] = get_alu_src(ctx, instr->src[i]); if (instr->dest.dest.ssa.bit_size >= 32 || dst.type() == RegType::vgpr) { aco_ptr vec{create_instruction(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)}; RegClass elem_rc = RegClass::get(RegType::vgpr, instr->dest.dest.ssa.bit_size / 8u); for (unsigned i = 0; i < num; ++i) { if (elems[i].type() == RegType::sgpr && elem_rc.is_subdword()) vec->operands[i] = Operand(emit_extract_vector(ctx, elems[i], 0, elem_rc)); else vec->operands[i] = Operand{elems[i]}; } vec->definitions[0] = Definition(dst); ctx->block->instructions.emplace_back(std::move(vec)); ctx->allocated_vec.emplace(dst.id(), elems); } else { // TODO: that is a bit suboptimal.. Temp mask = bld.copy(bld.def(s1), Operand((1u << instr->dest.dest.ssa.bit_size) - 1)); for (unsigned i = 0; i < num - 1; ++i) if (((i+1) * instr->dest.dest.ssa.bit_size) % 32) elems[i] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), elems[i], mask); for (unsigned i = 0; i < num; ++i) { unsigned bit = i * instr->dest.dest.ssa.bit_size; if (bit % 32 == 0) { elems[bit / 32] = elems[i]; } else { elems[i] = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), elems[i], Operand((i * instr->dest.dest.ssa.bit_size) % 32)); elems[bit / 32] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), elems[bit / 32], elems[i]); } } if (dst.size() == 1) bld.copy(Definition(dst), elems[0]); else bld.pseudo(aco_opcode::p_create_vector, Definition(dst), elems[0], elems[1]); } break; } case nir_op_mov: { Temp src = get_alu_src(ctx, instr->src[0]); aco_ptr mov; if (dst.type() == RegType::sgpr) { if (src.type() == RegType::vgpr) bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src); else if (src.regClass() == s1) bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src); else if (src.regClass() == s2) bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src); else unreachable("wrong src register class for nir_op_imov"); } else { if (dst.regClass() == v1) bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src); else if (dst.regClass() == v1b || dst.regClass() == v2b || dst.regClass() == v2) bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src); else unreachable("wrong src register class for nir_op_imov"); } break; } case nir_op_inot: { Temp src = get_alu_src(ctx, instr->src[0]); if (instr->dest.dest.ssa.bit_size == 1) { assert(src.regClass() == bld.lm); assert(dst.regClass() == bld.lm); /* Don't use s_andn2 here, this allows the optimizer to make a better decision */ Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src); bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm)); } else if (dst.regClass() == v1) { emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst); } else if (dst.regClass() == v2) { Temp lo = bld.tmp(v1), hi = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src); lo = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), lo); hi = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), hi); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi); } else if (dst.type() == RegType::sgpr) { aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64; bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_ineg: { Temp src = get_alu_src(ctx, instr->src[0]); if (dst.regClass() == v1) { bld.vsub32(Definition(dst), Operand(0u), Operand(src)); } else if (dst.regClass() == s1) { bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src); } else if (dst.size() == 2) { Temp src0 = bld.tmp(dst.type(), 1); Temp src1 = bld.tmp(dst.type(), 1); bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src); if (dst.regClass() == s2) { Temp carry = bld.tmp(s1); Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0); Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1); } else { Temp lower = bld.tmp(v1); Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp(); Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper); } } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_iabs: { if (dst.regClass() == s1) { bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0])); } else if (dst.regClass() == v1) { Temp src = get_alu_src(ctx, instr->src[0]); bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src)); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_isign: { Temp src = get_alu_src(ctx, instr->src[0]); if (dst.regClass() == s1) { Temp tmp = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), src, Operand((uint32_t)-1)); bld.sop2(aco_opcode::s_min_i32, Definition(dst), bld.def(s1, scc), tmp, Operand(1u)); } else if (dst.regClass() == s2) { Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u)); Temp neqz; if (ctx->program->chip_class >= GFX8) neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u)); else neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp(); /* SCC gets zero-extended to 64 bit */ bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz)); } else if (dst.regClass() == v1) { bld.vop3(aco_opcode::v_med3_i32, Definition(dst), Operand((uint32_t)-1), src, Operand(1u)); } else if (dst.regClass() == v2) { Temp upper = emit_extract_vector(ctx, src, 1, v1); Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper); Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src); Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz); upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_imax: { if (dst.regClass() == v1) { emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true); } else if (dst.regClass() == s1) { emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_umax: { if (dst.regClass() == v1) { emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true); } else if (dst.regClass() == s1) { emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_imin: { if (dst.regClass() == v1) { emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true); } else if (dst.regClass() == s1) { emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_umin: { if (dst.regClass() == v1) { emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true); } else if (dst.regClass() == s1) { emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_ior: { if (instr->dest.dest.ssa.bit_size == 1) { emit_boolean_logic(ctx, instr, Builder::s_or, dst); } else if (dst.regClass() == v1) { emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true); } else if (dst.regClass() == v2) { emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_or_b32, dst); } else if (dst.regClass() == s1) { emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true); } else if (dst.regClass() == s2) { emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_iand: { if (instr->dest.dest.ssa.bit_size == 1) { emit_boolean_logic(ctx, instr, Builder::s_and, dst); } else if (dst.regClass() == v1) { emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true); } else if (dst.regClass() == v2) { emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_and_b32, dst); } else if (dst.regClass() == s1) { emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true); } else if (dst.regClass() == s2) { emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_ixor: { if (instr->dest.dest.ssa.bit_size == 1) { emit_boolean_logic(ctx, instr, Builder::s_xor, dst); } else if (dst.regClass() == v1) { emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true); } else if (dst.regClass() == v2) { emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_xor_b32, dst); } else if (dst.regClass() == s1) { emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true); } else if (dst.regClass() == s2) { emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_ushr: { if (dst.regClass() == v1) { emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true); } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) { bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst), get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0])); } else if (dst.regClass() == v2) { bld.vop3(aco_opcode::v_lshr_b64, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1])); } else if (dst.regClass() == s2) { emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true); } else if (dst.regClass() == s1) { emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_ishl: { if (dst.regClass() == v1) { emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true); } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) { bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst), get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0])); } else if (dst.regClass() == v2) { bld.vop3(aco_opcode::v_lshl_b64, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1])); } else if (dst.regClass() == s1) { emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true); } else if (dst.regClass() == s2) { emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_ishr: { if (dst.regClass() == v1) { emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true); } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) { bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst), get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0])); } else if (dst.regClass() == v2) { bld.vop3(aco_opcode::v_ashr_i64, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1])); } else if (dst.regClass() == s1) { emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true); } else if (dst.regClass() == s2) { emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_find_lsb: { Temp src = get_alu_src(ctx, instr->src[0]); if (src.regClass() == s1) { bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src); } else if (src.regClass() == v1) { emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst); } else if (src.regClass() == s2) { bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_ufind_msb: case nir_op_ifind_msb: { Temp src = get_alu_src(ctx, instr->src[0]); if (src.regClass() == s1 || src.regClass() == s2) { aco_opcode op = src.regClass() == s2 ? (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) : (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32); Temp msb_rev = bld.sop1(op, bld.def(s1), src); Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(src.size() * 32u - 1u), msb_rev); Temp msb = sub.def(0).getTemp(); Temp carry = sub.def(1).getTemp(); bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, bld.scc(carry)); } else if (src.regClass() == v1) { aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32; Temp msb_rev = bld.tmp(v1); emit_vop1_instruction(ctx, instr, op, msb_rev); Temp msb = bld.tmp(v1); Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp(); bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_bitfield_reverse: { if (dst.regClass() == s1) { bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0])); } else if (dst.regClass() == v1) { bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0])); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_iadd: { if (dst.regClass() == s1) { emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true); break; } Temp src0 = get_alu_src(ctx, instr->src[0]); Temp src1 = get_alu_src(ctx, instr->src[1]); if (dst.regClass() == v1) { bld.vadd32(Definition(dst), Operand(src0), Operand(src1)); break; } assert(src0.size() == 2 && src1.size() == 2); Temp src00 = bld.tmp(src0.type(), 1); Temp src01 = bld.tmp(dst.type(), 1); bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0); Temp src10 = bld.tmp(src1.type(), 1); Temp src11 = bld.tmp(dst.type(), 1); bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1); if (dst.regClass() == s2) { Temp carry = bld.tmp(s1); Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10); Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry)); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1); } else if (dst.regClass() == v2) { Temp dst0 = bld.tmp(v1); Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp(); Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_uadd_sat: { Temp src0 = get_alu_src(ctx, instr->src[0]); Temp src1 = get_alu_src(ctx, instr->src[1]); if (dst.regClass() == s1) { Temp tmp = bld.tmp(s1), carry = bld.tmp(s1); bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)), src0, src1); bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry)); } else if (dst.regClass() == v1) { if (ctx->options->chip_class >= GFX9) { aco_ptr add{create_instruction(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)}; add->operands[0] = Operand(src0); add->operands[1] = Operand(src1); add->definitions[0] = Definition(dst); add->clamp = 1; ctx->block->instructions.emplace_back(std::move(add)); } else { if (src1.regClass() != v1) std::swap(src0, src1); assert(src1.regClass() == v1); Temp tmp = bld.tmp(v1); Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp(); bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry); } } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_uadd_carry: { Temp src0 = get_alu_src(ctx, instr->src[0]); Temp src1 = get_alu_src(ctx, instr->src[1]); if (dst.regClass() == s1) { bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1); break; } if (dst.regClass() == v1) { Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp(); bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry); break; } Temp src00 = bld.tmp(src0.type(), 1); Temp src01 = bld.tmp(dst.type(), 1); bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0); Temp src10 = bld.tmp(src1.type(), 1); Temp src11 = bld.tmp(dst.type(), 1); bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1); if (dst.regClass() == s2) { Temp carry = bld.tmp(s1); bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10); carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp(); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u)); } else if (dst.regClass() == v2) { Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp(); carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp(); carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u)); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_isub: { if (dst.regClass() == s1) { emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true); break; } Temp src0 = get_alu_src(ctx, instr->src[0]); Temp src1 = get_alu_src(ctx, instr->src[1]); if (dst.regClass() == v1) { bld.vsub32(Definition(dst), src0, src1); break; } Temp src00 = bld.tmp(src0.type(), 1); Temp src01 = bld.tmp(dst.type(), 1); bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0); Temp src10 = bld.tmp(src1.type(), 1); Temp src11 = bld.tmp(dst.type(), 1); bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1); if (dst.regClass() == s2) { Temp carry = bld.tmp(s1); Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10); Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1); } else if (dst.regClass() == v2) { Temp lower = bld.tmp(v1); Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp(); Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_usub_borrow: { Temp src0 = get_alu_src(ctx, instr->src[0]); Temp src1 = get_alu_src(ctx, instr->src[1]); if (dst.regClass() == s1) { bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1); break; } else if (dst.regClass() == v1) { Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp(); bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow); break; } Temp src00 = bld.tmp(src0.type(), 1); Temp src01 = bld.tmp(dst.type(), 1); bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0); Temp src10 = bld.tmp(src1.type(), 1); Temp src11 = bld.tmp(dst.type(), 1); bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1); if (dst.regClass() == s2) { Temp borrow = bld.tmp(s1); bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10); borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp(); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u)); } else if (dst.regClass() == v2) { Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp(); borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp(); borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u)); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_imul: { if (dst.regClass() == v1) { bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1])); } else if (dst.regClass() == s1) { emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_umul_high: { if (dst.regClass() == v1) { bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1])); } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) { bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1])); } else if (dst.regClass() == s1) { Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]), as_vgpr(ctx, get_alu_src(ctx, instr->src[1]))); bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_imul_high: { if (dst.regClass() == v1) { bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1])); } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) { bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1])); } else if (dst.regClass() == s1) { Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]), as_vgpr(ctx, get_alu_src(ctx, instr->src[1]))); bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_fmul: { Temp src0 = get_alu_src(ctx, instr->src[0]); Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1])); if (dst.regClass() == v2b) { emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f16, dst, true); } else if (dst.regClass() == v1) { emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true); } else if (dst.regClass() == v2) { bld.vop3(aco_opcode::v_mul_f64, Definition(dst), src0, src1); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_fadd: { Temp src0 = get_alu_src(ctx, instr->src[0]); Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1])); if (dst.regClass() == v2b) { emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f16, dst, true); } else if (dst.regClass() == v1) { emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true); } else if (dst.regClass() == v2) { bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, src1); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_fsub: { Temp src0 = get_alu_src(ctx, instr->src[0]); Temp src1 = get_alu_src(ctx, instr->src[1]); if (dst.regClass() == v2b) { if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr) emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f16, dst, false); else emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f16, dst, true); } else if (dst.regClass() == v1) { if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr) emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false); else emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true); } else if (dst.regClass() == v2) { Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), as_vgpr(ctx, src0), as_vgpr(ctx, src1)); VOP3A_instruction* sub = static_cast(add); sub->neg[1] = true; } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_fmax: { Temp src0 = get_alu_src(ctx, instr->src[0]); Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1])); if (dst.regClass() == v2b) { // TODO: check fp_mode.must_flush_denorms16_64 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f16, dst, true); } else if (dst.regClass() == v1) { emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32); } else if (dst.regClass() == v2) { if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) { Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2), src0, src1); bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp); } else { bld.vop3(aco_opcode::v_max_f64, Definition(dst), src0, src1); } } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_fmin: { Temp src0 = get_alu_src(ctx, instr->src[0]); Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1])); if (dst.regClass() == v2b) { // TODO: check fp_mode.must_flush_denorms16_64 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f16, dst, true); } else if (dst.regClass() == v1) { emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32); } else if (dst.regClass() == v2) { if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) { Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), src0, src1); bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp); } else { bld.vop3(aco_opcode::v_min_f64, Definition(dst), src0, src1); } } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_fmax3: { if (dst.regClass() == v2b) { emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f16, dst, false); } else if (dst.regClass() == v1) { emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst, ctx->block->fp_mode.must_flush_denorms32); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_fmin3: { if (dst.regClass() == v2b) { emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f16, dst, false); } else if (dst.regClass() == v1) { emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst, ctx->block->fp_mode.must_flush_denorms32); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_fmed3: { if (dst.regClass() == v2b) { emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f16, dst, false); } else if (dst.regClass() == v1) { emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst, ctx->block->fp_mode.must_flush_denorms32); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_umax3: { if (dst.size() == 1) { emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_umin3: { if (dst.size() == 1) { emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_umed3: { if (dst.size() == 1) { emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_imax3: { if (dst.size() == 1) { emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_imin3: { if (dst.size() == 1) { emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_imed3: { if (dst.size() == 1) { emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_cube_face_coord: { Temp in = get_alu_src(ctx, instr->src[0], 3); Temp src[3] = { emit_extract_vector(ctx, in, 0, v1), emit_extract_vector(ctx, in, 1, v1), emit_extract_vector(ctx, in, 2, v1) }; Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]); ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma); Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]); Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]); sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, ma), Operand(0x3f000000u/*0.5*/)); tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, ma), Operand(0x3f000000u/*0.5*/)); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc); break; } case nir_op_cube_face_index: { Temp in = get_alu_src(ctx, instr->src[0], 3); Temp src[3] = { emit_extract_vector(ctx, in, 0, v1), emit_extract_vector(ctx, in, 1, v1), emit_extract_vector(ctx, in, 2, v1) }; bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]); break; } case nir_op_bcsel: { emit_bcsel(ctx, instr, dst); break; } case nir_op_frsq: { Temp src = get_alu_src(ctx, instr->src[0]); if (dst.regClass() == v2b) { emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f16, dst); } else if (dst.regClass() == v1) { emit_rsq(ctx, bld, Definition(dst), src); } else if (dst.regClass() == v2) { /* Lowered at NIR level for precision reasons. */ emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_fneg: { Temp src = get_alu_src(ctx, instr->src[0]); if (dst.regClass() == v2b) { if (ctx->block->fp_mode.must_flush_denorms16_64) src = bld.vop2(aco_opcode::v_mul_f16, bld.def(v2b), Operand((uint16_t)0x3C00), as_vgpr(ctx, src)); bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x8000u), as_vgpr(ctx, src)); } else if (dst.regClass() == v1) { if (ctx->block->fp_mode.must_flush_denorms32) src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src)); bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src)); } else if (dst.regClass() == v2) { if (ctx->block->fp_mode.must_flush_denorms16_64) src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src)); Temp upper = bld.tmp(v1), lower = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src); upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_fabs: { Temp src = get_alu_src(ctx, instr->src[0]); if (dst.regClass() == v2b) { if (ctx->block->fp_mode.must_flush_denorms16_64) src = bld.vop2(aco_opcode::v_mul_f16, bld.def(v2b), Operand((uint16_t)0x3C00), as_vgpr(ctx, src)); bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFu), as_vgpr(ctx, src)); } else if (dst.regClass() == v1) { if (ctx->block->fp_mode.must_flush_denorms32) src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src)); bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src)); } else if (dst.regClass() == v2) { if (ctx->block->fp_mode.must_flush_denorms16_64) src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src)); Temp upper = bld.tmp(v1), lower = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src); upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_fsat: { Temp src = get_alu_src(ctx, instr->src[0]); if (dst.regClass() == v2b) { bld.vop3(aco_opcode::v_med3_f16, Definition(dst), Operand((uint16_t)0u), Operand((uint16_t)0x3c00), src); } else if (dst.regClass() == v1) { bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src); /* apparently, it is not necessary to flush denorms if this instruction is used with these operands */ // TODO: confirm that this holds under any circumstances } else if (dst.regClass() == v2) { Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u)); VOP3A_instruction* vop3 = static_cast(add); vop3->clamp = true; } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_flog2: { Temp src = get_alu_src(ctx, instr->src[0]); if (dst.regClass() == v2b) { emit_vop1_instruction(ctx, instr, aco_opcode::v_log_f16, dst); } else if (dst.regClass() == v1) { emit_log2(ctx, bld, Definition(dst), src); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_frcp: { Temp src = get_alu_src(ctx, instr->src[0]); if (dst.regClass() == v2b) { emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f16, dst); } else if (dst.regClass() == v1) { emit_rcp(ctx, bld, Definition(dst), src); } else if (dst.regClass() == v2) { /* Lowered at NIR level for precision reasons. */ emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_fexp2: { if (dst.regClass() == v2b) { emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f16, dst); } else if (dst.regClass() == v1) { emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_fsqrt: { Temp src = get_alu_src(ctx, instr->src[0]); if (dst.regClass() == v2b) { emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f16, dst); } else if (dst.regClass() == v1) { emit_sqrt(ctx, bld, Definition(dst), src); } else if (dst.regClass() == v2) { /* Lowered at NIR level for precision reasons. */ emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_ffract: { if (dst.regClass() == v2b) { emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f16, dst); } else if (dst.regClass() == v1) { emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst); } else if (dst.regClass() == v2) { emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_ffloor: { Temp src = get_alu_src(ctx, instr->src[0]); if (dst.regClass() == v2b) { emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f16, dst); } else if (dst.regClass() == v1) { emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst); } else if (dst.regClass() == v2) { emit_floor_f64(ctx, bld, Definition(dst), src); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_fceil: { Temp src0 = get_alu_src(ctx, instr->src[0]); if (dst.regClass() == v2b) { emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f16, dst); } else if (dst.regClass() == v1) { emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst); } else if (dst.regClass() == v2) { if (ctx->options->chip_class >= GFX7) { emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst); } else { /* GFX6 doesn't support V_CEIL_F64, lower it. */ /* trunc = trunc(src0) * if (src0 > 0.0 && src0 != trunc) * trunc += 1.0 */ Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0); Temp tmp0 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand(0u)); Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.hint_vcc(bld.def(bld.lm)), src0, trunc); Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), tmp0, tmp1); Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand(0u)), bld.copy(bld.def(v1), Operand(0x3ff00000u)), cond); add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), bld.copy(bld.def(v1), Operand(0u)), add); bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add); } } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_ftrunc: { Temp src = get_alu_src(ctx, instr->src[0]); if (dst.regClass() == v2b) { emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f16, dst); } else if (dst.regClass() == v1) { emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst); } else if (dst.regClass() == v2) { emit_trunc_f64(ctx, bld, Definition(dst), src); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_fround_even: { Temp src0 = get_alu_src(ctx, instr->src[0]); if (dst.regClass() == v2b) { emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f16, dst); } else if (dst.regClass() == v1) { emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst); } else if (dst.regClass() == v2) { if (ctx->options->chip_class >= GFX7) { emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst); } else { /* GFX6 doesn't support V_RNDNE_F64, lower it. */ Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0); Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), bld.copy(bld.def(s1), Operand(-2u))); Temp bfi = bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, bld.copy(bld.def(v1), Operand(0x43300000u)), as_vgpr(ctx, src0_hi)); Temp tmp = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi)); Instruction *sub = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi)); static_cast(sub)->neg[1] = true; tmp = sub->definitions[0].getTemp(); Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x432fffffu)); Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.hint_vcc(bld.def(bld.lm)), src0, v); static_cast(vop3)->abs[0] = true; Temp cond = vop3->definitions[0].getTemp(); Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp); Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, as_vgpr(ctx, src0_lo), cond); Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, as_vgpr(ctx, src0_hi), cond); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1); } } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_fsin: case nir_op_fcos: { Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0])); aco_ptr norm; if (dst.regClass() == v2b) { Temp half_pi = bld.copy(bld.def(s1), Operand(0x3118u)); Temp tmp = bld.vop2(aco_opcode::v_mul_f16, bld.def(v1), half_pi, src); aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f16 : aco_opcode::v_cos_f16; bld.vop1(opcode, Definition(dst), tmp); } else if (dst.regClass() == v1) { Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u)); Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, src); /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */ if (ctx->options->chip_class < GFX9) tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp); aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32; bld.vop1(opcode, Definition(dst), tmp); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_ldexp: { Temp src0 = get_alu_src(ctx, instr->src[0]); Temp src1 = get_alu_src(ctx, instr->src[1]); if (dst.regClass() == v2b) { emit_vop2_instruction(ctx, instr, aco_opcode::v_ldexp_f16, dst, false); } else if (dst.regClass() == v1) { bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst), as_vgpr(ctx, src0), src1); } else if (dst.regClass() == v2) { bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst), as_vgpr(ctx, src0), src1); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_frexp_sig: { Temp src = get_alu_src(ctx, instr->src[0]); if (dst.regClass() == v2b) { bld.vop1(aco_opcode::v_frexp_mant_f16, Definition(dst), src); } else if (dst.regClass() == v1) { bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst), src); } else if (dst.regClass() == v2) { bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst), src); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_frexp_exp: { Temp src = get_alu_src(ctx, instr->src[0]); if (instr->src[0].src.ssa->bit_size == 16) { Temp tmp = bld.vop1(aco_opcode::v_frexp_exp_i16_f16, bld.def(v1), src); tmp = bld.pseudo(aco_opcode::p_extract_vector, bld.def(v1b), tmp, Operand(0u)); convert_int(ctx, bld, tmp, 8, 32, true, dst); } else if (instr->src[0].src.ssa->bit_size == 32) { bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst), src); } else if (instr->src[0].src.ssa->bit_size == 64) { bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst), src); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_fsign: { Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0])); if (dst.regClass() == v2b) { Temp one = bld.copy(bld.def(v1), Operand(0x3c00u)); Temp minus_one = bld.copy(bld.def(v1), Operand(0xbc00u)); Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f16, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src); src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), one, src, cond); cond = bld.vopc(aco_opcode::v_cmp_le_f16, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src); bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), minus_one, src, cond); } else if (dst.regClass() == v1) { Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src); src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond); cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src); bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond); } else if (dst.regClass() == v2) { Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src); Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u)); Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond); cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src); tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u)); upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_f2f16: case nir_op_f2f16_rtne: { Temp src = get_alu_src(ctx, instr->src[0]); if (instr->src[0].src.ssa->bit_size == 64) src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src); if (instr->op == nir_op_f2f16_rtne && ctx->block->fp_mode.round16_64 != fp_round_ne) /* We emit s_round_mode/s_setreg_imm32 in lower_to_hw_instr to * keep value numbering and the scheduler simpler. */ bld.vop1(aco_opcode::p_cvt_f16_f32_rtne, Definition(dst), src); else bld.vop1(aco_opcode::v_cvt_f16_f32, Definition(dst), src); break; } case nir_op_f2f16_rtz: { Temp src = get_alu_src(ctx, instr->src[0]); if (instr->src[0].src.ssa->bit_size == 64) src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src); bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src, Operand(0u)); break; } case nir_op_f2f32: { if (instr->src[0].src.ssa->bit_size == 16) { emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f16, dst); } else if (instr->src[0].src.ssa->bit_size == 64) { emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_f2f64: { Temp src = get_alu_src(ctx, instr->src[0]); if (instr->src[0].src.ssa->bit_size == 16) src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src); bld.vop1(aco_opcode::v_cvt_f64_f32, Definition(dst), src); break; } case nir_op_i2f16: { assert(dst.regClass() == v2b); Temp src = get_alu_src(ctx, instr->src[0]); if (instr->src[0].src.ssa->bit_size == 8) src = convert_int(ctx, bld, src, 8, 16, true); else if (instr->src[0].src.ssa->bit_size == 64) src = convert_int(ctx, bld, src, 64, 32, false); bld.vop1(aco_opcode::v_cvt_f16_i16, Definition(dst), src); break; } case nir_op_i2f32: { assert(dst.size() == 1); Temp src = get_alu_src(ctx, instr->src[0]); if (instr->src[0].src.ssa->bit_size <= 16) src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, true); bld.vop1(aco_opcode::v_cvt_f32_i32, Definition(dst), src); break; } case nir_op_i2f64: { if (instr->src[0].src.ssa->bit_size <= 32) { Temp src = get_alu_src(ctx, instr->src[0]); if (instr->src[0].src.ssa->bit_size <= 16) src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, true); bld.vop1(aco_opcode::v_cvt_f64_i32, Definition(dst), src); } else if (instr->src[0].src.ssa->bit_size == 64) { Temp src = get_alu_src(ctx, instr->src[0]); RegClass rc = RegClass(src.type(), 1); Temp lower = bld.tmp(rc), upper = bld.tmp(rc); bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src); lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower); upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper); upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u)); bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_u2f16: { assert(dst.regClass() == v2b); Temp src = get_alu_src(ctx, instr->src[0]); if (instr->src[0].src.ssa->bit_size == 8) src = convert_int(ctx, bld, src, 8, 16, false); else if (instr->src[0].src.ssa->bit_size == 64) src = convert_int(ctx, bld, src, 64, 32, false); bld.vop1(aco_opcode::v_cvt_f16_u16, Definition(dst), src); break; } case nir_op_u2f32: { assert(dst.size() == 1); Temp src = get_alu_src(ctx, instr->src[0]); if (instr->src[0].src.ssa->bit_size == 8) { bld.vop1(aco_opcode::v_cvt_f32_ubyte0, Definition(dst), src); } else { if (instr->src[0].src.ssa->bit_size == 16) src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, true); bld.vop1(aco_opcode::v_cvt_f32_u32, Definition(dst), src); } break; } case nir_op_u2f64: { if (instr->src[0].src.ssa->bit_size <= 32) { Temp src = get_alu_src(ctx, instr->src[0]); if (instr->src[0].src.ssa->bit_size <= 16) src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, false); bld.vop1(aco_opcode::v_cvt_f64_u32, Definition(dst), src); } else if (instr->src[0].src.ssa->bit_size == 64) { Temp src = get_alu_src(ctx, instr->src[0]); RegClass rc = RegClass(src.type(), 1); Temp lower = bld.tmp(rc), upper = bld.tmp(rc); bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src); lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower); upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper); upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u)); bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_f2i8: case nir_op_f2i16: { if (instr->src[0].src.ssa->bit_size == 16) emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i16_f16, dst); else if (instr->src[0].src.ssa->bit_size == 32) emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f32, dst); else emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f64, dst); break; } case nir_op_f2u8: case nir_op_f2u16: { if (instr->src[0].src.ssa->bit_size == 16) emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u16_f16, dst); else if (instr->src[0].src.ssa->bit_size == 32) emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f32, dst); else emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f64, dst); break; } case nir_op_f2i32: { Temp src = get_alu_src(ctx, instr->src[0]); if (instr->src[0].src.ssa->bit_size == 16) { Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src); if (dst.type() == RegType::vgpr) { bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), tmp); } else { bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), tmp)); } } else if (instr->src[0].src.ssa->bit_size == 32) { emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f32, dst); } else if (instr->src[0].src.ssa->bit_size == 64) { emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f64, dst); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_f2u32: { Temp src = get_alu_src(ctx, instr->src[0]); if (instr->src[0].src.ssa->bit_size == 16) { Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src); if (dst.type() == RegType::vgpr) { bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), tmp); } else { bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), tmp)); } } else if (instr->src[0].src.ssa->bit_size == 32) { emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f32, dst); } else if (instr->src[0].src.ssa->bit_size == 64) { emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f64, dst); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_f2i64: { Temp src = get_alu_src(ctx, instr->src[0]); if (instr->src[0].src.ssa->bit_size == 16) src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src); if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::vgpr) { Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src); exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u)); Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src); Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src); mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa); mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa); mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa); Temp new_exponent = bld.tmp(v1); Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp(); if (ctx->program->chip_class >= GFX8) mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa); else mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent); Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu)); Temp lower = bld.tmp(v1), upper = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa); lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow); upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow); lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower); upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper); Temp new_lower = bld.tmp(v1); borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp(); Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper); } else if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::sgpr) { if (src.type() == RegType::vgpr) src = bld.as_uniform(src); Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u)); exponent = bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u)); exponent = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent); exponent = bld.sop2(aco_opcode::s_min_i32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent); Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src); Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u)); mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa); mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u)); mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa); exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent); mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent); Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu)); mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond); Temp lower = bld.tmp(s1), upper = bld.tmp(s1); bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa); lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower); upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper); Temp borrow = bld.tmp(s1); lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign); upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper); } else if (instr->src[0].src.ssa->bit_size == 64) { Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u)); Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src); Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec); vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u)); Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul); Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc); Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma); Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor); if (dst.type() == RegType::sgpr) { lower = bld.as_uniform(lower); upper = bld.as_uniform(upper); } bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_f2u64: { Temp src = get_alu_src(ctx, instr->src[0]); if (instr->src[0].src.ssa->bit_size == 16) src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src); if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::vgpr) { Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src); Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent); exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent); Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src); mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa); Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent); Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa); mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa); Temp new_exponent = bld.tmp(v1); Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp(); if (ctx->program->chip_class >= GFX8) mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa); else mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent); Temp lower = bld.tmp(v1), upper = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa); lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small); upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small); lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range); upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper); } else if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::sgpr) { if (src.type() == RegType::vgpr) src = bld.as_uniform(src); Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u)); exponent = bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u)); exponent = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent); Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src); mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa); Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent); Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small); mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa); Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u)); mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large); Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent); mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond); Temp lower = bld.tmp(s1), upper = bld.tmp(s1); bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa); Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u)); lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small); upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper); } else if (instr->src[0].src.ssa->bit_size == 64) { Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u)); Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src); Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec); vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u)); Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul); Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc); Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma); Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor); if (dst.type() == RegType::sgpr) { lower = bld.as_uniform(lower); upper = bld.as_uniform(upper); } bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_b2f16: { Temp src = get_alu_src(ctx, instr->src[0]); assert(src.regClass() == bld.lm); if (dst.regClass() == s1) { src = bool_to_scalar_condition(ctx, src); bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3c00u), src); } else if (dst.regClass() == v2b) { Temp one = bld.copy(bld.def(v1), Operand(0x3c00u)); bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), one, src); } else { unreachable("Wrong destination register class for nir_op_b2f16."); } break; } case nir_op_b2f32: { Temp src = get_alu_src(ctx, instr->src[0]); assert(src.regClass() == bld.lm); if (dst.regClass() == s1) { src = bool_to_scalar_condition(ctx, src); bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src); } else if (dst.regClass() == v1) { bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src); } else { unreachable("Wrong destination register class for nir_op_b2f32."); } break; } case nir_op_b2f64: { Temp src = get_alu_src(ctx, instr->src[0]); assert(src.regClass() == bld.lm); if (dst.regClass() == s2) { src = bool_to_scalar_condition(ctx, src); bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src)); } else if (dst.regClass() == v2) { Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u)); Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper); } else { unreachable("Wrong destination register class for nir_op_b2f64."); } break; } case nir_op_i2i8: case nir_op_i2i16: case nir_op_i2i32: case nir_op_i2i64: { if (dst.type() == RegType::sgpr && instr->src[0].src.ssa->bit_size < 32) { /* no need to do the extract in get_alu_src() */ sgpr_extract_mode mode = instr->dest.dest.ssa.bit_size > instr->src[0].src.ssa->bit_size ? sgpr_extract_sext : sgpr_extract_undef; extract_8_16_bit_sgpr_element(ctx, dst, &instr->src[0], mode); } else { convert_int(ctx, bld, get_alu_src(ctx, instr->src[0]), instr->src[0].src.ssa->bit_size, instr->dest.dest.ssa.bit_size, true, dst); } break; } case nir_op_u2u8: case nir_op_u2u16: case nir_op_u2u32: case nir_op_u2u64: { if (dst.type() == RegType::sgpr && instr->src[0].src.ssa->bit_size < 32) { /* no need to do the extract in get_alu_src() */ sgpr_extract_mode mode = instr->dest.dest.ssa.bit_size > instr->src[0].src.ssa->bit_size ? sgpr_extract_zext : sgpr_extract_undef; extract_8_16_bit_sgpr_element(ctx, dst, &instr->src[0], mode); } else { convert_int(ctx, bld, get_alu_src(ctx, instr->src[0]), instr->src[0].src.ssa->bit_size, instr->dest.dest.ssa.bit_size, false, dst); } break; } case nir_op_b2b32: case nir_op_b2i8: case nir_op_b2i16: case nir_op_b2i32: case nir_op_b2i64: { Temp src = get_alu_src(ctx, instr->src[0]); assert(src.regClass() == bld.lm); Temp tmp = dst.bytes() == 8 ? bld.tmp(RegClass::get(dst.type(), 4)) : dst; if (tmp.regClass() == s1) { // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ bool_to_scalar_condition(ctx, src, tmp); } else if (tmp.type() == RegType::vgpr) { bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(tmp), Operand(0u), Operand(1u), src); } else { unreachable("Invalid register class for b2i32"); } if (tmp != dst) bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, Operand(0u)); break; } case nir_op_b2b1: case nir_op_i2b1: { Temp src = get_alu_src(ctx, instr->src[0]); assert(dst.regClass() == bld.lm); if (src.type() == RegType::vgpr) { assert(src.regClass() == v1 || src.regClass() == v2); assert(dst.regClass() == bld.lm); bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32, Definition(dst), Operand(0u), src).def(0).setHint(vcc); } else { assert(src.regClass() == s1 || src.regClass() == s2); Temp tmp; if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) { tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp(); } else { tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32, bld.scc(bld.def(s1)), Operand(0u), src); } bool_to_vector_condition(ctx, tmp, dst); } break; } case nir_op_pack_64_2x32_split: { Temp src0 = get_alu_src(ctx, instr->src[0]); Temp src1 = get_alu_src(ctx, instr->src[1]); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1); break; } case nir_op_unpack_64_2x32_split_x: bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0])); break; case nir_op_unpack_64_2x32_split_y: bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0])); break; case nir_op_unpack_32_2x16_split_x: if (dst.type() == RegType::vgpr) { bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0])); } else { bld.copy(Definition(dst), get_alu_src(ctx, instr->src[0])); } break; case nir_op_unpack_32_2x16_split_y: if (dst.type() == RegType::vgpr) { bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0])); } else { bld.sop2(aco_opcode::s_bfe_u32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]), Operand(uint32_t(16 << 16 | 16))); } break; case nir_op_pack_32_2x16_split: { Temp src0 = get_alu_src(ctx, instr->src[0]); Temp src1 = get_alu_src(ctx, instr->src[1]); if (dst.regClass() == v1) { src0 = emit_extract_vector(ctx, src0, 0, v2b); src1 = emit_extract_vector(ctx, src1, 0, v2b); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1); } else { src0 = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), src0, Operand(0xFFFFu)); src1 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), src1, Operand(16u)); bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), src0, src1); } break; } case nir_op_pack_half_2x16: { Temp src = get_alu_src(ctx, instr->src[0], 2); if (dst.regClass() == v1) { Temp src0 = bld.tmp(v1); Temp src1 = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src); if (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz) bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1); else bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst), bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src0), bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src1)); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_unpack_half_2x16_split_x: { if (dst.regClass() == v1) { bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0])); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_unpack_half_2x16_split_y: { if (dst.regClass() == v1) { /* TODO: use SDWA here */ bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0])))); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_fquantize2f16: { Temp src = get_alu_src(ctx, instr->src[0]); Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src); Temp f32, cmp_res; if (ctx->program->chip_class >= GFX8) { Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */ cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask); f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16); } else { /* 0x38800000 is smallest half float value (2^-14) in 32-bit float, * so compare the result and flush to 0 if it's smaller. */ f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16); Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u)); Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest); static_cast(vop3)->abs[0] = true; cmp_res = vop3->definitions[0].getTemp(); } if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) { Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src)); bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res); } else { bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res); } break; } case nir_op_bfm: { Temp bits = get_alu_src(ctx, instr->src[0]); Temp offset = get_alu_src(ctx, instr->src[1]); if (dst.regClass() == s1) { bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset); } else if (dst.regClass() == v1) { bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_bitfield_select: { /* (mask & insert) | (~mask & base) */ Temp bitmask = get_alu_src(ctx, instr->src[0]); Temp insert = get_alu_src(ctx, instr->src[1]); Temp base = get_alu_src(ctx, instr->src[2]); /* dst = (insert & bitmask) | (base & ~bitmask) */ if (dst.regClass() == s1) { aco_ptr sop2; nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src); nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src); Operand lhs; if (const_insert && const_bitmask) { lhs = Operand(const_insert->u32 & const_bitmask->u32); } else { insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask); lhs = Operand(insert); } Operand rhs; nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src); if (const_base && const_bitmask) { rhs = Operand(const_base->u32 & ~const_bitmask->u32); } else { base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask); rhs = Operand(base); } bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs); } else if (dst.regClass() == v1) { if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr))) base = as_vgpr(ctx, base); if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr) insert = as_vgpr(ctx, insert); bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_ubfe: case nir_op_ibfe: { Temp base = get_alu_src(ctx, instr->src[0]); Temp offset = get_alu_src(ctx, instr->src[1]); Temp bits = get_alu_src(ctx, instr->src[2]); if (dst.type() == RegType::sgpr) { Operand extract; nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src); nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src); if (const_offset && const_bits) { uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32; extract = Operand(const_extract); } else { Operand width; if (const_bits) { width = Operand(const_bits->u32 << 16); } else { width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u)); } extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width); } aco_opcode opcode; if (dst.regClass() == s1) { if (instr->op == nir_op_ubfe) opcode = aco_opcode::s_bfe_u32; else opcode = aco_opcode::s_bfe_i32; } else if (dst.regClass() == s2) { if (instr->op == nir_op_ubfe) opcode = aco_opcode::s_bfe_u64; else opcode = aco_opcode::s_bfe_i64; } else { unreachable("Unsupported BFE bit size"); } bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract); } else { aco_opcode opcode; if (dst.regClass() == v1) { if (instr->op == nir_op_ubfe) opcode = aco_opcode::v_bfe_u32; else opcode = aco_opcode::v_bfe_i32; } else { unreachable("Unsupported BFE bit size"); } emit_vop3a_instruction(ctx, instr, opcode, dst); } break; } case nir_op_bit_count: { Temp src = get_alu_src(ctx, instr->src[0]); if (src.regClass() == s1) { bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src); } else if (src.regClass() == v1) { bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u)); } else if (src.regClass() == v2) { bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), emit_extract_vector(ctx, src, 1, v1), bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), emit_extract_vector(ctx, src, 0, v1), Operand(0u))); } else if (src.regClass() == s2) { bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_op_flt: { emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f16, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64); break; } case nir_op_fge: { emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f16, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64); break; } case nir_op_feq: { emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f16, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64); break; } case nir_op_fne: { emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f16, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64); break; } case nir_op_ilt: { emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i16, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32); break; } case nir_op_ige: { emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i16, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32); break; } case nir_op_ieq: { if (instr->src[0].src.ssa->bit_size == 1) emit_boolean_logic(ctx, instr, Builder::s_xnor, dst); else emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i16, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32, ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes); break; } case nir_op_ine: { if (instr->src[0].src.ssa->bit_size == 1) emit_boolean_logic(ctx, instr, Builder::s_xor, dst); else emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i16, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32, ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes); break; } case nir_op_ult: { emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u16, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32); break; } case nir_op_uge: { emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u16, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32); break; } case nir_op_fddx: case nir_op_fddy: case nir_op_fddx_fine: case nir_op_fddy_fine: case nir_op_fddx_coarse: case nir_op_fddy_coarse: { Temp src = get_alu_src(ctx, instr->src[0]); uint16_t dpp_ctrl1, dpp_ctrl2; if (instr->op == nir_op_fddx_fine) { dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2); dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3); } else if (instr->op == nir_op_fddy_fine) { dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1); dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3); } else { dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0); if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse) dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1); else dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2); } Temp tmp; if (ctx->program->chip_class >= GFX8) { Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1); tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2); } else { Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1); Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2); tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl); } emit_wqm(ctx, tmp, dst, true); break; } default: fprintf(stderr, "Unknown NIR ALU instr: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } } void visit_load_const(isel_context *ctx, nir_load_const_instr *instr) { Temp dst = get_ssa_temp(ctx, &instr->def); // TODO: we really want to have the resulting type as this would allow for 64bit literals // which get truncated the lsb if double and msb if int // for now, we only use s_mov_b64 with 64bit inline constants assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar."); assert(dst.type() == RegType::sgpr); Builder bld(ctx->program, ctx->block); if (instr->def.bit_size == 1) { assert(dst.regClass() == bld.lm); int val = instr->value[0].b ? -1 : 0; Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val); bld.sop1(Builder::s_mov, Definition(dst), op); } else if (instr->def.bit_size == 8) { /* ensure that the value is correctly represented in the low byte of the register */ bld.sopk(aco_opcode::s_movk_i32, Definition(dst), instr->value[0].u8); } else if (instr->def.bit_size == 16) { /* ensure that the value is correctly represented in the low half of the register */ bld.sopk(aco_opcode::s_movk_i32, Definition(dst), instr->value[0].u16); } else if (dst.size() == 1) { bld.copy(Definition(dst), Operand(instr->value[0].u32)); } else { assert(dst.size() != 1); aco_ptr vec{create_instruction(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)}; if (instr->def.bit_size == 64) for (unsigned i = 0; i < dst.size(); i++) vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)}; else { for (unsigned i = 0; i < dst.size(); i++) vec->operands[i] = Operand{instr->value[i].u32}; } vec->definitions[0] = Definition(dst); ctx->block->instructions.emplace_back(std::move(vec)); } } uint32_t widen_mask(uint32_t mask, unsigned multiplier) { uint32_t new_mask = 0; for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i) if (mask & (1u << i)) new_mask |= ((1u << multiplier) - 1u) << (i * multiplier); return new_mask; } struct LoadEmitInfo { Operand offset; Temp dst; unsigned num_components; unsigned component_size; Temp resource = Temp(0, s1); unsigned component_stride = 0; unsigned const_offset = 0; unsigned align_mul = 0; unsigned align_offset = 0; bool glc = false; unsigned swizzle_component_size = 0; memory_sync_info sync; Temp soffset = Temp(0, s1); }; using LoadCallback = Temp(*)( Builder& bld, const LoadEmitInfo* info, Temp offset, unsigned bytes_needed, unsigned align, unsigned const_offset, Temp dst_hint); template void emit_load(isel_context *ctx, Builder& bld, const LoadEmitInfo *info) { unsigned load_size = info->num_components * info->component_size; unsigned component_size = info->component_size; unsigned num_vals = 0; Temp vals[info->dst.bytes()]; unsigned const_offset = info->const_offset; unsigned align_mul = info->align_mul ? info->align_mul : component_size; unsigned align_offset = (info->align_offset + const_offset) % align_mul; unsigned bytes_read = 0; while (bytes_read < load_size) { unsigned bytes_needed = load_size - bytes_read; /* add buffer for unaligned loads */ int byte_align = align_mul % 4 == 0 ? align_offset % 4 : -1; if (byte_align) { if ((bytes_needed > 2 || (bytes_needed == 2 && (align_mul % 2 || align_offset % 2)) || !supports_8bit_16bit_loads) && byte_align_loads) { if (info->component_stride) { assert(supports_8bit_16bit_loads && "unimplemented"); bytes_needed = 2; byte_align = 0; } else { bytes_needed += byte_align == -1 ? 4 - info->align_mul : byte_align; bytes_needed = align(bytes_needed, 4); } } else { byte_align = 0; } } if (info->swizzle_component_size) bytes_needed = MIN2(bytes_needed, info->swizzle_component_size); if (info->component_stride) bytes_needed = MIN2(bytes_needed, info->component_size); bool need_to_align_offset = byte_align && (align_mul % 4 || align_offset % 4); /* reduce constant offset */ Operand offset = info->offset; unsigned reduced_const_offset = const_offset; bool remove_const_offset_completely = need_to_align_offset; if (const_offset && (remove_const_offset_completely || const_offset >= max_const_offset_plus_one)) { unsigned to_add = const_offset; if (remove_const_offset_completely) { reduced_const_offset = 0; } else { to_add = const_offset / max_const_offset_plus_one * max_const_offset_plus_one; reduced_const_offset %= max_const_offset_plus_one; } Temp offset_tmp = offset.isTemp() ? offset.getTemp() : Temp(); if (offset.isConstant()) { offset = Operand(offset.constantValue() + to_add); } else if (offset_tmp.regClass() == s1) { offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), offset_tmp, Operand(to_add)); } else if (offset_tmp.regClass() == v1) { offset = bld.vadd32(bld.def(v1), offset_tmp, Operand(to_add)); } else { Temp lo = bld.tmp(offset_tmp.type(), 1); Temp hi = bld.tmp(offset_tmp.type(), 1); bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), offset_tmp); if (offset_tmp.regClass() == s2) { Temp carry = bld.tmp(s1); lo = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), lo, Operand(to_add)); hi = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), hi, carry); offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), lo, hi); } else { Temp new_lo = bld.tmp(v1); Temp carry = bld.vadd32(Definition(new_lo), lo, Operand(to_add), true).def(1).getTemp(); hi = bld.vadd32(bld.def(v1), hi, Operand(0u), false, carry); offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_lo, hi); } } } /* align offset down if needed */ Operand aligned_offset = offset; unsigned align = align_offset ? 1 << (ffs(align_offset) - 1) : align_mul; if (need_to_align_offset) { align = 4; Temp offset_tmp = offset.isTemp() ? offset.getTemp() : Temp(); if (offset.isConstant()) { aligned_offset = Operand(offset.constantValue() & 0xfffffffcu); } else if (offset_tmp.regClass() == s1) { aligned_offset = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfffffffcu), offset_tmp); } else if (offset_tmp.regClass() == s2) { aligned_offset = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), Operand((uint64_t)0xfffffffffffffffcllu), offset_tmp); } else if (offset_tmp.regClass() == v1) { aligned_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xfffffffcu), offset_tmp); } else if (offset_tmp.regClass() == v2) { Temp hi = bld.tmp(v1), lo = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), offset_tmp); lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xfffffffcu), lo); aligned_offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), lo, hi); } } Temp aligned_offset_tmp = aligned_offset.isTemp() ? aligned_offset.getTemp() : bld.copy(bld.def(s1), aligned_offset); Temp val = callback(bld, info, aligned_offset_tmp, bytes_needed, align, reduced_const_offset, byte_align ? Temp() : info->dst); /* the callback wrote directly to dst */ if (val == info->dst) { assert(num_vals == 0); emit_split_vector(ctx, info->dst, info->num_components); return; } /* shift result right if needed */ if (info->component_size < 4 && byte_align_loads) { Operand align((uint32_t)byte_align); if (byte_align == -1) { if (offset.isConstant()) align = Operand(offset.constantValue() % 4u); else if (offset.size() == 2) align = Operand(emit_extract_vector(ctx, offset.getTemp(), 0, RegClass(offset.getTemp().type(), 1))); else align = offset; } assert(val.bytes() >= load_size && "unimplemented"); if (val.type() == RegType::sgpr) byte_align_scalar(ctx, val, align, info->dst); else byte_align_vector(ctx, val, align, info->dst, component_size); return; } /* add result to list and advance */ if (info->component_stride) { assert(val.bytes() == info->component_size && "unimplemented"); const_offset += info->component_stride; align_offset = (align_offset + info->component_stride) % align_mul; } else { const_offset += val.bytes(); align_offset = (align_offset + val.bytes()) % align_mul; } bytes_read += val.bytes(); vals[num_vals++] = val; } /* create array of components */ unsigned components_split = 0; std::array allocated_vec; bool has_vgprs = false; for (unsigned i = 0; i < num_vals;) { Temp tmp[num_vals]; unsigned num_tmps = 0; unsigned tmp_size = 0; RegType reg_type = RegType::sgpr; while ((!tmp_size || (tmp_size % component_size)) && i < num_vals) { if (vals[i].type() == RegType::vgpr) reg_type = RegType::vgpr; tmp_size += vals[i].bytes(); tmp[num_tmps++] = vals[i++]; } if (num_tmps > 1) { aco_ptr vec{create_instruction( aco_opcode::p_create_vector, Format::PSEUDO, num_tmps, 1)}; for (unsigned i = 0; i < num_tmps; i++) vec->operands[i] = Operand(tmp[i]); tmp[0] = bld.tmp(RegClass::get(reg_type, tmp_size)); vec->definitions[0] = Definition(tmp[0]); bld.insert(std::move(vec)); } if (tmp[0].bytes() % component_size) { /* trim tmp[0] */ assert(i == num_vals); RegClass new_rc = RegClass::get(reg_type, tmp[0].bytes() / component_size * component_size); tmp[0] = bld.pseudo(aco_opcode::p_extract_vector, bld.def(new_rc), tmp[0], Operand(0u)); } RegClass elem_rc = RegClass::get(reg_type, component_size); unsigned start = components_split; if (tmp_size == elem_rc.bytes()) { allocated_vec[components_split++] = tmp[0]; } else { assert(tmp_size % elem_rc.bytes() == 0); aco_ptr split{create_instruction( aco_opcode::p_split_vector, Format::PSEUDO, 1, tmp_size / elem_rc.bytes())}; for (unsigned i = 0; i < split->definitions.size(); i++) { Temp component = bld.tmp(elem_rc); allocated_vec[components_split++] = component; split->definitions[i] = Definition(component); } split->operands[0] = Operand(tmp[0]); bld.insert(std::move(split)); } /* try to p_as_uniform early so we can create more optimizable code and * also update allocated_vec */ for (unsigned j = start; j < components_split; j++) { if (allocated_vec[j].bytes() % 4 == 0 && info->dst.type() == RegType::sgpr) allocated_vec[j] = bld.as_uniform(allocated_vec[j]); has_vgprs |= allocated_vec[j].type() == RegType::vgpr; } } /* concatenate components and p_as_uniform() result if needed */ if (info->dst.type() == RegType::vgpr || !has_vgprs) ctx->allocated_vec.emplace(info->dst.id(), allocated_vec); int padding_bytes = MAX2((int)info->dst.bytes() - int(allocated_vec[0].bytes() * info->num_components), 0); aco_ptr vec{create_instruction( aco_opcode::p_create_vector, Format::PSEUDO, info->num_components + !!padding_bytes, 1)}; for (unsigned i = 0; i < info->num_components; i++) vec->operands[i] = Operand(allocated_vec[i]); if (padding_bytes) vec->operands[info->num_components] = Operand(RegClass::get(RegType::vgpr, padding_bytes)); if (info->dst.type() == RegType::sgpr && has_vgprs) { Temp tmp = bld.tmp(RegType::vgpr, info->dst.size()); vec->definitions[0] = Definition(tmp); bld.insert(std::move(vec)); bld.pseudo(aco_opcode::p_as_uniform, Definition(info->dst), tmp); } else { vec->definitions[0] = Definition(info->dst); bld.insert(std::move(vec)); } } Operand load_lds_size_m0(Builder& bld) { /* TODO: m0 does not need to be initialized on GFX9+ */ return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff)); } Temp lds_load_callback(Builder& bld, const LoadEmitInfo *info, Temp offset, unsigned bytes_needed, unsigned align, unsigned const_offset, Temp dst_hint) { offset = offset.regClass() == s1 ? bld.copy(bld.def(v1), offset) : offset; Operand m = load_lds_size_m0(bld); bool large_ds_read = bld.program->chip_class >= GFX7; bool usable_read2 = bld.program->chip_class >= GFX7; bool read2 = false; unsigned size = 0; aco_opcode op; //TODO: use ds_read_u8_d16_hi/ds_read_u16_d16_hi if beneficial if (bytes_needed >= 16 && align % 16 == 0 && large_ds_read) { size = 16; op = aco_opcode::ds_read_b128; } else if (bytes_needed >= 16 && align % 8 == 0 && const_offset % 8 == 0 && usable_read2) { size = 16; read2 = true; op = aco_opcode::ds_read2_b64; } else if (bytes_needed >= 12 && align % 16 == 0 && large_ds_read) { size = 12; op = aco_opcode::ds_read_b96; } else if (bytes_needed >= 8 && align % 8 == 0) { size = 8; op = aco_opcode::ds_read_b64; } else if (bytes_needed >= 8 && align % 4 == 0 && const_offset % 4 == 0) { size = 8; read2 = true; op = aco_opcode::ds_read2_b32; } else if (bytes_needed >= 4 && align % 4 == 0) { size = 4; op = aco_opcode::ds_read_b32; } else if (bytes_needed >= 2 && align % 2 == 0) { size = 2; op = aco_opcode::ds_read_u16; } else { size = 1; op = aco_opcode::ds_read_u8; } unsigned max_offset_plus_one = read2 ? 254 * (size / 2u) + 1 : 65536; if (const_offset >= max_offset_plus_one) { offset = bld.vadd32(bld.def(v1), offset, Operand(const_offset / max_offset_plus_one)); const_offset %= max_offset_plus_one; } if (read2) const_offset /= (size / 2u); RegClass rc = RegClass(RegType::vgpr, DIV_ROUND_UP(size, 4)); Temp val = rc == info->dst.regClass() && dst_hint.id() ? dst_hint : bld.tmp(rc); Instruction *instr; if (read2) instr = bld.ds(op, Definition(val), offset, m, const_offset, const_offset + 1); else instr = bld.ds(op, Definition(val), offset, m, const_offset); static_cast(instr)->sync = info->sync; if (size < 4) val = bld.pseudo(aco_opcode::p_extract_vector, bld.def(RegClass::get(RegType::vgpr, size)), val, Operand(0u)); return val; } static auto emit_lds_load = emit_load; Temp smem_load_callback(Builder& bld, const LoadEmitInfo *info, Temp offset, unsigned bytes_needed, unsigned align, unsigned const_offset, Temp dst_hint) { unsigned size = 0; aco_opcode op; if (bytes_needed <= 4) { size = 1; op = info->resource.id() ? aco_opcode::s_buffer_load_dword : aco_opcode::s_load_dword; } else if (bytes_needed <= 8) { size = 2; op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx2 : aco_opcode::s_load_dwordx2; } else if (bytes_needed <= 16) { size = 4; op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx4 : aco_opcode::s_load_dwordx4; } else if (bytes_needed <= 32) { size = 8; op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx8 : aco_opcode::s_load_dwordx8; } else { size = 16; op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx16 : aco_opcode::s_load_dwordx16; } aco_ptr load{create_instruction(op, Format::SMEM, 2, 1)}; if (info->resource.id()) { load->operands[0] = Operand(info->resource); load->operands[1] = Operand(offset); } else { load->operands[0] = Operand(offset); load->operands[1] = Operand(0u); } RegClass rc(RegType::sgpr, size); Temp val = dst_hint.id() && dst_hint.regClass() == rc ? dst_hint : bld.tmp(rc); load->definitions[0] = Definition(val); load->glc = info->glc; load->dlc = info->glc && bld.program->chip_class >= GFX10; load->sync = info->sync; bld.insert(std::move(load)); return val; } static auto emit_smem_load = emit_load; Temp mubuf_load_callback(Builder& bld, const LoadEmitInfo *info, Temp offset, unsigned bytes_needed, unsigned align_, unsigned const_offset, Temp dst_hint) { Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1); Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0); if (info->soffset.id()) { if (soffset.isTemp()) vaddr = bld.copy(bld.def(v1), soffset); soffset = Operand(info->soffset); } unsigned bytes_size = 0; aco_opcode op; if (bytes_needed == 1 || align_ % 2) { bytes_size = 1; op = aco_opcode::buffer_load_ubyte; } else if (bytes_needed == 2 || align_ % 4) { bytes_size = 2; op = aco_opcode::buffer_load_ushort; } else if (bytes_needed <= 4) { bytes_size = 4; op = aco_opcode::buffer_load_dword; } else if (bytes_needed <= 8) { bytes_size = 8; op = aco_opcode::buffer_load_dwordx2; } else if (bytes_needed <= 12 && bld.program->chip_class > GFX6) { bytes_size = 12; op = aco_opcode::buffer_load_dwordx3; } else { bytes_size = 16; op = aco_opcode::buffer_load_dwordx4; } aco_ptr mubuf{create_instruction(op, Format::MUBUF, 3, 1)}; mubuf->operands[0] = Operand(info->resource); mubuf->operands[1] = vaddr; mubuf->operands[2] = soffset; mubuf->offen = (offset.type() == RegType::vgpr); mubuf->glc = info->glc; mubuf->dlc = info->glc && bld.program->chip_class >= GFX10; mubuf->sync = info->sync; mubuf->offset = const_offset; mubuf->swizzled = info->swizzle_component_size != 0; RegClass rc = RegClass::get(RegType::vgpr, bytes_size); Temp val = dst_hint.id() && rc == dst_hint.regClass() ? dst_hint : bld.tmp(rc); mubuf->definitions[0] = Definition(val); bld.insert(std::move(mubuf)); return val; } static auto emit_mubuf_load = emit_load; static auto emit_scratch_load = emit_load; Temp get_gfx6_global_rsrc(Builder& bld, Temp addr) { uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32); if (addr.type() == RegType::vgpr) return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(0u), Operand(0u), Operand(-1u), Operand(rsrc_conf)); return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand(-1u), Operand(rsrc_conf)); } Temp global_load_callback(Builder& bld, const LoadEmitInfo *info, Temp offset, unsigned bytes_needed, unsigned align_, unsigned const_offset, Temp dst_hint) { unsigned bytes_size = 0; bool mubuf = bld.program->chip_class == GFX6; bool global = bld.program->chip_class >= GFX9; aco_opcode op; if (bytes_needed == 1) { bytes_size = 1; op = mubuf ? aco_opcode::buffer_load_ubyte : global ? aco_opcode::global_load_ubyte : aco_opcode::flat_load_ubyte; } else if (bytes_needed == 2) { bytes_size = 2; op = mubuf ? aco_opcode::buffer_load_ushort : global ? aco_opcode::global_load_ushort : aco_opcode::flat_load_ushort; } else if (bytes_needed <= 4) { bytes_size = 4; op = mubuf ? aco_opcode::buffer_load_dword : global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword; } else if (bytes_needed <= 8) { bytes_size = 8; op = mubuf ? aco_opcode::buffer_load_dwordx2 : global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2; } else if (bytes_needed <= 12 && !mubuf) { bytes_size = 12; op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3; } else { bytes_size = 16; op = mubuf ? aco_opcode::buffer_load_dwordx4 : global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4; } RegClass rc = RegClass::get(RegType::vgpr, align(bytes_size, 4)); Temp val = dst_hint.id() && rc == dst_hint.regClass() ? dst_hint : bld.tmp(rc); if (mubuf) { aco_ptr mubuf{create_instruction(op, Format::MUBUF, 3, 1)}; mubuf->operands[0] = Operand(get_gfx6_global_rsrc(bld, offset)); mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1); mubuf->operands[2] = Operand(0u); mubuf->glc = info->glc; mubuf->dlc = false; mubuf->offset = 0; mubuf->addr64 = offset.type() == RegType::vgpr; mubuf->disable_wqm = false; mubuf->sync = info->sync; mubuf->definitions[0] = Definition(val); bld.insert(std::move(mubuf)); } else { offset = offset.regClass() == s2 ? bld.copy(bld.def(v2), offset) : offset; aco_ptr flat{create_instruction(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)}; flat->operands[0] = Operand(offset); flat->operands[1] = Operand(s1); flat->glc = info->glc; flat->dlc = info->glc && bld.program->chip_class >= GFX10; flat->sync = info->sync; flat->offset = 0u; flat->definitions[0] = Definition(val); bld.insert(std::move(flat)); } return val; } static auto emit_global_load = emit_load; Temp load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst, Temp address, unsigned base_offset, unsigned align) { assert(util_is_power_of_two_nonzero(align)); Builder bld(ctx->program, ctx->block); unsigned num_components = dst.bytes() / elem_size_bytes; LoadEmitInfo info = {Operand(as_vgpr(ctx, address)), dst, num_components, elem_size_bytes}; info.align_mul = align; info.align_offset = 0; info.sync = memory_sync_info(storage_shared); info.const_offset = base_offset; emit_lds_load(ctx, bld, &info); return dst; } void split_store_data(isel_context *ctx, RegType dst_type, unsigned count, Temp *dst, unsigned *offsets, Temp src) { if (!count) return; Builder bld(ctx->program, ctx->block); ASSERTED bool is_subdword = false; for (unsigned i = 0; i < count; i++) is_subdword |= offsets[i] % 4; is_subdword |= (src.bytes() - offsets[count - 1]) % 4; assert(!is_subdword || dst_type == RegType::vgpr); /* count == 1 fast path */ if (count == 1) { if (dst_type == RegType::sgpr) dst[0] = bld.as_uniform(src); else dst[0] = as_vgpr(ctx, src); return; } for (unsigned i = 0; i < count - 1; i++) dst[i] = bld.tmp(RegClass::get(dst_type, offsets[i + 1] - offsets[i])); dst[count - 1] = bld.tmp(RegClass::get(dst_type, src.bytes() - offsets[count - 1])); if (is_subdword && src.type() == RegType::sgpr) { src = as_vgpr(ctx, src); } else { /* use allocated_vec if possible */ auto it = ctx->allocated_vec.find(src.id()); if (it != ctx->allocated_vec.end()) { if (!it->second[0].id()) goto split; unsigned elem_size = it->second[0].bytes(); assert(src.bytes() % elem_size == 0); for (unsigned i = 0; i < src.bytes() / elem_size; i++) { if (!it->second[i].id()) goto split; } for (unsigned i = 0; i < count; i++) { if (offsets[i] % elem_size || dst[i].bytes() % elem_size) goto split; } for (unsigned i = 0; i < count; i++) { unsigned start_idx = offsets[i] / elem_size; unsigned op_count = dst[i].bytes() / elem_size; if (op_count == 1) { if (dst_type == RegType::sgpr) dst[i] = bld.as_uniform(it->second[start_idx]); else dst[i] = as_vgpr(ctx, it->second[start_idx]); continue; } aco_ptr vec{create_instruction(aco_opcode::p_create_vector, Format::PSEUDO, op_count, 1)}; for (unsigned j = 0; j < op_count; j++) { Temp tmp = it->second[start_idx + j]; if (dst_type == RegType::sgpr) tmp = bld.as_uniform(tmp); vec->operands[j] = Operand(tmp); } vec->definitions[0] = Definition(dst[i]); bld.insert(std::move(vec)); } return; } } split: if (dst_type == RegType::sgpr) src = bld.as_uniform(src); /* just split it */ aco_ptr split{create_instruction(aco_opcode::p_split_vector, Format::PSEUDO, 1, count)}; split->operands[0] = Operand(src); for (unsigned i = 0; i < count; i++) split->definitions[i] = Definition(dst[i]); bld.insert(std::move(split)); } bool scan_write_mask(uint32_t mask, uint32_t todo_mask, int *start, int *count) { unsigned start_elem = ffs(todo_mask) - 1; bool skip = !(mask & (1 << start_elem)); if (skip) mask = ~mask & todo_mask; mask &= todo_mask; u_bit_scan_consecutive_range(&mask, start, count); return !skip; } void advance_write_mask(uint32_t *todo_mask, int start, int count) { *todo_mask &= ~u_bit_consecutive(0, count) << start; } void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask, Temp address, unsigned base_offset, unsigned align) { assert(util_is_power_of_two_nonzero(align)); assert(util_is_power_of_two_nonzero(elem_size_bytes) && elem_size_bytes <= 8); Builder bld(ctx->program, ctx->block); bool large_ds_write = ctx->options->chip_class >= GFX7; bool usable_write2 = ctx->options->chip_class >= GFX7; unsigned write_count = 0; Temp write_datas[32]; unsigned offsets[32]; aco_opcode opcodes[32]; wrmask = widen_mask(wrmask, elem_size_bytes); uint32_t todo = u_bit_consecutive(0, data.bytes()); while (todo) { int offset, bytes; if (!scan_write_mask(wrmask, todo, &offset, &bytes)) { offsets[write_count] = offset; opcodes[write_count] = aco_opcode::num_opcodes; write_count++; advance_write_mask(&todo, offset, bytes); continue; } bool aligned2 = offset % 2 == 0 && align % 2 == 0; bool aligned4 = offset % 4 == 0 && align % 4 == 0; bool aligned8 = offset % 8 == 0 && align % 8 == 0; bool aligned16 = offset % 16 == 0 && align % 16 == 0; //TODO: use ds_write_b8_d16_hi/ds_write_b16_d16_hi if beneficial aco_opcode op = aco_opcode::num_opcodes; if (bytes >= 16 && aligned16 && large_ds_write) { op = aco_opcode::ds_write_b128; bytes = 16; } else if (bytes >= 12 && aligned16 && large_ds_write) { op = aco_opcode::ds_write_b96; bytes = 12; } else if (bytes >= 8 && aligned8) { op = aco_opcode::ds_write_b64; bytes = 8; } else if (bytes >= 4 && aligned4) { op = aco_opcode::ds_write_b32; bytes = 4; } else if (bytes >= 2 && aligned2) { op = aco_opcode::ds_write_b16; bytes = 2; } else if (bytes >= 1) { op = aco_opcode::ds_write_b8; bytes = 1; } else { assert(false); } offsets[write_count] = offset; opcodes[write_count] = op; write_count++; advance_write_mask(&todo, offset, bytes); } Operand m = load_lds_size_m0(bld); split_store_data(ctx, RegType::vgpr, write_count, write_datas, offsets, data); for (unsigned i = 0; i < write_count; i++) { aco_opcode op = opcodes[i]; if (op == aco_opcode::num_opcodes) continue; Temp data = write_datas[i]; unsigned second = write_count; if (usable_write2 && (op == aco_opcode::ds_write_b32 || op == aco_opcode::ds_write_b64)) { for (second = i + 1; second < write_count; second++) { if (opcodes[second] == op && (offsets[second] - offsets[i]) % data.bytes() == 0) { op = data.bytes() == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64; opcodes[second] = aco_opcode::num_opcodes; break; } } } bool write2 = op == aco_opcode::ds_write2_b32 || op == aco_opcode::ds_write2_b64; unsigned write2_off = (offsets[second] - offsets[i]) / data.bytes(); unsigned inline_offset = base_offset + offsets[i]; unsigned max_offset = write2 ? (255 - write2_off) * data.bytes() : 65535; Temp address_offset = address; if (inline_offset > max_offset) { address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset); inline_offset = offsets[i]; } assert(inline_offset <= max_offset); /* offsets[i] shouldn't be large enough for this to happen */ Instruction *instr; if (write2) { Temp second_data = write_datas[second]; inline_offset /= data.bytes(); instr = bld.ds(op, address_offset, data, second_data, m, inline_offset, inline_offset + write2_off); } else { instr = bld.ds(op, address_offset, data, m, inline_offset); } static_cast(instr)->sync = memory_sync_info(storage_shared); } } unsigned calculate_lds_alignment(isel_context *ctx, unsigned const_offset) { unsigned align = 16; if (const_offset) align = std::min(align, 1u << (ffs(const_offset) - 1)); return align; } aco_opcode get_buffer_store_op(bool smem, unsigned bytes) { switch (bytes) { case 1: assert(!smem); return aco_opcode::buffer_store_byte; case 2: assert(!smem); return aco_opcode::buffer_store_short; case 4: return smem ? aco_opcode::s_buffer_store_dword : aco_opcode::buffer_store_dword; case 8: return smem ? aco_opcode::s_buffer_store_dwordx2 : aco_opcode::buffer_store_dwordx2; case 12: assert(!smem); return aco_opcode::buffer_store_dwordx3; case 16: return smem ? aco_opcode::s_buffer_store_dwordx4 : aco_opcode::buffer_store_dwordx4; } unreachable("Unexpected store size"); return aco_opcode::num_opcodes; } void split_buffer_store(isel_context *ctx, nir_intrinsic_instr *instr, bool smem, RegType dst_type, Temp data, unsigned writemask, int swizzle_element_size, unsigned *write_count, Temp *write_datas, unsigned *offsets) { unsigned write_count_with_skips = 0; bool skips[16]; /* determine how to split the data */ unsigned todo = u_bit_consecutive(0, data.bytes()); while (todo) { int offset, bytes; skips[write_count_with_skips] = !scan_write_mask(writemask, todo, &offset, &bytes); offsets[write_count_with_skips] = offset; if (skips[write_count_with_skips]) { advance_write_mask(&todo, offset, bytes); write_count_with_skips++; continue; } /* only supported sizes are 1, 2, 4, 8, 12 and 16 bytes and can't be * larger than swizzle_element_size */ bytes = MIN2(bytes, swizzle_element_size); if (bytes % 4) bytes = bytes > 4 ? bytes & ~0x3 : MIN2(bytes, 2); /* SMEM and GFX6 VMEM can't emit 12-byte stores */ if ((ctx->program->chip_class == GFX6 || smem) && bytes == 12) bytes = 8; /* dword or larger stores have to be dword-aligned */ unsigned align_mul = instr ? nir_intrinsic_align_mul(instr) : 4; unsigned align_offset = (instr ? nir_intrinsic_align_offset(instr) : 0) + offset; bool dword_aligned = align_offset % 4 == 0 && align_mul % 4 == 0; if (!dword_aligned) bytes = MIN2(bytes, (align_offset % 2 == 0 && align_mul % 2 == 0) ? 2 : 1); advance_write_mask(&todo, offset, bytes); write_count_with_skips++; } /* actually split data */ split_store_data(ctx, dst_type, write_count_with_skips, write_datas, offsets, data); /* remove skips */ for (unsigned i = 0; i < write_count_with_skips; i++) { if (skips[i]) continue; write_datas[*write_count] = write_datas[i]; offsets[*write_count] = offsets[i]; (*write_count)++; } } Temp create_vec_from_array(isel_context *ctx, Temp arr[], unsigned cnt, RegType reg_type, unsigned elem_size_bytes, unsigned split_cnt = 0u, Temp dst = Temp()) { Builder bld(ctx->program, ctx->block); unsigned dword_size = elem_size_bytes / 4; if (!dst.id()) dst = bld.tmp(RegClass(reg_type, cnt * dword_size)); std::array allocated_vec; aco_ptr instr {create_instruction(aco_opcode::p_create_vector, Format::PSEUDO, cnt, 1)}; instr->definitions[0] = Definition(dst); for (unsigned i = 0; i < cnt; ++i) { if (arr[i].id()) { assert(arr[i].size() == dword_size); allocated_vec[i] = arr[i]; instr->operands[i] = Operand(arr[i]); } else { Temp zero = bld.copy(bld.def(RegClass(reg_type, dword_size)), Operand(0u, dword_size == 2)); allocated_vec[i] = zero; instr->operands[i] = Operand(zero); } } bld.insert(std::move(instr)); if (split_cnt) emit_split_vector(ctx, dst, split_cnt); else ctx->allocated_vec.emplace(dst.id(), allocated_vec); /* emit_split_vector already does this */ return dst; } inline unsigned resolve_excess_vmem_const_offset(Builder &bld, Temp &voffset, unsigned const_offset) { if (const_offset >= 4096) { unsigned excess_const_offset = const_offset / 4096u * 4096u; const_offset %= 4096u; if (!voffset.id()) voffset = bld.copy(bld.def(v1), Operand(excess_const_offset)); else if (unlikely(voffset.regClass() == s1)) voffset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), Operand(excess_const_offset), Operand(voffset)); else if (likely(voffset.regClass() == v1)) voffset = bld.vadd32(bld.def(v1), Operand(voffset), Operand(excess_const_offset)); else unreachable("Unsupported register class of voffset"); } return const_offset; } void emit_single_mubuf_store(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset, Temp vdata, unsigned const_offset = 0u, memory_sync_info sync=memory_sync_info(), bool slc = false, bool swizzled = false) { assert(vdata.id()); assert(vdata.size() != 3 || ctx->program->chip_class != GFX6); assert(vdata.size() >= 1 && vdata.size() <= 4); Builder bld(ctx->program, ctx->block); aco_opcode op = get_buffer_store_op(false, vdata.bytes()); const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset); Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1); Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u); Builder::Result r = bld.mubuf(op, Operand(descriptor), voffset_op, soffset_op, Operand(vdata), const_offset, /* offen */ !voffset_op.isUndefined(), /* swizzled */ swizzled, /* idxen*/ false, /* addr64 */ false, /* disable_wqm */ false, /* glc */ true, /* dlc*/ false, /* slc */ slc); static_cast(r.instr)->sync = sync; } void store_vmem_mubuf(isel_context *ctx, Temp src, Temp descriptor, Temp voffset, Temp soffset, unsigned base_const_offset, unsigned elem_size_bytes, unsigned write_mask, bool allow_combining = true, memory_sync_info sync=memory_sync_info(), bool slc = false) { Builder bld(ctx->program, ctx->block); assert(elem_size_bytes == 2 || elem_size_bytes == 4 || elem_size_bytes == 8); assert(write_mask); write_mask = widen_mask(write_mask, elem_size_bytes); unsigned write_count = 0; Temp write_datas[32]; unsigned offsets[32]; split_buffer_store(ctx, NULL, false, RegType::vgpr, src, write_mask, allow_combining ? 16 : 4, &write_count, write_datas, offsets); for (unsigned i = 0; i < write_count; i++) { unsigned const_offset = offsets[i] + base_const_offset; emit_single_mubuf_store(ctx, descriptor, voffset, soffset, write_datas[i], const_offset, sync, slc, !allow_combining); } } void load_vmem_mubuf(isel_context *ctx, Temp dst, Temp descriptor, Temp voffset, Temp soffset, unsigned base_const_offset, unsigned elem_size_bytes, unsigned num_components, unsigned stride = 0u, bool allow_combining = true, bool allow_reorder = true) { assert(elem_size_bytes == 2 || elem_size_bytes == 4 || elem_size_bytes == 8); assert((num_components * elem_size_bytes) == dst.bytes()); assert(!!stride != allow_combining); Builder bld(ctx->program, ctx->block); LoadEmitInfo info = {Operand(voffset), dst, num_components, elem_size_bytes, descriptor}; info.component_stride = allow_combining ? 0 : stride; info.glc = true; info.swizzle_component_size = allow_combining ? 0 : 4; info.align_mul = MIN2(elem_size_bytes, 4); info.align_offset = 0; info.soffset = soffset; info.const_offset = base_const_offset; emit_mubuf_load(ctx, bld, &info); } std::pair offset_add_from_nir(isel_context *ctx, const std::pair &base_offset, nir_src *off_src, unsigned stride = 1u) { Builder bld(ctx->program, ctx->block); Temp offset = base_offset.first; unsigned const_offset = base_offset.second; if (!nir_src_is_const(*off_src)) { Temp indirect_offset_arg = get_ssa_temp(ctx, off_src->ssa); Temp with_stride; /* Calculate indirect offset with stride */ if (likely(indirect_offset_arg.regClass() == v1)) with_stride = bld.v_mul24_imm(bld.def(v1), indirect_offset_arg, stride); else if (indirect_offset_arg.regClass() == s1) with_stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), indirect_offset_arg); else unreachable("Unsupported register class of indirect offset"); /* Add to the supplied base offset */ if (offset.id() == 0) offset = with_stride; else if (unlikely(offset.regClass() == s1 && with_stride.regClass() == s1)) offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), with_stride, offset); else if (offset.size() == 1 && with_stride.size() == 1) offset = bld.vadd32(bld.def(v1), with_stride, offset); else unreachable("Unsupported register class of indirect offset"); } else { unsigned const_offset_arg = nir_src_as_uint(*off_src); const_offset += const_offset_arg * stride; } return std::make_pair(offset, const_offset); } std::pair offset_add(isel_context *ctx, const std::pair &off1, const std::pair &off2) { Builder bld(ctx->program, ctx->block); Temp offset; if (off1.first.id() && off2.first.id()) { if (unlikely(off1.first.regClass() == s1 && off2.first.regClass() == s1)) offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), off1.first, off2.first); else if (off1.first.size() == 1 && off2.first.size() == 1) offset = bld.vadd32(bld.def(v1), off1.first, off2.first); else unreachable("Unsupported register class of indirect offset"); } else { offset = off1.first.id() ? off1.first : off2.first; } return std::make_pair(offset, off1.second + off2.second); } std::pair offset_mul(isel_context *ctx, const std::pair &offs, unsigned multiplier) { Builder bld(ctx->program, ctx->block); unsigned const_offset = offs.second * multiplier; if (!offs.first.id()) return std::make_pair(offs.first, const_offset); Temp offset = unlikely(offs.first.regClass() == s1) ? bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(multiplier), offs.first) : bld.v_mul24_imm(bld.def(v1), offs.first, multiplier); return std::make_pair(offset, const_offset); } std::pair get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride, unsigned component_stride) { Builder bld(ctx->program, ctx->block); /* base is the driver_location, which is already multiplied by 4, so is in dwords */ unsigned const_offset = nir_intrinsic_base(instr) * base_stride; /* component is in bytes */ const_offset += nir_intrinsic_component(instr) * component_stride; /* offset should be interpreted in relation to the base, so the instruction effectively reads/writes another input/output when it has an offset */ nir_src *off_src = nir_get_io_offset_src(instr); return offset_add_from_nir(ctx, std::make_pair(Temp(), const_offset), off_src, 4u * base_stride); } std::pair get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned stride = 1u) { return get_intrinsic_io_basic_offset(ctx, instr, stride, stride); } Temp get_tess_rel_patch_id(isel_context *ctx) { Builder bld(ctx->program, ctx->block); switch (ctx->shader->info.stage) { case MESA_SHADER_TESS_CTRL: return bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffu), get_arg(ctx, ctx->args->ac.tcs_rel_ids)); case MESA_SHADER_TESS_EVAL: return get_arg(ctx, ctx->args->tes_rel_patch_id); default: unreachable("Unsupported stage in get_tess_rel_patch_id"); } } std::pair get_tcs_per_vertex_input_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr) { assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL); Builder bld(ctx->program, ctx->block); uint32_t tcs_in_patch_stride = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 4; uint32_t tcs_in_vertex_stride = ctx->tcs_num_inputs * 4; std::pair offs = get_intrinsic_io_basic_offset(ctx, instr); nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr); offs = offset_add_from_nir(ctx, offs, vertex_index_src, tcs_in_vertex_stride); Temp rel_patch_id = get_tess_rel_patch_id(ctx); Temp tcs_in_current_patch_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, tcs_in_patch_stride); offs = offset_add(ctx, offs, std::make_pair(tcs_in_current_patch_offset, 0)); return offset_mul(ctx, offs, 4u); } std::pair get_tcs_output_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, bool per_vertex = false) { assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL); Builder bld(ctx->program, ctx->block); uint32_t input_patch_size = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 16; uint32_t output_vertex_size = ctx->tcs_num_outputs * 16; uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size; uint32_t output_patch_stride = pervertex_output_patch_size + ctx->tcs_num_patch_outputs * 16; std::pair offs = instr ? get_intrinsic_io_basic_offset(ctx, instr, 4u) : std::make_pair(Temp(), 0u); Temp rel_patch_id = get_tess_rel_patch_id(ctx); Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, output_patch_stride); if (per_vertex) { assert(instr); nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr); offs = offset_add_from_nir(ctx, offs, vertex_index_src, output_vertex_size); uint32_t output_patch0_offset = (input_patch_size * ctx->tcs_num_patches); offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_offset)); } else { uint32_t output_patch0_patch_data_offset = (input_patch_size * ctx->tcs_num_patches + pervertex_output_patch_size); offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_patch_data_offset)); } return offs; } std::pair get_tcs_per_vertex_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr) { Builder bld(ctx->program, ctx->block); unsigned vertices_per_patch = ctx->shader->info.tess.tcs_vertices_out; unsigned attr_stride = vertices_per_patch * ctx->tcs_num_patches; std::pair offs = get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u); Temp rel_patch_id = get_tess_rel_patch_id(ctx); Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, vertices_per_patch * 16u); offs = offset_add(ctx, offs, std::make_pair(patch_off, 0u)); nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr); offs = offset_add_from_nir(ctx, offs, vertex_index_src, 16u); return offs; } std::pair get_tcs_per_patch_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, unsigned const_base_offset = 0u) { Builder bld(ctx->program, ctx->block); unsigned output_vertex_size = ctx->tcs_num_outputs * 16; unsigned per_vertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size; unsigned per_patch_data_offset = per_vertex_output_patch_size * ctx->tcs_num_patches; unsigned attr_stride = ctx->tcs_num_patches; std::pair offs = instr ? get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u) : std::make_pair(Temp(), 0u); if (const_base_offset) offs.second += const_base_offset * attr_stride; Temp rel_patch_id = get_tess_rel_patch_id(ctx); Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, 16u); offs = offset_add(ctx, offs, std::make_pair(patch_off, per_patch_data_offset)); return offs; } bool tcs_driver_location_matches_api_mask(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex, uint64_t mask, bool *indirect) { assert(per_vertex || ctx->shader->info.stage == MESA_SHADER_TESS_CTRL); if (mask == 0) return false; unsigned drv_loc = nir_intrinsic_base(instr); nir_src *off_src = nir_get_io_offset_src(instr); if (!nir_src_is_const(*off_src)) { *indirect = true; return false; } *indirect = false; uint64_t slot = per_vertex ? ctx->output_drv_loc_to_var_slot[ctx->shader->info.stage][drv_loc / 4] : (ctx->output_tcs_patch_drv_loc_to_var_slot[drv_loc / 4] - VARYING_SLOT_PATCH0); return (((uint64_t) 1) << slot) & mask; } bool store_output_to_temps(isel_context *ctx, nir_intrinsic_instr *instr) { unsigned write_mask = nir_intrinsic_write_mask(instr); unsigned component = nir_intrinsic_component(instr); unsigned idx = nir_intrinsic_base(instr) + component; nir_instr *off_instr = instr->src[1].ssa->parent_instr; if (off_instr->type != nir_instr_type_load_const) return false; Temp src = get_ssa_temp(ctx, instr->src[0].ssa); idx += nir_src_as_uint(instr->src[1]) * 4u; if (instr->src[0].ssa->bit_size == 64) write_mask = widen_mask(write_mask, 2); RegClass rc = instr->src[0].ssa->bit_size == 16 ? v2b : v1; for (unsigned i = 0; i < 8; ++i) { if (write_mask & (1 << i)) { ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u); ctx->outputs.temps[idx] = emit_extract_vector(ctx, src, i, rc); } idx++; } return true; } bool load_input_from_temps(isel_context *ctx, nir_intrinsic_instr *instr, Temp dst) { /* Only TCS per-vertex inputs are supported by this function. * Per-vertex inputs only match between the VS/TCS invocation id when the number of invocations is the same. */ if (ctx->shader->info.stage != MESA_SHADER_TESS_CTRL || !ctx->tcs_in_out_eq) return false; nir_src *off_src = nir_get_io_offset_src(instr); nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr); nir_instr *vertex_index_instr = vertex_index_src->ssa->parent_instr; bool can_use_temps = nir_src_is_const(*off_src) && vertex_index_instr->type == nir_instr_type_intrinsic && nir_instr_as_intrinsic(vertex_index_instr)->intrinsic == nir_intrinsic_load_invocation_id; if (!can_use_temps) return false; unsigned idx = nir_intrinsic_base(instr) + nir_intrinsic_component(instr) + 4 * nir_src_as_uint(*off_src); Temp *src = &ctx->inputs.temps[idx]; create_vec_from_array(ctx, src, dst.size(), dst.regClass().type(), 4u, 0, dst); return true; } void visit_store_ls_or_es_output(isel_context *ctx, nir_intrinsic_instr *instr) { Builder bld(ctx->program, ctx->block); if (ctx->tcs_in_out_eq && store_output_to_temps(ctx, instr)) { /* When the TCS only reads this output directly and for the same vertices as its invocation id, it is unnecessary to store the VS output to LDS. */ bool indirect_write; bool temp_only_input = tcs_driver_location_matches_api_mask(ctx, instr, true, ctx->tcs_temp_only_inputs, &indirect_write); if (temp_only_input && !indirect_write) return; } std::pair offs = get_intrinsic_io_basic_offset(ctx, instr, 4u); Temp src = get_ssa_temp(ctx, instr->src[0].ssa); unsigned write_mask = nir_intrinsic_write_mask(instr); unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8u; if (ctx->stage == vertex_es || ctx->stage == tess_eval_es) { /* GFX6-8: ES stage is not merged into GS, data is passed from ES to GS in VMEM. */ Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_VS * 16u)); Temp es2gs_offset = get_arg(ctx, ctx->args->es2gs_offset); store_vmem_mubuf(ctx, src, esgs_ring, offs.first, es2gs_offset, offs.second, elem_size_bytes, write_mask, false, memory_sync_info(), true); } else { Temp lds_base; if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) { /* GFX9+: ES stage is merged into GS, data is passed between them using LDS. */ unsigned itemsize = ctx->stage == vertex_geometry_gs ? ctx->program->info->vs.es_info.esgs_itemsize : ctx->program->info->tes.es_info.esgs_itemsize; Temp thread_id = emit_mbcnt(ctx, bld.def(v1)); Temp wave_idx = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(4u << 16 | 24)); Temp vertex_idx = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), thread_id, bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_idx), ctx->program->wave_size)); lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, itemsize); } else if (ctx->stage == vertex_ls || ctx->stage == vertex_tess_control_hs) { /* GFX6-8: VS runs on LS stage when tessellation is used, but LS shares LDS space with HS. * GFX9+: LS is merged into HS, but still uses the same LDS layout. */ Temp vertex_idx = get_arg(ctx, ctx->args->rel_auto_id); lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, ctx->tcs_num_inputs * 16u); } else { unreachable("Invalid LS or ES stage"); } offs = offset_add(ctx, offs, std::make_pair(lds_base, 0u)); unsigned lds_align = calculate_lds_alignment(ctx, offs.second); store_lds(ctx, elem_size_bytes, src, write_mask, offs.first, offs.second, lds_align); } } bool tcs_output_is_tess_factor(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex) { if (per_vertex) return false; unsigned off = nir_intrinsic_base(instr) * 4u; return off == ctx->tcs_tess_lvl_out_loc || off == ctx->tcs_tess_lvl_in_loc; } bool tcs_output_is_read_by_tes(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex) { uint64_t mask = per_vertex ? ctx->program->info->tcs.tes_inputs_read : ctx->program->info->tcs.tes_patch_inputs_read; bool indirect_write = false; bool output_read_by_tes = tcs_driver_location_matches_api_mask(ctx, instr, per_vertex, mask, &indirect_write); return indirect_write || output_read_by_tes; } bool tcs_output_is_read_by_tcs(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex) { uint64_t mask = per_vertex ? ctx->shader->info.outputs_read : ctx->shader->info.patch_outputs_read; bool indirect_write = false; bool output_read = tcs_driver_location_matches_api_mask(ctx, instr, per_vertex, mask, &indirect_write); return indirect_write || output_read; } void visit_store_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex) { assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs); assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL); Builder bld(ctx->program, ctx->block); Temp store_val = get_ssa_temp(ctx, instr->src[0].ssa); unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8; unsigned write_mask = nir_intrinsic_write_mask(instr); bool is_tess_factor = tcs_output_is_tess_factor(ctx, instr, per_vertex); bool write_to_vmem = !is_tess_factor && tcs_output_is_read_by_tes(ctx, instr, per_vertex); bool write_to_lds = is_tess_factor || tcs_output_is_read_by_tcs(ctx, instr, per_vertex); if (write_to_vmem) { std::pair vmem_offs = per_vertex ? get_tcs_per_vertex_output_vmem_offset(ctx, instr) : get_tcs_per_patch_output_vmem_offset(ctx, instr); Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u)); Temp oc_lds = get_arg(ctx, ctx->args->oc_lds); store_vmem_mubuf(ctx, store_val, hs_ring_tess_offchip, vmem_offs.first, oc_lds, vmem_offs.second, elem_size_bytes, write_mask, true, memory_sync_info(storage_vmem_output)); } if (write_to_lds) { std::pair lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex); unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second); store_lds(ctx, elem_size_bytes, store_val, write_mask, lds_offs.first, lds_offs.second, lds_align); } } void visit_load_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex) { assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs); assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL); Builder bld(ctx->program, ctx->block); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); std::pair lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex); unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second); unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8; load_lds(ctx, elem_size_bytes, dst, lds_offs.first, lds_offs.second, lds_align); } void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr) { if (ctx->stage == vertex_vs || ctx->stage == tess_eval_vs || ctx->stage == fragment_fs || ctx->stage == ngg_vertex_gs || ctx->stage == ngg_tess_eval_gs || ctx->shader->info.stage == MESA_SHADER_GEOMETRY) { bool stored_to_temps = store_output_to_temps(ctx, instr); if (!stored_to_temps) { fprintf(stderr, "Unimplemented output offset instruction:\n"); nir_print_instr(instr->src[1].ssa->parent_instr, stderr); fprintf(stderr, "\n"); abort(); } } else if (ctx->stage == vertex_es || ctx->stage == vertex_ls || ctx->stage == tess_eval_es || (ctx->stage == vertex_tess_control_hs && ctx->shader->info.stage == MESA_SHADER_VERTEX) || (ctx->stage == vertex_geometry_gs && ctx->shader->info.stage == MESA_SHADER_VERTEX) || (ctx->stage == tess_eval_geometry_gs && ctx->shader->info.stage == MESA_SHADER_TESS_EVAL)) { visit_store_ls_or_es_output(ctx, instr); } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) { visit_store_tcs_output(ctx, instr, false); } else { unreachable("Shader stage not implemented"); } } void visit_load_output(isel_context *ctx, nir_intrinsic_instr *instr) { visit_load_tcs_output(ctx, instr, false); } void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask) { Temp coord1 = emit_extract_vector(ctx, src, 0, v1); Temp coord2 = emit_extract_vector(ctx, src, 1, v1); Builder bld(ctx->program, ctx->block); if (dst.regClass() == v2b) { if (ctx->program->has_16bank_lds) { assert(ctx->options->chip_class <= GFX8); Builder::Result interp_p1 = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(2u) /* P0 */, bld.m0(prim_mask), idx, component); interp_p1 = bld.vintrp(aco_opcode::v_interp_p1lv_f16, bld.def(v2b), coord1, bld.m0(prim_mask), interp_p1, idx, component); bld.vintrp(aco_opcode::v_interp_p2_legacy_f16, Definition(dst), coord2, bld.m0(prim_mask), interp_p1, idx, component); } else { aco_opcode interp_p2_op = aco_opcode::v_interp_p2_f16; if (ctx->options->chip_class == GFX8) interp_p2_op = aco_opcode::v_interp_p2_legacy_f16; Builder::Result interp_p1 = bld.vintrp(aco_opcode::v_interp_p1ll_f16, bld.def(v1), coord1, bld.m0(prim_mask), idx, component); bld.vintrp(interp_p2_op, Definition(dst), coord2, bld.m0(prim_mask), interp_p1, idx, component); } } else { Builder::Result interp_p1 = bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1, bld.m0(prim_mask), idx, component); if (ctx->program->has_16bank_lds) interp_p1.instr->operands[0].setLateKill(true); bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2, bld.m0(prim_mask), interp_p1, idx, component); } } void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components) { aco_ptr vec(create_instruction(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)); for (unsigned i = 0; i < num_components; i++) vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i])); if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) { assert(num_components == 4); Builder bld(ctx->program, ctx->block); vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3])); } for (Operand& op : vec->operands) op = op.isUndefined() ? Operand(0u) : op; vec->definitions[0] = Definition(dst); ctx->block->instructions.emplace_back(std::move(vec)); emit_split_vector(ctx, dst, num_components); return; } void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr) { Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); Temp coords = get_ssa_temp(ctx, instr->src[0].ssa); unsigned idx = nir_intrinsic_base(instr); unsigned component = nir_intrinsic_component(instr); Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask); nir_const_value* offset = nir_src_as_const_value(instr->src[1]); if (offset) { assert(offset->u32 == 0); } else { /* the lower 15bit of the prim_mask contain the offset into LDS * while the upper bits contain the number of prims */ Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa); assert(offset_src.regClass() == s1 && "TODO: divergent offsets..."); Builder bld(ctx->program, ctx->block); Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u)); stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride); stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u)); offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src); prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask); } if (instr->dest.ssa.num_components == 1) { emit_interp_instr(ctx, idx, component, coords, dst, prim_mask); } else { aco_ptr vec(create_instruction(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1)); for (unsigned i = 0; i < instr->dest.ssa.num_components; i++) { Temp tmp = {ctx->program->allocateId(), v1}; emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask); vec->operands[i] = Operand(tmp); } vec->definitions[0] = Definition(dst); ctx->block->instructions.emplace_back(std::move(vec)); } } bool check_vertex_fetch_size(isel_context *ctx, const ac_data_format_info *vtx_info, unsigned offset, unsigned stride, unsigned channels) { unsigned vertex_byte_size = vtx_info->chan_byte_size * channels; if (vtx_info->chan_byte_size != 4 && channels == 3) return false; return (ctx->options->chip_class != GFX6 && ctx->options->chip_class != GFX10) || (offset % vertex_byte_size == 0 && stride % vertex_byte_size == 0); } uint8_t get_fetch_data_format(isel_context *ctx, const ac_data_format_info *vtx_info, unsigned offset, unsigned stride, unsigned *channels) { if (!vtx_info->chan_byte_size) { *channels = vtx_info->num_channels; return vtx_info->chan_format; } unsigned num_channels = *channels; if (!check_vertex_fetch_size(ctx, vtx_info, offset, stride, *channels)) { unsigned new_channels = num_channels + 1; /* first, assume more loads is worse and try using a larger data format */ while (new_channels <= 4 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels)) { new_channels++; /* don't make the attribute potentially out-of-bounds */ if (offset + new_channels * vtx_info->chan_byte_size > stride) new_channels = 5; } if (new_channels == 5) { /* then try decreasing load size (at the cost of more loads) */ new_channels = *channels; while (new_channels > 1 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels)) new_channels--; } if (new_channels < *channels) *channels = new_channels; num_channels = new_channels; } switch (vtx_info->chan_format) { case V_008F0C_BUF_DATA_FORMAT_8: return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_8, V_008F0C_BUF_DATA_FORMAT_8_8, V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_8_8_8_8}[num_channels - 1]; case V_008F0C_BUF_DATA_FORMAT_16: return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_16, V_008F0C_BUF_DATA_FORMAT_16_16, V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_16_16_16_16}[num_channels - 1]; case V_008F0C_BUF_DATA_FORMAT_32: return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_DATA_FORMAT_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32_32}[num_channels - 1]; } unreachable("shouldn't reach here"); return V_008F0C_BUF_DATA_FORMAT_INVALID; } /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW. * so we may need to fix it up. */ Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha) { Builder bld(ctx->program, ctx->block); if (adjustment == RADV_ALPHA_ADJUST_SSCALED) alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha); /* For the integer-like cases, do a natural sign extension. * * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0 * and happen to contain 0, 1, 2, 3 as the two LSBs of the * exponent. */ alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha); alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha); /* Convert back to the right type. */ if (adjustment == RADV_ALPHA_ADJUST_SNORM) { alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha); Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha); alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp); } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) { alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha); } return alpha; } void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr) { Builder bld(ctx->program, ctx->block); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); if (ctx->shader->info.stage == MESA_SHADER_VERTEX) { nir_instr *off_instr = instr->src[0].ssa->parent_instr; if (off_instr->type != nir_instr_type_load_const) { fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n"); nir_print_instr(off_instr, stderr); fprintf(stderr, "\n"); } uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32; Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers)); unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset; unsigned component = nir_intrinsic_component(instr); unsigned bitsize = instr->dest.ssa.bit_size; unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location]; uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location]; uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location]; unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location]; unsigned dfmt = attrib_format & 0xf; unsigned nfmt = (attrib_format >> 4) & 0x7; const struct ac_data_format_info *vtx_info = ac_get_data_format_info(dfmt); unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component; unsigned num_channels = MIN2(util_last_bit(mask), vtx_info->num_channels); unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3; bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location); if (post_shuffle) num_channels = MAX2(num_channels, 3); Operand off = bld.copy(bld.def(s1), Operand(attrib_binding * 16u)); Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, off); Temp index; if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) { uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location]; Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance); if (divisor) { Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id); if (divisor != 1) { Temp divided = bld.tmp(v1); emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor); index = bld.vadd32(bld.def(v1), start_instance, divided); } else { index = bld.vadd32(bld.def(v1), start_instance, instance_id); } } else { index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance); } } else { index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->ac.base_vertex), get_arg(ctx, ctx->args->ac.vertex_id)); } Temp channels[num_channels]; unsigned channel_start = 0; bool direct_fetch = false; /* skip unused channels at the start */ if (vtx_info->chan_byte_size && !post_shuffle) { channel_start = ffs(mask) - 1; for (unsigned i = 0; i < channel_start; i++) channels[i] = Temp(0, s1); } else if (vtx_info->chan_byte_size && post_shuffle && !(mask & 0x8)) { num_channels = 3 - (ffs(mask) - 1); } /* load channels */ while (channel_start < num_channels) { unsigned fetch_component = num_channels - channel_start; unsigned fetch_offset = attrib_offset + channel_start * vtx_info->chan_byte_size; bool expanded = false; /* use MUBUF when possible to avoid possible alignment issues */ /* TODO: we could use SDWA to unpack 8/16-bit attributes without extra instructions */ bool use_mubuf = (nfmt == V_008F0C_BUF_NUM_FORMAT_FLOAT || nfmt == V_008F0C_BUF_NUM_FORMAT_UINT || nfmt == V_008F0C_BUF_NUM_FORMAT_SINT) && vtx_info->chan_byte_size == 4; unsigned fetch_dfmt = V_008F0C_BUF_DATA_FORMAT_INVALID; if (!use_mubuf) { fetch_dfmt = get_fetch_data_format(ctx, vtx_info, fetch_offset, attrib_stride, &fetch_component); } else { if (fetch_component == 3 && ctx->options->chip_class == GFX6) { /* GFX6 only supports loading vec3 with MTBUF, expand to vec4. */ fetch_component = 4; expanded = true; } } unsigned fetch_bytes = fetch_component * bitsize / 8; Temp fetch_index = index; if (attrib_stride != 0 && fetch_offset > attrib_stride) { fetch_index = bld.vadd32(bld.def(v1), Operand(fetch_offset / attrib_stride), fetch_index); fetch_offset = fetch_offset % attrib_stride; } Operand soffset(0u); if (fetch_offset >= 4096) { soffset = bld.copy(bld.def(s1), Operand(fetch_offset / 4096 * 4096)); fetch_offset %= 4096; } aco_opcode opcode; switch (fetch_bytes) { case 2: assert(!use_mubuf && bitsize == 16); opcode = aco_opcode::tbuffer_load_format_d16_x; break; case 4: if (bitsize == 16) { assert(!use_mubuf); opcode = aco_opcode::tbuffer_load_format_d16_xy; } else { opcode = use_mubuf ? aco_opcode::buffer_load_dword : aco_opcode::tbuffer_load_format_x; } break; case 6: assert(!use_mubuf && bitsize == 16); opcode = aco_opcode::tbuffer_load_format_d16_xyz; break; case 8: if (bitsize == 16) { assert(!use_mubuf); opcode = aco_opcode::tbuffer_load_format_d16_xyzw; } else { opcode = use_mubuf ? aco_opcode::buffer_load_dwordx2 : aco_opcode::tbuffer_load_format_xy; } break; case 12: assert(ctx->options->chip_class >= GFX7 || (!use_mubuf && ctx->options->chip_class == GFX6)); opcode = use_mubuf ? aco_opcode::buffer_load_dwordx3 : aco_opcode::tbuffer_load_format_xyz; break; case 16: opcode = use_mubuf ? aco_opcode::buffer_load_dwordx4 : aco_opcode::tbuffer_load_format_xyzw; break; default: unreachable("Unimplemented load_input vector size"); } Temp fetch_dst; if (channel_start == 0 && fetch_bytes == dst.bytes() && !post_shuffle && !expanded && (alpha_adjust == RADV_ALPHA_ADJUST_NONE || num_channels <= 3)) { direct_fetch = true; fetch_dst = dst; } else { fetch_dst = bld.tmp(RegClass::get(RegType::vgpr, fetch_bytes)); } if (use_mubuf) { bld.mubuf(opcode, Definition(fetch_dst), list, fetch_index, soffset, fetch_offset, false, false, true).instr; } else { bld.mtbuf(opcode, Definition(fetch_dst), list, fetch_index, soffset, fetch_dfmt, nfmt, fetch_offset, false, true).instr; } emit_split_vector(ctx, fetch_dst, fetch_dst.size()); if (fetch_component == 1) { channels[channel_start] = fetch_dst; } else { for (unsigned i = 0; i < MIN2(fetch_component, num_channels - channel_start); i++) channels[channel_start + i] = emit_extract_vector(ctx, fetch_dst, i, bitsize == 16 ? v2b : v1); } channel_start += fetch_component; } if (!direct_fetch) { bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT && nfmt != V_008F0C_BUF_NUM_FORMAT_SINT; static const unsigned swizzle_normal[4] = {0, 1, 2, 3}; static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3}; const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal; aco_ptr vec{create_instruction(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)}; std::array elems; unsigned num_temp = 0; for (unsigned i = 0; i < dst.size(); i++) { unsigned idx = i + component; if (swizzle[idx] < num_channels && channels[swizzle[idx]].id()) { Temp channel = channels[swizzle[idx]]; if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE) channel = adjust_vertex_fetch_alpha(ctx, alpha_adjust, channel); vec->operands[i] = Operand(channel); num_temp++; elems[i] = channel; } else if (is_float && idx == 3) { vec->operands[i] = Operand(0x3f800000u); } else if (!is_float && idx == 3) { vec->operands[i] = Operand(1u); } else { vec->operands[i] = Operand(0u); } } vec->definitions[0] = Definition(dst); ctx->block->instructions.emplace_back(std::move(vec)); emit_split_vector(ctx, dst, dst.size()); if (num_temp == dst.size()) ctx->allocated_vec.emplace(dst.id(), elems); } } else if (ctx->shader->info.stage == MESA_SHADER_FRAGMENT) { unsigned offset_idx = instr->intrinsic == nir_intrinsic_load_input ? 0 : 1; nir_instr *off_instr = instr->src[offset_idx].ssa->parent_instr; if (off_instr->type != nir_instr_type_load_const || nir_instr_as_load_const(off_instr)->value[0].u32 != 0) { fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n"); nir_print_instr(off_instr, stderr); fprintf(stderr, "\n"); } Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask); nir_const_value* offset = nir_src_as_const_value(instr->src[offset_idx]); if (offset) { assert(offset->u32 == 0); } else { /* the lower 15bit of the prim_mask contain the offset into LDS * while the upper bits contain the number of prims */ Temp offset_src = get_ssa_temp(ctx, instr->src[offset_idx].ssa); assert(offset_src.regClass() == s1 && "TODO: divergent offsets..."); Builder bld(ctx->program, ctx->block); Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u)); stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride); stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u)); offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src); prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask); } unsigned idx = nir_intrinsic_base(instr); unsigned component = nir_intrinsic_component(instr); unsigned vertex_id = 2; /* P0 */ if (instr->intrinsic == nir_intrinsic_load_input_vertex) { nir_const_value* src0 = nir_src_as_const_value(instr->src[0]); switch (src0->u32) { case 0: vertex_id = 2; /* P0 */ break; case 1: vertex_id = 0; /* P10 */ break; case 2: vertex_id = 1; /* P20 */ break; default: unreachable("invalid vertex index"); } } if (dst.size() == 1) { bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(vertex_id), bld.m0(prim_mask), idx, component); } else { aco_ptr vec{create_instruction(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)}; for (unsigned i = 0; i < dst.size(); i++) vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(vertex_id), bld.m0(prim_mask), idx, component + i); vec->definitions[0] = Definition(dst); bld.insert(std::move(vec)); } } else if (ctx->shader->info.stage == MESA_SHADER_TESS_EVAL) { Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u)); Temp soffset = get_arg(ctx, ctx->args->oc_lds); std::pair offs = get_tcs_per_patch_output_vmem_offset(ctx, instr); unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8u; load_vmem_mubuf(ctx, dst, ring, offs.first, soffset, offs.second, elem_size_bytes, instr->dest.ssa.num_components); } else { unreachable("Shader stage not implemented"); } } std::pair get_gs_per_vertex_input_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride = 1u) { assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY); Builder bld(ctx->program, ctx->block); nir_src *vertex_src = nir_get_io_vertex_index_src(instr); Temp vertex_offset; if (!nir_src_is_const(*vertex_src)) { /* better code could be created, but this case probably doesn't happen * much in practice */ Temp indirect_vertex = as_vgpr(ctx, get_ssa_temp(ctx, vertex_src->ssa)); for (unsigned i = 0; i < ctx->shader->info.gs.vertices_in; i++) { Temp elem; if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) { elem = get_arg(ctx, ctx->args->gs_vtx_offset[i / 2u * 2u]); if (i % 2u) elem = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), elem); } else { elem = get_arg(ctx, ctx->args->gs_vtx_offset[i]); } if (vertex_offset.id()) { Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(i), indirect_vertex); vertex_offset = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), vertex_offset, elem, cond); } else { vertex_offset = elem; } } if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) vertex_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), vertex_offset); } else { unsigned vertex = nir_src_as_uint(*vertex_src); if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) vertex_offset = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), get_arg(ctx, ctx->args->gs_vtx_offset[vertex / 2u * 2u]), Operand((vertex % 2u) * 16u), Operand(16u)); else vertex_offset = get_arg(ctx, ctx->args->gs_vtx_offset[vertex]); } std::pair offs = get_intrinsic_io_basic_offset(ctx, instr, base_stride); offs = offset_add(ctx, offs, std::make_pair(vertex_offset, 0u)); return offset_mul(ctx, offs, 4u); } void visit_load_gs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr) { assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY); Builder bld(ctx->program, ctx->block); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8; if (ctx->stage == geometry_gs) { std::pair offs = get_gs_per_vertex_input_offset(ctx, instr, ctx->program->wave_size); Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_GS * 16u)); load_vmem_mubuf(ctx, dst, ring, offs.first, Temp(), offs.second, elem_size_bytes, instr->dest.ssa.num_components, 4u * ctx->program->wave_size, false, true); } else if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) { std::pair offs = get_gs_per_vertex_input_offset(ctx, instr); unsigned lds_align = calculate_lds_alignment(ctx, offs.second); load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align); } else { unreachable("Unsupported GS stage."); } } void visit_load_tcs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr) { assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL); Builder bld(ctx->program, ctx->block); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); if (load_input_from_temps(ctx, instr, dst)) return; std::pair offs = get_tcs_per_vertex_input_lds_offset(ctx, instr); unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8; unsigned lds_align = calculate_lds_alignment(ctx, offs.second); load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align); } void visit_load_tes_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr) { assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL); Builder bld(ctx->program, ctx->block); Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u)); Temp oc_lds = get_arg(ctx, ctx->args->oc_lds); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8; std::pair offs = get_tcs_per_vertex_output_vmem_offset(ctx, instr); load_vmem_mubuf(ctx, dst, ring, offs.first, oc_lds, offs.second, elem_size_bytes, instr->dest.ssa.num_components, 0u, true, true); } void visit_load_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr) { switch (ctx->shader->info.stage) { case MESA_SHADER_GEOMETRY: visit_load_gs_per_vertex_input(ctx, instr); break; case MESA_SHADER_TESS_CTRL: visit_load_tcs_per_vertex_input(ctx, instr); break; case MESA_SHADER_TESS_EVAL: visit_load_tes_per_vertex_input(ctx, instr); break; default: unreachable("Unimplemented shader stage"); } } void visit_load_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr) { visit_load_tcs_output(ctx, instr, true); } void visit_store_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr) { assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs); assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL); visit_store_tcs_output(ctx, instr, true); } void visit_load_tess_coord(isel_context *ctx, nir_intrinsic_instr *instr) { assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL); Builder bld(ctx->program, ctx->block); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); Operand tes_u(get_arg(ctx, ctx->args->tes_u)); Operand tes_v(get_arg(ctx, ctx->args->tes_v)); Operand tes_w(0u); if (ctx->shader->info.tess.primitive_mode == GL_TRIANGLES) { Temp tmp = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), tes_u, tes_v); tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0x3f800000u /* 1.0f */), tmp); tes_w = Operand(tmp); } Temp tess_coord = bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tes_u, tes_v, tes_w); emit_split_vector(ctx, tess_coord, 3); } Temp load_desc_ptr(isel_context *ctx, unsigned desc_set) { if (ctx->program->info->need_indirect_descriptor_sets) { Builder bld(ctx->program, ctx->block); Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0])); Operand off = bld.copy(bld.def(s1), Operand(desc_set << 2)); return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, off);//, false, false, false); } return get_arg(ctx, ctx->args->descriptor_sets[desc_set]); } void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr) { Builder bld(ctx->program, ctx->block); Temp index = get_ssa_temp(ctx, instr->src[0].ssa); if (!nir_dest_is_divergent(instr->dest)) index = bld.as_uniform(index); unsigned desc_set = nir_intrinsic_desc_set(instr); unsigned binding = nir_intrinsic_binding(instr); Temp desc_ptr; radv_pipeline_layout *pipeline_layout = ctx->options->layout; radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout; unsigned offset = layout->binding[binding].offset; unsigned stride; if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC || layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) { unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset; desc_ptr = get_arg(ctx, ctx->args->ac.push_constants); offset = pipeline_layout->push_constant_size + 16 * idx; stride = 16; } else { desc_ptr = load_desc_ptr(ctx, desc_set); stride = layout->binding[binding].size; } nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]); unsigned const_index = nir_const_index ? nir_const_index->u32 : 0; if (stride != 1) { if (nir_const_index) { const_index = const_index * stride; } else if (index.type() == RegType::vgpr) { bool index24bit = layout->binding[binding].array_size <= 0x1000000; index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit); } else { index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index)); } } if (offset) { if (nir_const_index) { const_index = const_index + offset; } else if (index.type() == RegType::vgpr) { index = bld.vadd32(bld.def(v1), Operand(offset), index); } else { index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index)); } } if (nir_const_index && const_index == 0) { index = desc_ptr; } else if (index.type() == RegType::vgpr) { index = bld.vadd32(bld.def(v1), nir_const_index ? Operand(const_index) : Operand(index), Operand(desc_ptr)); } else { index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), nir_const_index ? Operand(const_index) : Operand(index), Operand(desc_ptr)); } bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index); } void load_buffer(isel_context *ctx, unsigned num_components, unsigned component_size, Temp dst, Temp rsrc, Temp offset, unsigned align_mul, unsigned align_offset, bool glc=false, bool allow_smem=true, memory_sync_info sync=memory_sync_info()) { Builder bld(ctx->program, ctx->block); bool use_smem = dst.type() != RegType::vgpr && (!glc || ctx->options->chip_class >= GFX8) && allow_smem; if (use_smem) offset = bld.as_uniform(offset); LoadEmitInfo info = {Operand(offset), dst, num_components, component_size, rsrc}; info.glc = glc; info.sync = sync; info.align_mul = align_mul; info.align_offset = align_offset; if (use_smem) emit_smem_load(ctx, bld, &info); else emit_mubuf_load(ctx, bld, &info); } void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr) { Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa); Builder bld(ctx->program, ctx->block); nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr); unsigned desc_set = nir_intrinsic_desc_set(idx_instr); unsigned binding = nir_intrinsic_binding(idx_instr); radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout; if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) { uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W); if (ctx->options->chip_class >= GFX10) { desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) | S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) | S_008F0C_RESOURCE_LEVEL(1); } else { desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32); } Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3), Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)), Operand(0xFFFFFFFFu), Operand(desc_type)); rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), rsrc, upper_dwords); } else { rsrc = convert_pointer_to_64_bit(ctx, rsrc); rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u)); } unsigned size = instr->dest.ssa.bit_size / 8; load_buffer(ctx, instr->num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), nir_intrinsic_align_mul(instr), nir_intrinsic_align_offset(instr)); } void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr) { Builder bld(ctx->program, ctx->block); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); unsigned offset = nir_intrinsic_base(instr); unsigned count = instr->dest.ssa.num_components; nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]); if (index_cv && instr->dest.ssa.bit_size == 32) { unsigned start = (offset + index_cv->u32) / 4u; start -= ctx->args->ac.base_inline_push_consts; if (start + count <= ctx->args->ac.num_inline_push_consts) { std::array elems; aco_ptr vec{create_instruction(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)}; for (unsigned i = 0; i < count; ++i) { elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]); vec->operands[i] = Operand{elems[i]}; } vec->definitions[0] = Definition(dst); ctx->block->instructions.emplace_back(std::move(vec)); ctx->allocated_vec.emplace(dst.id(), elems); return; } } Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa)); if (offset != 0) // TODO check if index != 0 as well index = bld.nuw().sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index); Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants)); Temp vec = dst; bool trim = false; bool aligned = true; if (instr->dest.ssa.bit_size == 8) { aligned = index_cv && (offset + index_cv->u32) % 4 == 0; bool fits_in_dword = count == 1 || (index_cv && ((offset + index_cv->u32) % 4 + count) <= 4); if (!aligned) vec = fits_in_dword ? bld.tmp(s1) : bld.tmp(s2); } else if (instr->dest.ssa.bit_size == 16) { aligned = index_cv && (offset + index_cv->u32) % 4 == 0; if (!aligned) vec = count == 4 ? bld.tmp(s4) : count > 1 ? bld.tmp(s2) : bld.tmp(s1); } aco_opcode op; switch (vec.size()) { case 1: op = aco_opcode::s_load_dword; break; case 2: op = aco_opcode::s_load_dwordx2; break; case 3: vec = bld.tmp(s4); trim = true; case 4: op = aco_opcode::s_load_dwordx4; break; case 6: vec = bld.tmp(s8); trim = true; case 8: op = aco_opcode::s_load_dwordx8; break; default: unreachable("unimplemented or forbidden load_push_constant."); } static_cast(bld.smem(op, Definition(vec), ptr, index).instr)->prevent_overflow = true; if (!aligned) { Operand byte_offset = index_cv ? Operand((offset + index_cv->u32) % 4) : Operand(index); byte_align_scalar(ctx, vec, byte_offset, dst); return; } if (trim) { emit_split_vector(ctx, vec, 4); RegClass rc = dst.size() == 3 ? s1 : s2; bld.pseudo(aco_opcode::p_create_vector, Definition(dst), emit_extract_vector(ctx, vec, 0, rc), emit_extract_vector(ctx, vec, 1, rc), emit_extract_vector(ctx, vec, 2, rc)); } emit_split_vector(ctx, dst, instr->dest.ssa.num_components); } void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr) { Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); Builder bld(ctx->program, ctx->block); uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W); if (ctx->options->chip_class >= GFX10) { desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) | S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) | S_008F0C_RESOURCE_LEVEL(1); } else { desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32); } unsigned base = nir_intrinsic_base(instr); unsigned range = nir_intrinsic_range(instr); Temp offset = get_ssa_temp(ctx, instr->src[0].ssa); if (base && offset.type() == RegType::sgpr) offset = bld.nuw().sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base)); else if (base && offset.type() == RegType::vgpr) offset = bld.vadd32(bld.def(v1), Operand(base), offset); Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)), Operand(MIN2(base + range, ctx->shader->constant_data_size)), Operand(desc_type)); unsigned size = instr->dest.ssa.bit_size / 8; // TODO: get alignment information for subdword constants load_buffer(ctx, instr->num_components, size, dst, rsrc, offset, size, 0); } void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr) { if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent) ctx->cf_info.exec_potentially_empty_discard = true; ctx->program->needs_exact = true; // TODO: optimize uniform conditions Builder bld(ctx->program, ctx->block); Temp src = get_ssa_temp(ctx, instr->src[0].ssa); assert(src.regClass() == bld.lm); src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)); bld.pseudo(aco_opcode::p_discard_if, src); ctx->block->kind |= block_kind_uses_discard_if; return; } void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr) { Builder bld(ctx->program, ctx->block); if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent) ctx->cf_info.exec_potentially_empty_discard = true; bool divergent = ctx->cf_info.parent_if.is_divergent || ctx->cf_info.parent_loop.has_divergent_continue; if (ctx->block->loop_nest_depth && ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) { /* we handle discards the same way as jump instructions */ append_logical_end(ctx->block); /* in loops, discard behaves like break */ Block *linear_target = ctx->cf_info.parent_loop.exit; ctx->block->kind |= block_kind_discard; if (!divergent) { /* uniform discard - loop ends here */ assert(nir_instr_is_last(&instr->instr)); ctx->block->kind |= block_kind_uniform; ctx->cf_info.has_branch = true; bld.branch(aco_opcode::p_branch); add_linear_edge(ctx->block->index, linear_target); return; } /* we add a break right behind the discard() instructions */ ctx->block->kind |= block_kind_break; unsigned idx = ctx->block->index; ctx->cf_info.parent_loop.has_divergent_branch = true; ctx->cf_info.nir_to_aco[instr->instr.block->index] = idx; /* remove critical edges from linear CFG */ bld.branch(aco_opcode::p_branch); Block* break_block = ctx->program->create_and_insert_block(); break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth; break_block->kind |= block_kind_uniform; add_linear_edge(idx, break_block); add_linear_edge(break_block->index, linear_target); bld.reset(break_block); bld.branch(aco_opcode::p_branch); Block* continue_block = ctx->program->create_and_insert_block(); continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth; add_linear_edge(idx, continue_block); append_logical_start(continue_block); ctx->block = continue_block; return; } /* it can currently happen that NIR doesn't remove the unreachable code */ if (!nir_instr_is_last(&instr->instr)) { ctx->program->needs_exact = true; /* save exec somewhere temporarily so that it doesn't get * overwritten before the discard from outer exec masks */ Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm)); bld.pseudo(aco_opcode::p_discard_if, cond); ctx->block->kind |= block_kind_uses_discard_if; return; } /* This condition is incorrect for uniformly branched discards in a loop * predicated by a divergent condition, but the above code catches that case * and the discard would end up turning into a discard_if. * For example: * if (divergent) { * while (...) { * if (uniform) { * discard; * } * } * } */ if (!ctx->cf_info.parent_if.is_divergent) { /* program just ends here */ ctx->block->kind |= block_kind_uniform; bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1), 0 /* enabled mask */, 9 /* dest */, false /* compressed */, true/* done */, true /* valid mask */); bld.sopp(aco_opcode::s_endpgm); // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis } else { ctx->block->kind |= block_kind_discard; /* branch and linear edge is added by visit_if() */ } } enum aco_descriptor_type { ACO_DESC_IMAGE, ACO_DESC_FMASK, ACO_DESC_SAMPLER, ACO_DESC_BUFFER, ACO_DESC_PLANE_0, ACO_DESC_PLANE_1, ACO_DESC_PLANE_2, }; static bool should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) { if (sampler_dim == GLSL_SAMPLER_DIM_BUF) return false; ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array); return dim == ac_image_cube || dim == ac_image_1darray || dim == ac_image_2darray || dim == ac_image_2darraymsaa; } Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr, enum aco_descriptor_type desc_type, const nir_tex_instr *tex_instr, bool image, bool write) { /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc std::unordered_map::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index); if (it != ctx->tex_desc.end()) return it->second; */ Temp index = Temp(); bool index_set = false; unsigned constant_index = 0; unsigned descriptor_set; unsigned base_index; Builder bld(ctx->program, ctx->block); if (!deref_instr) { assert(tex_instr && !image); descriptor_set = 0; base_index = tex_instr->sampler_index; } else { while(deref_instr->deref_type != nir_deref_type_var) { unsigned array_size = glsl_get_aoa_size(deref_instr->type); if (!array_size) array_size = 1; assert(deref_instr->deref_type == nir_deref_type_array); nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index); if (const_value) { constant_index += array_size * const_value->u32; } else { Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa); if (indirect.type() == RegType::vgpr) indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect); if (array_size != 1) indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect); if (!index_set) { index = indirect; index_set = true; } else { index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect); } } deref_instr = nir_src_as_deref(deref_instr->parent); } descriptor_set = deref_instr->var->data.descriptor_set; base_index = deref_instr->var->data.binding; } Temp list = load_desc_ptr(ctx, descriptor_set); list = convert_pointer_to_64_bit(ctx, list); struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout; struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index; unsigned offset = binding->offset; unsigned stride = binding->size; aco_opcode opcode; RegClass type; assert(base_index < layout->binding_count); switch (desc_type) { case ACO_DESC_IMAGE: type = s8; opcode = aco_opcode::s_load_dwordx8; break; case ACO_DESC_FMASK: type = s8; opcode = aco_opcode::s_load_dwordx8; offset += 32; break; case ACO_DESC_SAMPLER: type = s4; opcode = aco_opcode::s_load_dwordx4; if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER) offset += radv_combined_image_descriptor_sampler_offset(binding); break; case ACO_DESC_BUFFER: type = s4; opcode = aco_opcode::s_load_dwordx4; break; case ACO_DESC_PLANE_0: case ACO_DESC_PLANE_1: type = s8; opcode = aco_opcode::s_load_dwordx8; offset += 32 * (desc_type - ACO_DESC_PLANE_0); break; case ACO_DESC_PLANE_2: type = s4; opcode = aco_opcode::s_load_dwordx4; offset += 64; break; default: unreachable("invalid desc_type\n"); } offset += constant_index * stride; if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset && (!index_set || binding->immutable_samplers_equal)) { if (binding->immutable_samplers_equal) constant_index = 0; const uint32_t *samplers = radv_immutable_samplers(layout, binding); return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(samplers[constant_index * 4 + 0]), Operand(samplers[constant_index * 4 + 1]), Operand(samplers[constant_index * 4 + 2]), Operand(samplers[constant_index * 4 + 3])); } Operand off; if (!index_set) { off = bld.copy(bld.def(s1), Operand(offset)); } else { off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index))); } Temp res = bld.smem(opcode, bld.def(type), list, off); if (desc_type == ACO_DESC_PLANE_2) { Temp components[8]; for (unsigned i = 0; i < 8; i++) components[i] = bld.tmp(s1); bld.pseudo(aco_opcode::p_split_vector, Definition(components[0]), Definition(components[1]), Definition(components[2]), Definition(components[3]), res); Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write); bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1), Definition(components[4]), Definition(components[5]), Definition(components[6]), Definition(components[7]), desc2); res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8), components[0], components[1], components[2], components[3], components[4], components[5], components[6], components[7]); } return res; } static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array) { switch (dim) { case GLSL_SAMPLER_DIM_BUF: return 1; case GLSL_SAMPLER_DIM_1D: return array ? 2 : 1; case GLSL_SAMPLER_DIM_2D: return array ? 3 : 2; case GLSL_SAMPLER_DIM_MS: return array ? 4 : 3; case GLSL_SAMPLER_DIM_3D: case GLSL_SAMPLER_DIM_CUBE: return 3; case GLSL_SAMPLER_DIM_RECT: case GLSL_SAMPLER_DIM_SUBPASS: return 2; case GLSL_SAMPLER_DIM_SUBPASS_MS: return 3; default: break; } return 0; } /* Adjust the sample index according to FMASK. * * For uncompressed MSAA surfaces, FMASK should return 0x76543210, * which is the identity mapping. Each nibble says which physical sample * should be fetched to get that sample. * * For example, 0x11111100 means there are only 2 samples stored and * the second sample covers 3/4 of the pixel. When reading samples 0 * and 1, return physical sample 0 (determined by the first two 0s * in FMASK), otherwise return physical sample 1. * * The sample index should be adjusted as follows: * sample_index = (fmask >> (sample_index * 4)) & 0xF; */ static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, std::vector& coords, Operand sample_index, Temp fmask_desc_ptr) { Builder bld(ctx->program, ctx->block); Temp fmask = bld.tmp(v1); unsigned dim = ctx->options->chip_class >= GFX10 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da) : 0; Temp coord = da ? bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), coords[0], coords[1], coords[2]) : bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), coords[0], coords[1]); aco_ptr load{create_instruction(aco_opcode::image_load, Format::MIMG, 3, 1)}; load->operands[0] = Operand(fmask_desc_ptr); load->operands[1] = Operand(s4); /* no sampler */ load->operands[2] = Operand(coord); load->definitions[0] = Definition(fmask); load->glc = false; load->dlc = false; load->dmask = 0x1; load->unrm = true; load->da = da; load->dim = dim; ctx->block->instructions.emplace_back(std::move(load)); Operand sample_index4; if (sample_index.isConstant()) { if (sample_index.constantValue() < 16) { sample_index4 = Operand(sample_index.constantValue() << 2); } else { sample_index4 = Operand(0u); } } else if (sample_index.regClass() == s1) { sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u)); } else { assert(sample_index.regClass() == v1); sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index); } Temp final_sample; if (sample_index4.isConstant() && sample_index4.constantValue() == 0) final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask); else if (sample_index4.isConstant() && sample_index4.constantValue() == 28) final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask); else final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u)); /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK * resource descriptor is 0 (invalid), */ Temp compare = bld.tmp(bld.lm); bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare), Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc); Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index); /* Replace the MSAA sample index. */ return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare); } static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type) { Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa); enum glsl_sampler_dim dim = glsl_get_sampler_dim(type); bool is_array = glsl_sampler_type_is_array(type); ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS); assert(!add_frag_pos && "Input attachments should be lowered."); bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS); bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D; int count = image_type_to_components_count(dim, is_array); std::vector coords(count); Builder bld(ctx->program, ctx->block); if (is_ms) { count--; Temp src2 = get_ssa_temp(ctx, instr->src[2].ssa); /* get sample index */ if (instr->intrinsic == nir_intrinsic_image_deref_load) { nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]); Operand sample_index = sample_cv ? Operand(sample_cv->u32) : Operand(emit_extract_vector(ctx, src2, 0, v1)); std::vector fmask_load_address; for (unsigned i = 0; i < (is_array ? 3 : 2); i++) fmask_load_address.emplace_back(emit_extract_vector(ctx, src0, i, v1)); Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false); coords[count] = adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr); } else { coords[count] = emit_extract_vector(ctx, src2, 0, v1); } } if (gfx9_1d) { coords[0] = emit_extract_vector(ctx, src0, 0, v1); coords.resize(coords.size() + 1); coords[1] = bld.copy(bld.def(v1), Operand(0u)); if (is_array) coords[2] = emit_extract_vector(ctx, src0, 1, v1); } else { for (int i = 0; i < count; i++) coords[i] = emit_extract_vector(ctx, src0, i, v1); } if (instr->intrinsic == nir_intrinsic_image_deref_load || instr->intrinsic == nir_intrinsic_image_deref_store) { int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4; bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0; if (!level_zero) coords.emplace_back(get_ssa_temp(ctx, instr->src[lod_index].ssa)); } aco_ptr vec{create_instruction(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)}; for (unsigned i = 0; i < coords.size(); i++) vec->operands[i] = Operand(coords[i]); Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())}; vec->definitions[0] = Definition(res); ctx->block->instructions.emplace_back(std::move(vec)); return res; } memory_sync_info get_memory_sync_info(nir_intrinsic_instr *instr, storage_class storage, unsigned semantics) { /* atomicrmw might not have NIR_INTRINSIC_ACCESS and there's nothing interesting there anyway */ if (semantics & semantic_atomicrmw) return memory_sync_info(storage, semantics); unsigned access = nir_intrinsic_access(instr); if (access & ACCESS_VOLATILE) semantics |= semantic_volatile; if (access & ACCESS_CAN_REORDER) semantics |= semantic_can_reorder | semantic_private; return memory_sync_info(storage, semantics); } void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr) { Builder bld(ctx->program, ctx->block); const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr)); const struct glsl_type *type = glsl_without_array(var->type); const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type); bool is_array = glsl_sampler_type_is_array(type); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); memory_sync_info sync = get_memory_sync_info(instr, storage_image, 0); unsigned access = var->data.access | nir_intrinsic_access(instr); if (dim == GLSL_SAMPLER_DIM_BUF) { unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa); unsigned num_channels = util_last_bit(mask); Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true); Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1); aco_opcode opcode; switch (num_channels) { case 1: opcode = aco_opcode::buffer_load_format_x; break; case 2: opcode = aco_opcode::buffer_load_format_xy; break; case 3: opcode = aco_opcode::buffer_load_format_xyz; break; case 4: opcode = aco_opcode::buffer_load_format_xyzw; break; default: unreachable(">4 channel buffer image load"); } aco_ptr load{create_instruction(opcode, Format::MUBUF, 3, 1)}; load->operands[0] = Operand(rsrc); load->operands[1] = Operand(vindex); load->operands[2] = Operand((uint32_t) 0); Temp tmp; if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr) tmp = dst; else tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)}; load->definitions[0] = Definition(tmp); load->idxen = true; load->glc = access & (ACCESS_VOLATILE | ACCESS_COHERENT); load->dlc = load->glc && ctx->options->chip_class >= GFX10; load->sync = sync; ctx->block->instructions.emplace_back(std::move(load)); expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1); return; } Temp coords = get_image_coords(ctx, instr, type); Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true); unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa); unsigned num_components = util_bitcount(dmask); Temp tmp; if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr) tmp = dst; else tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)}; bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0; aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip; aco_ptr load{create_instruction(opcode, Format::MIMG, 3, 1)}; load->operands[0] = Operand(resource); load->operands[1] = Operand(s4); /* no sampler */ load->operands[2] = Operand(coords); load->definitions[0] = Definition(tmp); load->glc = access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0; load->dlc = load->glc && ctx->options->chip_class >= GFX10; load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array); load->dmask = dmask; load->unrm = true; load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type)); load->sync = sync; ctx->block->instructions.emplace_back(std::move(load)); expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask); return; } void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr) { const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr)); const struct glsl_type *type = glsl_without_array(var->type); const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type); bool is_array = glsl_sampler_type_is_array(type); Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa)); memory_sync_info sync = get_memory_sync_info(instr, storage_image, 0); unsigned access = var->data.access | nir_intrinsic_access(instr); bool glc = ctx->options->chip_class == GFX6 || access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0; if (dim == GLSL_SAMPLER_DIM_BUF) { Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true); Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1); aco_opcode opcode; switch (data.size()) { case 1: opcode = aco_opcode::buffer_store_format_x; break; case 2: opcode = aco_opcode::buffer_store_format_xy; break; case 3: opcode = aco_opcode::buffer_store_format_xyz; break; case 4: opcode = aco_opcode::buffer_store_format_xyzw; break; default: unreachable(">4 channel buffer image store"); } aco_ptr store{create_instruction(opcode, Format::MUBUF, 4, 0)}; store->operands[0] = Operand(rsrc); store->operands[1] = Operand(vindex); store->operands[2] = Operand((uint32_t) 0); store->operands[3] = Operand(data); store->idxen = true; store->glc = glc; store->dlc = false; store->disable_wqm = true; store->sync = sync; ctx->program->needs_exact = true; ctx->block->instructions.emplace_back(std::move(store)); return; } assert(data.type() == RegType::vgpr); Temp coords = get_image_coords(ctx, instr, type); Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true); bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0; aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip; aco_ptr store{create_instruction(opcode, Format::MIMG, 3, 0)}; store->operands[0] = Operand(resource); store->operands[1] = Operand(data); store->operands[2] = Operand(coords); store->glc = glc; store->dlc = false; store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array); store->dmask = (1 << data.size()) - 1; store->unrm = true; store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type)); store->disable_wqm = true; store->sync = sync; ctx->program->needs_exact = true; ctx->block->instructions.emplace_back(std::move(store)); return; } void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr) { /* return the previous value if dest is ever used */ bool return_previous = false; nir_foreach_use_safe(use_src, &instr->dest.ssa) { return_previous = true; break; } nir_foreach_if_use_safe(use_src, &instr->dest.ssa) { return_previous = true; break; } const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr)); const struct glsl_type *type = glsl_without_array(var->type); const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type); bool is_array = glsl_sampler_type_is_array(type); Builder bld(ctx->program, ctx->block); Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa)); assert(data.size() == 1 && "64bit ssbo atomics not yet implemented."); if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap) data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data); aco_opcode buf_op, image_op; switch (instr->intrinsic) { case nir_intrinsic_image_deref_atomic_add: buf_op = aco_opcode::buffer_atomic_add; image_op = aco_opcode::image_atomic_add; break; case nir_intrinsic_image_deref_atomic_umin: buf_op = aco_opcode::buffer_atomic_umin; image_op = aco_opcode::image_atomic_umin; break; case nir_intrinsic_image_deref_atomic_imin: buf_op = aco_opcode::buffer_atomic_smin; image_op = aco_opcode::image_atomic_smin; break; case nir_intrinsic_image_deref_atomic_umax: buf_op = aco_opcode::buffer_atomic_umax; image_op = aco_opcode::image_atomic_umax; break; case nir_intrinsic_image_deref_atomic_imax: buf_op = aco_opcode::buffer_atomic_smax; image_op = aco_opcode::image_atomic_smax; break; case nir_intrinsic_image_deref_atomic_and: buf_op = aco_opcode::buffer_atomic_and; image_op = aco_opcode::image_atomic_and; break; case nir_intrinsic_image_deref_atomic_or: buf_op = aco_opcode::buffer_atomic_or; image_op = aco_opcode::image_atomic_or; break; case nir_intrinsic_image_deref_atomic_xor: buf_op = aco_opcode::buffer_atomic_xor; image_op = aco_opcode::image_atomic_xor; break; case nir_intrinsic_image_deref_atomic_exchange: buf_op = aco_opcode::buffer_atomic_swap; image_op = aco_opcode::image_atomic_swap; break; case nir_intrinsic_image_deref_atomic_comp_swap: buf_op = aco_opcode::buffer_atomic_cmpswap; image_op = aco_opcode::image_atomic_cmpswap; break; default: unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions."); } Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); memory_sync_info sync = get_memory_sync_info(instr, storage_image, semantic_atomicrmw); if (dim == GLSL_SAMPLER_DIM_BUF) { Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1); Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true); //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented."); aco_ptr mubuf{create_instruction(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)}; mubuf->operands[0] = Operand(resource); mubuf->operands[1] = Operand(vindex); mubuf->operands[2] = Operand((uint32_t)0); mubuf->operands[3] = Operand(data); if (return_previous) mubuf->definitions[0] = Definition(dst); mubuf->offset = 0; mubuf->idxen = true; mubuf->glc = return_previous; mubuf->dlc = false; /* Not needed for atomics */ mubuf->disable_wqm = true; mubuf->sync = sync; ctx->program->needs_exact = true; ctx->block->instructions.emplace_back(std::move(mubuf)); return; } Temp coords = get_image_coords(ctx, instr, type); Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true); aco_ptr mimg{create_instruction(image_op, Format::MIMG, 3, return_previous ? 1 : 0)}; mimg->operands[0] = Operand(resource); mimg->operands[1] = Operand(data); mimg->operands[2] = Operand(coords); if (return_previous) mimg->definitions[0] = Definition(dst); mimg->glc = return_previous; mimg->dlc = false; /* Not needed for atomics */ mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array); mimg->dmask = (1 << data.size()) - 1; mimg->unrm = true; mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type)); mimg->disable_wqm = true; mimg->sync = sync; ctx->program->needs_exact = true; ctx->block->instructions.emplace_back(std::move(mimg)); return; } void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements) { if (in_elements && ctx->options->chip_class == GFX8) { /* we only have to divide by 1, 2, 4, 8, 12 or 16 */ Builder bld(ctx->program, ctx->block); Temp size = emit_extract_vector(ctx, desc, 2, s1); Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size); size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.as_uniform(size_div3), Operand(1u)); Temp stride = emit_extract_vector(ctx, desc, 1, s1); stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u)); Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u)); size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12)); Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst; bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc), size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride)); if (dst.type() == RegType::vgpr) bld.copy(Definition(dst), shr_dst); /* TODO: we can probably calculate this faster with v_skip when stride != 12 */ } else { emit_extract_vector(ctx, desc, 2, dst); } } void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr) { const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr)); const struct glsl_type *type = glsl_without_array(var->type); const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type); bool is_array = glsl_sampler_type_is_array(type); Builder bld(ctx->program, ctx->block); if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) { Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false); return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true); } /* LOD */ Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u)); /* Resource */ Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); aco_ptr mimg{create_instruction(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1)}; mimg->operands[0] = Operand(resource); mimg->operands[1] = Operand(s4); /* no sampler */ mimg->operands[2] = Operand(lod); uint8_t& dmask = mimg->dmask; mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array); mimg->dmask = (1 << instr->dest.ssa.num_components) - 1; mimg->da = glsl_sampler_type_is_array(type); Definition& def = mimg->definitions[0]; ctx->block->instructions.emplace_back(std::move(mimg)); if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE && glsl_sampler_type_is_array(type)) { assert(instr->dest.ssa.num_components == 3); Temp tmp = {ctx->program->allocateId(), v3}; def = Definition(tmp); emit_split_vector(ctx, tmp, 3); /* divide 3rd value by 6 by multiplying with magic number */ Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB)); Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), emit_extract_vector(ctx, tmp, 0, v1), emit_extract_vector(ctx, tmp, 1, v1), by_6); } else if (ctx->options->chip_class == GFX9 && glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D && glsl_sampler_type_is_array(type)) { assert(instr->dest.ssa.num_components == 2); def = Definition(dst); dmask = 0x5; } else { def = Definition(dst); } emit_split_vector(ctx, dst, instr->dest.ssa.num_components); } void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr) { Builder bld(ctx->program, ctx->block); unsigned num_components = instr->num_components; Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa)); rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u)); unsigned access = nir_intrinsic_access(instr); bool glc = access & (ACCESS_VOLATILE | ACCESS_COHERENT); unsigned size = instr->dest.ssa.bit_size / 8; uint32_t flags = get_all_buffer_resource_flags(ctx, instr->src[0].ssa, access); /* GLC bypasses VMEM/SMEM caches, so GLC SMEM loads/stores are coherent with GLC VMEM loads/stores * TODO: this optimization is disabled for now because we still need to ensure correct ordering */ bool allow_smem = !(flags & (0 && glc ? has_nonglc_vmem_store : has_vmem_store)); allow_smem |= ((access & ACCESS_RESTRICT) && (access & ACCESS_NON_WRITEABLE)) || (access & ACCESS_CAN_REORDER); load_buffer(ctx, num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), nir_intrinsic_align_mul(instr), nir_intrinsic_align_offset(instr), glc, allow_smem, get_memory_sync_info(instr, storage_buffer, 0)); } void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr) { Builder bld(ctx->program, ctx->block); Temp data = get_ssa_temp(ctx, instr->src[0].ssa); unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8; unsigned writemask = widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes); Temp offset = get_ssa_temp(ctx, instr->src[2].ssa); Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa)); rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u)); memory_sync_info sync = get_memory_sync_info(instr, storage_buffer, 0); bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE); uint32_t flags = get_all_buffer_resource_flags(ctx, instr->src[1].ssa, nir_intrinsic_access(instr)); /* GLC bypasses VMEM/SMEM caches, so GLC SMEM loads/stores are coherent with GLC VMEM loads/stores * TODO: this optimization is disabled for now because we still need to ensure correct ordering */ bool allow_smem = !(flags & (0 && glc ? has_nonglc_vmem_loadstore : has_vmem_loadstore)); bool smem = !nir_src_is_divergent(instr->src[2]) && ctx->options->chip_class >= GFX8 && ctx->options->chip_class < GFX10_3 && (elem_size_bytes >= 4 || can_subdword_ssbo_store_use_smem(instr)) && allow_smem; if (smem) offset = bld.as_uniform(offset); bool smem_nonfs = smem && ctx->stage != fragment_fs; unsigned write_count = 0; Temp write_datas[32]; unsigned offsets[32]; split_buffer_store(ctx, instr, smem, smem_nonfs ? RegType::sgpr : (smem ? data.type() : RegType::vgpr), data, writemask, 16, &write_count, write_datas, offsets); for (unsigned i = 0; i < write_count; i++) { aco_opcode op = get_buffer_store_op(smem, write_datas[i].bytes()); if (smem && ctx->stage == fragment_fs) op = aco_opcode::p_fs_buffer_store_smem; if (smem) { aco_ptr store{create_instruction(op, Format::SMEM, 3, 0)}; store->operands[0] = Operand(rsrc); if (offsets[i]) { Temp off = bld.nuw().sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), offset, Operand(offsets[i])); store->operands[1] = Operand(off); } else { store->operands[1] = Operand(offset); } if (op != aco_opcode::p_fs_buffer_store_smem) store->operands[1].setFixed(m0); store->operands[2] = Operand(write_datas[i]); store->glc = glc; store->dlc = false; store->disable_wqm = true; store->sync = sync; ctx->block->instructions.emplace_back(std::move(store)); ctx->program->wb_smem_l1_on_end = true; if (op == aco_opcode::p_fs_buffer_store_smem) { ctx->block->kind |= block_kind_needs_lowering; ctx->program->needs_exact = true; } } else { aco_ptr store{create_instruction(op, Format::MUBUF, 4, 0)}; store->operands[0] = Operand(rsrc); store->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1); store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0); store->operands[3] = Operand(write_datas[i]); store->offset = offsets[i]; store->offen = (offset.type() == RegType::vgpr); store->glc = glc; store->dlc = false; store->disable_wqm = true; store->sync = sync; ctx->program->needs_exact = true; ctx->block->instructions.emplace_back(std::move(store)); } } } void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr) { /* return the previous value if dest is ever used */ bool return_previous = false; nir_foreach_use_safe(use_src, &instr->dest.ssa) { return_previous = true; break; } nir_foreach_if_use_safe(use_src, &instr->dest.ssa) { return_previous = true; break; } Builder bld(ctx->program, ctx->block); Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa)); if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap) data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2), get_ssa_temp(ctx, instr->src[3].ssa), data); Temp offset = get_ssa_temp(ctx, instr->src[1].ssa); Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa)); rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u)); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); aco_opcode op32, op64; switch (instr->intrinsic) { case nir_intrinsic_ssbo_atomic_add: op32 = aco_opcode::buffer_atomic_add; op64 = aco_opcode::buffer_atomic_add_x2; break; case nir_intrinsic_ssbo_atomic_imin: op32 = aco_opcode::buffer_atomic_smin; op64 = aco_opcode::buffer_atomic_smin_x2; break; case nir_intrinsic_ssbo_atomic_umin: op32 = aco_opcode::buffer_atomic_umin; op64 = aco_opcode::buffer_atomic_umin_x2; break; case nir_intrinsic_ssbo_atomic_imax: op32 = aco_opcode::buffer_atomic_smax; op64 = aco_opcode::buffer_atomic_smax_x2; break; case nir_intrinsic_ssbo_atomic_umax: op32 = aco_opcode::buffer_atomic_umax; op64 = aco_opcode::buffer_atomic_umax_x2; break; case nir_intrinsic_ssbo_atomic_and: op32 = aco_opcode::buffer_atomic_and; op64 = aco_opcode::buffer_atomic_and_x2; break; case nir_intrinsic_ssbo_atomic_or: op32 = aco_opcode::buffer_atomic_or; op64 = aco_opcode::buffer_atomic_or_x2; break; case nir_intrinsic_ssbo_atomic_xor: op32 = aco_opcode::buffer_atomic_xor; op64 = aco_opcode::buffer_atomic_xor_x2; break; case nir_intrinsic_ssbo_atomic_exchange: op32 = aco_opcode::buffer_atomic_swap; op64 = aco_opcode::buffer_atomic_swap_x2; break; case nir_intrinsic_ssbo_atomic_comp_swap: op32 = aco_opcode::buffer_atomic_cmpswap; op64 = aco_opcode::buffer_atomic_cmpswap_x2; break; default: unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions."); } aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64; aco_ptr mubuf{create_instruction(op, Format::MUBUF, 4, return_previous ? 1 : 0)}; mubuf->operands[0] = Operand(rsrc); mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1); mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0); mubuf->operands[3] = Operand(data); if (return_previous) mubuf->definitions[0] = Definition(dst); mubuf->offset = 0; mubuf->offen = (offset.type() == RegType::vgpr); mubuf->glc = return_previous; mubuf->dlc = false; /* Not needed for atomics */ mubuf->disable_wqm = true; mubuf->sync = get_memory_sync_info(instr, storage_buffer, semantic_atomicrmw); ctx->program->needs_exact = true; ctx->block->instructions.emplace_back(std::move(mubuf)); } void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) { Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa)); Builder bld(ctx->program, ctx->block); Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u)); get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false); } void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr) { Builder bld(ctx->program, ctx->block); unsigned num_components = instr->num_components; unsigned component_size = instr->dest.ssa.bit_size / 8; LoadEmitInfo info = {Operand(get_ssa_temp(ctx, instr->src[0].ssa)), get_ssa_temp(ctx, &instr->dest.ssa), num_components, component_size}; info.glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT); info.align_mul = nir_intrinsic_align_mul(instr); info.align_offset = nir_intrinsic_align_offset(instr); info.sync = get_memory_sync_info(instr, storage_buffer, 0); /* VMEM stores don't update the SMEM cache and it's difficult to prove that * it's safe to use SMEM */ bool can_use_smem = nir_intrinsic_access(instr) & ACCESS_NON_WRITEABLE; if (info.dst.type() == RegType::vgpr || (info.glc && ctx->options->chip_class < GFX8) || !can_use_smem) { emit_global_load(ctx, bld, &info); } else { info.offset = Operand(bld.as_uniform(info.offset)); emit_smem_load(ctx, bld, &info); } } void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr) { Builder bld(ctx->program, ctx->block); unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8; unsigned writemask = widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes); Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa)); Temp addr = get_ssa_temp(ctx, instr->src[1].ssa); memory_sync_info sync = get_memory_sync_info(instr, storage_buffer, 0); bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE); if (ctx->options->chip_class >= GFX7) addr = as_vgpr(ctx, addr); unsigned write_count = 0; Temp write_datas[32]; unsigned offsets[32]; split_buffer_store(ctx, instr, false, RegType::vgpr, data, writemask, 16, &write_count, write_datas, offsets); for (unsigned i = 0; i < write_count; i++) { if (ctx->options->chip_class >= GFX7) { unsigned offset = offsets[i]; Temp store_addr = addr; if (offset > 0 && ctx->options->chip_class < GFX9) { Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1); Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1); Temp carry = bld.tmp(bld.lm); bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr); bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)), Operand(offset), addr0); bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm), Operand(0u), addr1, carry).def(1).setHint(vcc); store_addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1); offset = 0; } bool global = ctx->options->chip_class >= GFX9; aco_opcode op; switch (write_datas[i].bytes()) { case 1: op = global ? aco_opcode::global_store_byte : aco_opcode::flat_store_byte; break; case 2: op = global ? aco_opcode::global_store_short : aco_opcode::flat_store_short; break; case 4: op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword; break; case 8: op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2; break; case 12: op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3; break; case 16: op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4; break; default: unreachable("store_global not implemented for this size."); } aco_ptr flat{create_instruction(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)}; flat->operands[0] = Operand(store_addr); flat->operands[1] = Operand(s1); flat->operands[2] = Operand(write_datas[i]); flat->glc = glc; flat->dlc = false; flat->offset = offset; flat->disable_wqm = true; flat->sync = sync; ctx->program->needs_exact = true; ctx->block->instructions.emplace_back(std::move(flat)); } else { assert(ctx->options->chip_class == GFX6); aco_opcode op = get_buffer_store_op(false, write_datas[i].bytes()); Temp rsrc = get_gfx6_global_rsrc(bld, addr); aco_ptr mubuf{create_instruction(op, Format::MUBUF, 4, 0)}; mubuf->operands[0] = Operand(rsrc); mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1); mubuf->operands[2] = Operand(0u); mubuf->operands[3] = Operand(write_datas[i]); mubuf->glc = glc; mubuf->dlc = false; mubuf->offset = offsets[i]; mubuf->addr64 = addr.type() == RegType::vgpr; mubuf->disable_wqm = true; mubuf->sync = sync; ctx->program->needs_exact = true; ctx->block->instructions.emplace_back(std::move(mubuf)); } } } void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr) { /* return the previous value if dest is ever used */ bool return_previous = false; nir_foreach_use_safe(use_src, &instr->dest.ssa) { return_previous = true; break; } nir_foreach_if_use_safe(use_src, &instr->dest.ssa) { return_previous = true; break; } Builder bld(ctx->program, ctx->block); Temp addr = get_ssa_temp(ctx, instr->src[0].ssa); Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa)); if (ctx->options->chip_class >= GFX7) addr = as_vgpr(ctx, addr); if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap) data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2), get_ssa_temp(ctx, instr->src[2].ssa), data); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); aco_opcode op32, op64; if (ctx->options->chip_class >= GFX7) { bool global = ctx->options->chip_class >= GFX9; switch (instr->intrinsic) { case nir_intrinsic_global_atomic_add: op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add; op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2; break; case nir_intrinsic_global_atomic_imin: op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin; op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2; break; case nir_intrinsic_global_atomic_umin: op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin; op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2; break; case nir_intrinsic_global_atomic_imax: op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax; op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2; break; case nir_intrinsic_global_atomic_umax: op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax; op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2; break; case nir_intrinsic_global_atomic_and: op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and; op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2; break; case nir_intrinsic_global_atomic_or: op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or; op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2; break; case nir_intrinsic_global_atomic_xor: op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor; op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2; break; case nir_intrinsic_global_atomic_exchange: op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap; op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2; break; case nir_intrinsic_global_atomic_comp_swap: op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap; op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2; break; default: unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions."); } aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64; aco_ptr flat{create_instruction(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)}; flat->operands[0] = Operand(addr); flat->operands[1] = Operand(s1); flat->operands[2] = Operand(data); if (return_previous) flat->definitions[0] = Definition(dst); flat->glc = return_previous; flat->dlc = false; /* Not needed for atomics */ flat->offset = 0; flat->disable_wqm = true; flat->sync = get_memory_sync_info(instr, storage_buffer, semantic_atomicrmw); ctx->program->needs_exact = true; ctx->block->instructions.emplace_back(std::move(flat)); } else { assert(ctx->options->chip_class == GFX6); switch (instr->intrinsic) { case nir_intrinsic_global_atomic_add: op32 = aco_opcode::buffer_atomic_add; op64 = aco_opcode::buffer_atomic_add_x2; break; case nir_intrinsic_global_atomic_imin: op32 = aco_opcode::buffer_atomic_smin; op64 = aco_opcode::buffer_atomic_smin_x2; break; case nir_intrinsic_global_atomic_umin: op32 = aco_opcode::buffer_atomic_umin; op64 = aco_opcode::buffer_atomic_umin_x2; break; case nir_intrinsic_global_atomic_imax: op32 = aco_opcode::buffer_atomic_smax; op64 = aco_opcode::buffer_atomic_smax_x2; break; case nir_intrinsic_global_atomic_umax: op32 = aco_opcode::buffer_atomic_umax; op64 = aco_opcode::buffer_atomic_umax_x2; break; case nir_intrinsic_global_atomic_and: op32 = aco_opcode::buffer_atomic_and; op64 = aco_opcode::buffer_atomic_and_x2; break; case nir_intrinsic_global_atomic_or: op32 = aco_opcode::buffer_atomic_or; op64 = aco_opcode::buffer_atomic_or_x2; break; case nir_intrinsic_global_atomic_xor: op32 = aco_opcode::buffer_atomic_xor; op64 = aco_opcode::buffer_atomic_xor_x2; break; case nir_intrinsic_global_atomic_exchange: op32 = aco_opcode::buffer_atomic_swap; op64 = aco_opcode::buffer_atomic_swap_x2; break; case nir_intrinsic_global_atomic_comp_swap: op32 = aco_opcode::buffer_atomic_cmpswap; op64 = aco_opcode::buffer_atomic_cmpswap_x2; break; default: unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions."); } Temp rsrc = get_gfx6_global_rsrc(bld, addr); aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64; aco_ptr mubuf{create_instruction(op, Format::MUBUF, 4, return_previous ? 1 : 0)}; mubuf->operands[0] = Operand(rsrc); mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1); mubuf->operands[2] = Operand(0u); mubuf->operands[3] = Operand(data); if (return_previous) mubuf->definitions[0] = Definition(dst); mubuf->glc = return_previous; mubuf->dlc = false; mubuf->offset = 0; mubuf->addr64 = addr.type() == RegType::vgpr; mubuf->disable_wqm = true; mubuf->sync = get_memory_sync_info(instr, storage_buffer, semantic_atomicrmw); ctx->program->needs_exact = true; ctx->block->instructions.emplace_back(std::move(mubuf)); } } sync_scope translate_nir_scope(nir_scope scope) { switch (scope) { case NIR_SCOPE_NONE: case NIR_SCOPE_INVOCATION: return scope_invocation; case NIR_SCOPE_SUBGROUP: return scope_subgroup; case NIR_SCOPE_WORKGROUP: return scope_workgroup; case NIR_SCOPE_QUEUE_FAMILY: return scope_queuefamily; case NIR_SCOPE_DEVICE: return scope_device; } unreachable("invalid scope"); } void emit_scoped_barrier(isel_context *ctx, nir_intrinsic_instr *instr) { Builder bld(ctx->program, ctx->block); unsigned semantics = 0; unsigned storage = 0; sync_scope mem_scope = translate_nir_scope(nir_intrinsic_memory_scope(instr)); sync_scope exec_scope = translate_nir_scope(nir_intrinsic_execution_scope(instr)); unsigned nir_storage = nir_intrinsic_memory_modes(instr); if (nir_storage & (nir_var_mem_ssbo | nir_var_mem_global)) storage |= storage_buffer | storage_image; //TODO: split this when NIR gets nir_var_mem_image if (ctx->shader->info.stage == MESA_SHADER_COMPUTE && (nir_storage & nir_var_mem_shared)) storage |= storage_shared; if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL && (nir_storage & nir_var_shader_out)) storage |= storage_shared; unsigned nir_semantics = nir_intrinsic_memory_semantics(instr); if (nir_semantics & NIR_MEMORY_ACQUIRE) semantics |= semantic_acquire | semantic_release; if (nir_semantics & NIR_MEMORY_RELEASE) semantics |= semantic_acquire | semantic_release; assert(!(nir_semantics & (NIR_MEMORY_MAKE_AVAILABLE | NIR_MEMORY_MAKE_VISIBLE))); bld.barrier(aco_opcode::p_barrier, memory_sync_info((storage_class)storage, (memory_semantics)semantics, mem_scope), exec_scope); } void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr) { // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read() Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa)); Builder bld(ctx->program, ctx->block); unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8; unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes; load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align); } void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr) { unsigned writemask = nir_intrinsic_write_mask(instr); Temp data = get_ssa_temp(ctx, instr->src[0].ssa); Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa)); unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8; unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes; store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align); } void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr) { unsigned offset = nir_intrinsic_base(instr); Builder bld(ctx->program, ctx->block); Operand m = load_lds_size_m0(bld); Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa)); Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa)); unsigned num_operands = 3; aco_opcode op32, op64, op32_rtn, op64_rtn; switch(instr->intrinsic) { case nir_intrinsic_shared_atomic_add: op32 = aco_opcode::ds_add_u32; op64 = aco_opcode::ds_add_u64; op32_rtn = aco_opcode::ds_add_rtn_u32; op64_rtn = aco_opcode::ds_add_rtn_u64; break; case nir_intrinsic_shared_atomic_imin: op32 = aco_opcode::ds_min_i32; op64 = aco_opcode::ds_min_i64; op32_rtn = aco_opcode::ds_min_rtn_i32; op64_rtn = aco_opcode::ds_min_rtn_i64; break; case nir_intrinsic_shared_atomic_umin: op32 = aco_opcode::ds_min_u32; op64 = aco_opcode::ds_min_u64; op32_rtn = aco_opcode::ds_min_rtn_u32; op64_rtn = aco_opcode::ds_min_rtn_u64; break; case nir_intrinsic_shared_atomic_imax: op32 = aco_opcode::ds_max_i32; op64 = aco_opcode::ds_max_i64; op32_rtn = aco_opcode::ds_max_rtn_i32; op64_rtn = aco_opcode::ds_max_rtn_i64; break; case nir_intrinsic_shared_atomic_umax: op32 = aco_opcode::ds_max_u32; op64 = aco_opcode::ds_max_u64; op32_rtn = aco_opcode::ds_max_rtn_u32; op64_rtn = aco_opcode::ds_max_rtn_u64; break; case nir_intrinsic_shared_atomic_and: op32 = aco_opcode::ds_and_b32; op64 = aco_opcode::ds_and_b64; op32_rtn = aco_opcode::ds_and_rtn_b32; op64_rtn = aco_opcode::ds_and_rtn_b64; break; case nir_intrinsic_shared_atomic_or: op32 = aco_opcode::ds_or_b32; op64 = aco_opcode::ds_or_b64; op32_rtn = aco_opcode::ds_or_rtn_b32; op64_rtn = aco_opcode::ds_or_rtn_b64; break; case nir_intrinsic_shared_atomic_xor: op32 = aco_opcode::ds_xor_b32; op64 = aco_opcode::ds_xor_b64; op32_rtn = aco_opcode::ds_xor_rtn_b32; op64_rtn = aco_opcode::ds_xor_rtn_b64; break; case nir_intrinsic_shared_atomic_exchange: op32 = aco_opcode::ds_write_b32; op64 = aco_opcode::ds_write_b64; op32_rtn = aco_opcode::ds_wrxchg_rtn_b32; op64_rtn = aco_opcode::ds_wrxchg_rtn_b64; break; case nir_intrinsic_shared_atomic_comp_swap: op32 = aco_opcode::ds_cmpst_b32; op64 = aco_opcode::ds_cmpst_b64; op32_rtn = aco_opcode::ds_cmpst_rtn_b32; op64_rtn = aco_opcode::ds_cmpst_rtn_b64; num_operands = 4; break; case nir_intrinsic_shared_atomic_fadd: op32 = aco_opcode::ds_add_f32; op32_rtn = aco_opcode::ds_add_rtn_f32; op64 = aco_opcode::num_opcodes; op64_rtn = aco_opcode::num_opcodes; break; default: unreachable("Unhandled shared atomic intrinsic"); } /* return the previous value if dest is ever used */ bool return_previous = false; nir_foreach_use_safe(use_src, &instr->dest.ssa) { return_previous = true; break; } nir_foreach_if_use_safe(use_src, &instr->dest.ssa) { return_previous = true; break; } aco_opcode op; if (data.size() == 1) { assert(instr->dest.ssa.bit_size == 32); op = return_previous ? op32_rtn : op32; } else { assert(instr->dest.ssa.bit_size == 64); op = return_previous ? op64_rtn : op64; } if (offset > 65535) { address = bld.vadd32(bld.def(v1), Operand(offset), address); offset = 0; } aco_ptr ds; ds.reset(create_instruction(op, Format::DS, num_operands, return_previous ? 1 : 0)); ds->operands[0] = Operand(address); ds->operands[1] = Operand(data); if (num_operands == 4) ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa)); ds->operands[num_operands - 1] = m; ds->offset0 = offset; if (return_previous) ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa)); ds->sync = memory_sync_info(storage_shared, semantic_atomicrmw); ctx->block->instructions.emplace_back(std::move(ds)); } Temp get_scratch_resource(isel_context *ctx) { Builder bld(ctx->program, ctx->block); Temp scratch_addr = ctx->program->private_segment_buffer; if (ctx->stage != compute_cs) scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u)); uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) | S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2); if (ctx->program->chip_class >= GFX10) { rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) | S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) | S_008F0C_RESOURCE_LEVEL(1); } else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */ rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32); } /* older generations need element size = 4 bytes. element size removed in GFX9 */ if (ctx->program->chip_class <= GFX8) rsrc_conf |= S_008F0C_ELEMENT_SIZE(1); return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf)); } void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) { Builder bld(ctx->program, ctx->block); Temp rsrc = get_scratch_resource(ctx); Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa)); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); LoadEmitInfo info = {Operand(offset), dst, instr->dest.ssa.num_components, instr->dest.ssa.bit_size / 8u, rsrc}; info.align_mul = nir_intrinsic_align_mul(instr); info.align_offset = nir_intrinsic_align_offset(instr); info.swizzle_component_size = ctx->program->chip_class <= GFX8 ? 4 : 0; info.sync = memory_sync_info(storage_scratch, semantic_private); info.soffset = ctx->program->scratch_offset; emit_scratch_load(ctx, bld, &info); } void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) { Builder bld(ctx->program, ctx->block); Temp rsrc = get_scratch_resource(ctx); Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa)); Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa)); unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8; unsigned writemask = widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes); unsigned write_count = 0; Temp write_datas[32]; unsigned offsets[32]; unsigned swizzle_component_size = ctx->program->chip_class <= GFX8 ? 4 : 16; split_buffer_store(ctx, instr, false, RegType::vgpr, data, writemask, swizzle_component_size, &write_count, write_datas, offsets); for (unsigned i = 0; i < write_count; i++) { aco_opcode op = get_buffer_store_op(false, write_datas[i].bytes()); Instruction *instr = bld.mubuf(op, rsrc, offset, ctx->program->scratch_offset, write_datas[i], offsets[i], true, true); static_cast(instr)->sync = memory_sync_info(storage_scratch, semantic_private); } } void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) { uint8_t log2_ps_iter_samples; if (ctx->program->info->ps.force_persample) { log2_ps_iter_samples = util_logbase2(ctx->options->key.fs.num_samples); } else { log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples; } /* The bit pattern matches that used by fixed function fragment * processing. */ static const unsigned ps_iter_masks[] = { 0xffff, /* not used */ 0x5555, 0x1111, 0x0101, 0x0001, }; assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks)); Builder bld(ctx->program, ctx->block); Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u)); Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples])); Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage)); } void visit_emit_vertex_with_counter(isel_context *ctx, nir_intrinsic_instr *instr) { Builder bld(ctx->program, ctx->block); unsigned stream = nir_intrinsic_stream_id(instr); Temp next_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa)); next_vertex = bld.v_mul_imm(bld.def(v1), next_vertex, 4u); nir_const_value *next_vertex_cv = nir_src_as_const_value(instr->src[0]); /* get GSVS ring */ Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_GSVS_GS * 16u)); unsigned num_components = ctx->program->info->gs.num_stream_output_components[stream]; assert(num_components); unsigned stride = 4u * num_components * ctx->shader->info.gs.vertices_out; unsigned stream_offset = 0; for (unsigned i = 0; i < stream; i++) { unsigned prev_stride = 4u * ctx->program->info->gs.num_stream_output_components[i] * ctx->shader->info.gs.vertices_out; stream_offset += prev_stride * ctx->program->wave_size; } /* Limit on the stride field for <= GFX7. */ assert(stride < (1 << 14)); Temp gsvs_dwords[4]; for (unsigned i = 0; i < 4; i++) gsvs_dwords[i] = bld.tmp(s1); bld.pseudo(aco_opcode::p_split_vector, Definition(gsvs_dwords[0]), Definition(gsvs_dwords[1]), Definition(gsvs_dwords[2]), Definition(gsvs_dwords[3]), gsvs_ring); if (stream_offset) { Temp stream_offset_tmp = bld.copy(bld.def(s1), Operand(stream_offset)); Temp carry = bld.tmp(s1); gsvs_dwords[0] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), gsvs_dwords[0], stream_offset_tmp); gsvs_dwords[1] = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(0u), bld.scc(carry)); } gsvs_dwords[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(S_008F04_STRIDE(stride))); gsvs_dwords[2] = bld.copy(bld.def(s1), Operand((uint32_t)ctx->program->wave_size)); gsvs_ring = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), gsvs_dwords[0], gsvs_dwords[1], gsvs_dwords[2], gsvs_dwords[3]); unsigned offset = 0; for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) { if (ctx->program->info->gs.output_streams[i] != stream) continue; for (unsigned j = 0; j < 4; j++) { if (!(ctx->program->info->gs.output_usage_mask[i] & (1 << j))) continue; if (ctx->outputs.mask[i] & (1 << j)) { Operand vaddr_offset = next_vertex_cv ? Operand(v1) : Operand(next_vertex); unsigned const_offset = (offset + (next_vertex_cv ? next_vertex_cv->u32 : 0u)) * 4u; if (const_offset >= 4096u) { if (vaddr_offset.isUndefined()) vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u)); else vaddr_offset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), vaddr_offset); const_offset %= 4096u; } aco_ptr mtbuf{create_instruction(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)}; mtbuf->operands[0] = Operand(gsvs_ring); mtbuf->operands[1] = vaddr_offset; mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->gs2vs_offset)); mtbuf->operands[3] = Operand(ctx->outputs.temps[i * 4u + j]); mtbuf->offen = !vaddr_offset.isUndefined(); mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32; mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT; mtbuf->offset = const_offset; mtbuf->glc = true; mtbuf->slc = true; mtbuf->sync = memory_sync_info(storage_vmem_output, semantic_can_reorder); bld.insert(std::move(mtbuf)); } offset += ctx->shader->info.gs.vertices_out; } /* outputs for the next vertex are undefined and keeping them around can * create invalid IR with control flow */ ctx->outputs.mask[i] = 0; } bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(false, true, stream)); } Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src) { Builder bld(ctx->program, ctx->block); if (cluster_size == 1) { return src; } if (op == nir_op_iand && cluster_size == 4) { //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val) Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src); return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp)); } else if (op == nir_op_ior && cluster_size == 4) { //subgroupClusteredOr(val, 4) -> wqm(val & exec) return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))); } else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) { //subgroupAnd(val) -> (exec & ~val) == 0 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp(); Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp)); return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond); } else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) { //subgroupOr(val) -> (val & exec) != 0 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp(); return bool_to_vector_condition(ctx, tmp); } else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) { //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)); tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp); tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp(); return bool_to_vector_condition(ctx, tmp); } else { //subgroupClustered{And,Or,Xor}(val, n) -> //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32 //cluster_offset = ~(n - 1) & lane_id //cluster_mask = ((1 << n) - 1) //subgroupClusteredAnd(): // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask //subgroupClusteredOr(): // return ((val & exec) >> cluster_offset) & cluster_mask != 0 //subgroupClusteredXor(): // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0 Temp lane_id = emit_mbcnt(ctx, bld.def(v1)); Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id); Temp tmp; if (op == nir_op_iand) tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)); else tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)); uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u; if (ctx->program->chip_class <= GFX7) tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset); else if (ctx->program->wave_size == 64) tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp); else tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp); tmp = emit_extract_vector(ctx, tmp, 0, v1); if (cluster_mask != 0xffffffff) tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp); Definition cmp_def = Definition(); if (op == nir_op_iand) { cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0); } else if (op == nir_op_ior) { cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0); } else if (op == nir_op_ixor) { tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u))); cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0); } cmp_def.setHint(vcc); return cmp_def.getTemp(); } } Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src) { Builder bld(ctx->program, ctx->block); //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0 Temp tmp; if (op == nir_op_iand) tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src); else tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm)); Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp); Temp lo = lohi.def(0).getTemp(); Temp hi = lohi.def(1).getTemp(); Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi)); Definition cmp_def = Definition(); if (op == nir_op_iand) cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0); else if (op == nir_op_ior) cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0); else if (op == nir_op_ixor) cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0); cmp_def.setHint(vcc); return cmp_def.getTemp(); } Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src) { Builder bld(ctx->program, ctx->block); //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val Temp tmp = emit_boolean_exclusive_scan(ctx, op, src); if (op == nir_op_iand) return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src); else if (op == nir_op_ior) return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src); else if (op == nir_op_ixor) return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src); assert(false); return Temp(); } void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src) { Builder bld(ctx->program, ctx->block); Definition dst(get_ssa_temp(ctx, &instr->dest.ssa)); if (src.regClass().type() == RegType::vgpr) { bld.pseudo(aco_opcode::p_as_uniform, dst, src); } else if (src.regClass() == s1) { bld.sop1(aco_opcode::s_mov_b32, dst, src); } else if (src.regClass() == s2) { bld.sop1(aco_opcode::s_mov_b64, dst, src); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } } void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2) { Builder bld(ctx->program, ctx->block); Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center); Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1); Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1); Temp ddx_1, ddx_2, ddy_1, ddy_2; uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0); uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1); uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2); /* Build DD X/Y */ if (ctx->program->chip_class >= GFX8) { Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0); ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1); ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2); Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0); ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1); ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2); } else { Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0); ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1); ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1); ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2); ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1); Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0); ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1); ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2); ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2); ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2); } /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */ aco_opcode mad = ctx->program->chip_class >= GFX10_3 ? aco_opcode::v_fma_f32 : aco_opcode::v_mad_f32; Temp tmp1 = bld.vop3(mad, bld.def(v1), ddx_1, pos1, p1); Temp tmp2 = bld.vop3(mad, bld.def(v1), ddx_2, pos1, p2); tmp1 = bld.vop3(mad, bld.def(v1), ddy_1, pos2, tmp1); tmp2 = bld.vop3(mad, bld.def(v1), ddy_2, pos2, tmp2); Temp wqm1 = bld.tmp(v1); emit_wqm(ctx, tmp1, wqm1, true); Temp wqm2 = bld.tmp(v1); emit_wqm(ctx, tmp2, wqm2, true); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2); return; } void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr) { Builder bld(ctx->program, ctx->block); switch(instr->intrinsic) { case nir_intrinsic_load_barycentric_sample: case nir_intrinsic_load_barycentric_pixel: case nir_intrinsic_load_barycentric_centroid: { glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr); Temp bary = Temp(0, s2); switch (mode) { case INTERP_MODE_SMOOTH: case INTERP_MODE_NONE: if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel) bary = get_arg(ctx, ctx->args->ac.persp_center); else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid) bary = ctx->persp_centroid; else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample) bary = get_arg(ctx, ctx->args->ac.persp_sample); break; case INTERP_MODE_NOPERSPECTIVE: if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel) bary = get_arg(ctx, ctx->args->ac.linear_center); else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid) bary = ctx->linear_centroid; else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample) bary = get_arg(ctx, ctx->args->ac.linear_sample); break; default: break; } Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); Temp p1 = emit_extract_vector(ctx, bary, 0, v1); Temp p2 = emit_extract_vector(ctx, bary, 1, v1); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(p1), Operand(p2)); emit_split_vector(ctx, dst, 2); break; } case nir_intrinsic_load_barycentric_model: { Temp model = get_arg(ctx, ctx->args->ac.pull_model); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); Temp p1 = emit_extract_vector(ctx, model, 0, v1); Temp p2 = emit_extract_vector(ctx, model, 1, v1); Temp p3 = emit_extract_vector(ctx, model, 2, v1); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(p1), Operand(p2), Operand(p3)); emit_split_vector(ctx, dst, 3); break; } case nir_intrinsic_load_barycentric_at_sample: { uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16; switch (ctx->options->key.fs.num_samples) { case 2: sample_pos_offset += 1 << 3; break; case 4: sample_pos_offset += 3 << 3; break; case 8: sample_pos_offset += 7 << 3; break; default: break; } Temp sample_pos; Temp addr = get_ssa_temp(ctx, instr->src[0].ssa); nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]); Temp private_segment_buffer = ctx->program->private_segment_buffer; //TODO: bounds checking? if (addr.type() == RegType::sgpr) { Operand offset; if (const_addr) { sample_pos_offset += const_addr->u32 << 3; offset = Operand(sample_pos_offset); } else if (ctx->options->chip_class >= GFX9) { offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset)); } else { offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u)); offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset)); } Operand off = bld.copy(bld.def(s1), Operand(offset)); sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, off); } else if (ctx->options->chip_class >= GFX9) { addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr); sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset); } else if (ctx->options->chip_class >= GFX7) { /* addr += private_segment_buffer + sample_pos_offset */ Temp tmp0 = bld.tmp(s1); Temp tmp1 = bld.tmp(s1); bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer); Definition scc_tmp = bld.def(s1, scc); tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset)); tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp())); addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr); Temp pck0 = bld.tmp(v1); Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp(); tmp1 = as_vgpr(ctx, tmp1); Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry); addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1); /* sample_pos = flat_load_dwordx2 addr */ sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1)); } else { assert(ctx->options->chip_class == GFX6); uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32); Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, Operand(0u), Operand(rsrc_conf)); addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr); addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), addr, Operand(0u)); sample_pos = bld.tmp(v2); aco_ptr load{create_instruction(aco_opcode::buffer_load_dwordx2, Format::MUBUF, 3, 1)}; load->definitions[0] = Definition(sample_pos); load->operands[0] = Operand(rsrc); load->operands[1] = Operand(addr); load->operands[2] = Operand(0u); load->offset = sample_pos_offset; load->offen = 0; load->addr64 = true; load->glc = false; load->dlc = false; load->disable_wqm = false; ctx->block->instructions.emplace_back(std::move(load)); } /* sample_pos -= 0.5 */ Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1)); Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1)); bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos); pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u)); pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u)); emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2); break; } case nir_intrinsic_load_barycentric_at_offset: { Temp offset = get_ssa_temp(ctx, instr->src[0].ssa); RegClass rc = RegClass(offset.type(), 1); Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc); bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset); emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2); break; } case nir_intrinsic_load_front_face: { bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc); break; } case nir_intrinsic_load_view_index: { if (ctx->stage & (sw_vs | sw_gs | sw_tcs | sw_tes)) { Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index))); break; } /* fallthrough */ } case nir_intrinsic_load_layer_id: { unsigned idx = nir_intrinsic_base(instr); bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0); break; } case nir_intrinsic_load_frag_coord: { emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4); break; } case nir_intrinsic_load_sample_pos: { Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]); Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]); bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u), posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u)); break; } case nir_intrinsic_load_tess_coord: visit_load_tess_coord(ctx, instr); break; case nir_intrinsic_load_interpolated_input: visit_load_interpolated_input(ctx, instr); break; case nir_intrinsic_store_output: visit_store_output(ctx, instr); break; case nir_intrinsic_load_input: case nir_intrinsic_load_input_vertex: visit_load_input(ctx, instr); break; case nir_intrinsic_load_output: visit_load_output(ctx, instr); break; case nir_intrinsic_load_per_vertex_input: visit_load_per_vertex_input(ctx, instr); break; case nir_intrinsic_load_per_vertex_output: visit_load_per_vertex_output(ctx, instr); break; case nir_intrinsic_store_per_vertex_output: visit_store_per_vertex_output(ctx, instr); break; case nir_intrinsic_load_ubo: visit_load_ubo(ctx, instr); break; case nir_intrinsic_load_push_constant: visit_load_push_constant(ctx, instr); break; case nir_intrinsic_load_constant: visit_load_constant(ctx, instr); break; case nir_intrinsic_vulkan_resource_index: visit_load_resource(ctx, instr); break; case nir_intrinsic_discard: visit_discard(ctx, instr); break; case nir_intrinsic_discard_if: visit_discard_if(ctx, instr); break; case nir_intrinsic_load_shared: visit_load_shared(ctx, instr); break; case nir_intrinsic_store_shared: visit_store_shared(ctx, instr); break; case nir_intrinsic_shared_atomic_add: case nir_intrinsic_shared_atomic_imin: case nir_intrinsic_shared_atomic_umin: case nir_intrinsic_shared_atomic_imax: case nir_intrinsic_shared_atomic_umax: case nir_intrinsic_shared_atomic_and: case nir_intrinsic_shared_atomic_or: case nir_intrinsic_shared_atomic_xor: case nir_intrinsic_shared_atomic_exchange: case nir_intrinsic_shared_atomic_comp_swap: case nir_intrinsic_shared_atomic_fadd: visit_shared_atomic(ctx, instr); break; case nir_intrinsic_image_deref_load: visit_image_load(ctx, instr); break; case nir_intrinsic_image_deref_store: visit_image_store(ctx, instr); break; case nir_intrinsic_image_deref_atomic_add: case nir_intrinsic_image_deref_atomic_umin: case nir_intrinsic_image_deref_atomic_imin: case nir_intrinsic_image_deref_atomic_umax: case nir_intrinsic_image_deref_atomic_imax: case nir_intrinsic_image_deref_atomic_and: case nir_intrinsic_image_deref_atomic_or: case nir_intrinsic_image_deref_atomic_xor: case nir_intrinsic_image_deref_atomic_exchange: case nir_intrinsic_image_deref_atomic_comp_swap: visit_image_atomic(ctx, instr); break; case nir_intrinsic_image_deref_size: visit_image_size(ctx, instr); break; case nir_intrinsic_load_ssbo: visit_load_ssbo(ctx, instr); break; case nir_intrinsic_store_ssbo: visit_store_ssbo(ctx, instr); break; case nir_intrinsic_load_global: visit_load_global(ctx, instr); break; case nir_intrinsic_store_global: visit_store_global(ctx, instr); break; case nir_intrinsic_global_atomic_add: case nir_intrinsic_global_atomic_imin: case nir_intrinsic_global_atomic_umin: case nir_intrinsic_global_atomic_imax: case nir_intrinsic_global_atomic_umax: case nir_intrinsic_global_atomic_and: case nir_intrinsic_global_atomic_or: case nir_intrinsic_global_atomic_xor: case nir_intrinsic_global_atomic_exchange: case nir_intrinsic_global_atomic_comp_swap: visit_global_atomic(ctx, instr); break; case nir_intrinsic_ssbo_atomic_add: case nir_intrinsic_ssbo_atomic_imin: case nir_intrinsic_ssbo_atomic_umin: case nir_intrinsic_ssbo_atomic_imax: case nir_intrinsic_ssbo_atomic_umax: case nir_intrinsic_ssbo_atomic_and: case nir_intrinsic_ssbo_atomic_or: case nir_intrinsic_ssbo_atomic_xor: case nir_intrinsic_ssbo_atomic_exchange: case nir_intrinsic_ssbo_atomic_comp_swap: visit_atomic_ssbo(ctx, instr); break; case nir_intrinsic_load_scratch: visit_load_scratch(ctx, instr); break; case nir_intrinsic_store_scratch: visit_store_scratch(ctx, instr); break; case nir_intrinsic_get_buffer_size: visit_get_buffer_size(ctx, instr); break; case nir_intrinsic_scoped_barrier: emit_scoped_barrier(ctx, instr); break; case nir_intrinsic_load_num_work_groups: { Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups))); emit_split_vector(ctx, dst, 3); break; } case nir_intrinsic_load_local_invocation_id: { Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids))); emit_split_vector(ctx, dst, 3); break; } case nir_intrinsic_load_work_group_id: { Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); struct ac_arg *args = ctx->args->ac.workgroup_ids; bld.pseudo(aco_opcode::p_create_vector, Definition(dst), args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u), args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u), args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u)); emit_split_vector(ctx, dst, 3); break; } case nir_intrinsic_load_local_invocation_index: { Temp id = emit_mbcnt(ctx, bld.def(v1)); /* The tg_size bits [6:11] contain the subgroup id, * we need this multiplied by the wave size, and then OR the thread id to it. */ if (ctx->program->wave_size == 64) { /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */ Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u), get_arg(ctx, ctx->args->ac.tg_size)); bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id); } else { /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */ Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16))); bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id); } break; } case nir_intrinsic_load_subgroup_id: { if (ctx->stage == compute_cs) { bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16))); } else { bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u)); } break; } case nir_intrinsic_load_subgroup_invocation: { emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa))); break; } case nir_intrinsic_load_num_subgroups: { if (ctx->stage == compute_cs) bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu), get_arg(ctx, ctx->args->ac.tg_size)); else bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u)); break; } case nir_intrinsic_ballot: { Temp src = get_ssa_temp(ctx, instr->src[0].ssa); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); Definition tmp = bld.def(dst.regClass()); Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass()); if (instr->src[0].ssa->bit_size == 1) { assert(src.regClass() == bld.lm); bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src); } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) { bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src); } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) { bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } if (dst.size() != bld.lm.size()) { /* Wave32 with ballot size set to 64 */ bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u)); } emit_wqm(ctx, tmp.getTemp(), dst); break; } case nir_intrinsic_shuffle: case nir_intrinsic_read_invocation: { Temp src = get_ssa_temp(ctx, instr->src[0].ssa); if (!nir_src_is_divergent(instr->src[0])) { emit_uniform_subgroup(ctx, instr, src); } else { Temp tid = get_ssa_temp(ctx, instr->src[1].ssa); if (instr->intrinsic == nir_intrinsic_read_invocation || !nir_src_is_divergent(instr->src[1])) tid = bld.as_uniform(tid); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); if (src.regClass() == v1b || src.regClass() == v2b) { Temp tmp = bld.tmp(v1); tmp = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), tmp); if (dst.type() == RegType::vgpr) bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(src.regClass() == v1b ? v3b : v2b), tmp); else bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp); } else if (src.regClass() == v1) { emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst); } else if (src.regClass() == v2) { Temp lo = bld.tmp(v1), hi = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src); lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo)); hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi)); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi); emit_split_vector(ctx, dst, 2); } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) { assert(src.regClass() == bld.lm); Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid); bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst); } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) { assert(src.regClass() == bld.lm); Temp tmp; if (ctx->program->chip_class <= GFX7) tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid); else if (ctx->program->wave_size == 64) tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src); else tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src); tmp = emit_extract_vector(ctx, tmp, 0, v1); tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp); emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } } break; } case nir_intrinsic_load_sample_id: { bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u)); break; } case nir_intrinsic_load_sample_mask_in: { visit_load_sample_mask_in(ctx, instr); break; } case nir_intrinsic_read_first_invocation: { Temp src = get_ssa_temp(ctx, instr->src[0].ssa); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); if (src.regClass() == v1b || src.regClass() == v2b || src.regClass() == v1) { emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src), dst); } else if (src.regClass() == v2) { Temp lo = bld.tmp(v1), hi = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src); lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo)); hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi)); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi); emit_split_vector(ctx, dst, 2); } else if (instr->dest.ssa.bit_size == 1) { assert(src.regClass() == bld.lm); Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm))); bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst); } else if (src.regClass() == s1) { bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src); } else if (src.regClass() == s2) { bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_intrinsic_vote_all: { Temp src = get_ssa_temp(ctx, instr->src[0].ssa); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); assert(src.regClass() == bld.lm); assert(dst.regClass() == bld.lm); Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp(); Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp)); bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond); break; } case nir_intrinsic_vote_any: { Temp src = get_ssa_temp(ctx, instr->src[0].ssa); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); assert(src.regClass() == bld.lm); assert(dst.regClass() == bld.lm); Temp tmp = bool_to_scalar_condition(ctx, src); bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst); break; } case nir_intrinsic_reduce: case nir_intrinsic_inclusive_scan: case nir_intrinsic_exclusive_scan: { Temp src = get_ssa_temp(ctx, instr->src[0].ssa); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); nir_op op = (nir_op) nir_intrinsic_reduction_op(instr); unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ? nir_intrinsic_cluster_size(instr) : 0; cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size)); if (!nir_src_is_divergent(instr->src[0]) && (op == nir_op_ior || op == nir_op_iand)) { emit_uniform_subgroup(ctx, instr, src); } else if (instr->dest.ssa.bit_size == 1) { if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin) op = nir_op_iand; else if (op == nir_op_iadd) op = nir_op_ixor; else if (op == nir_op_umax || op == nir_op_imax) op = nir_op_ior; assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor); switch (instr->intrinsic) { case nir_intrinsic_reduce: emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst); break; case nir_intrinsic_exclusive_scan: emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst); break; case nir_intrinsic_inclusive_scan: emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst); break; default: assert(false); } } else if (cluster_size == 1) { bld.copy(Definition(dst), src); } else { unsigned bit_size = instr->src[0].ssa->bit_size; src = emit_extract_vector(ctx, src, 0, RegClass::get(RegType::vgpr, bit_size / 8)); ReduceOp reduce_op; switch (op) { #define CASEI(name) case nir_op_##name: reduce_op = (bit_size == 32) ? name##32 : (bit_size == 16) ? name##16 : (bit_size == 8) ? name##8 : name##64; break; #define CASEF(name) case nir_op_##name: reduce_op = (bit_size == 32) ? name##32 : (bit_size == 16) ? name##16 : name##64; break; CASEI(iadd) CASEI(imul) CASEI(imin) CASEI(umin) CASEI(imax) CASEI(umax) CASEI(iand) CASEI(ior) CASEI(ixor) CASEF(fadd) CASEF(fmul) CASEF(fmin) CASEF(fmax) default: unreachable("unknown reduction op"); #undef CASEI #undef CASEF } aco_opcode aco_op; switch (instr->intrinsic) { case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break; case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break; case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break; default: unreachable("unknown reduce intrinsic"); } aco_ptr reduce{create_instruction(aco_op, Format::PSEUDO_REDUCTION, 3, 5)}; reduce->operands[0] = Operand(src); // filled in by aco_reduce_assign.cpp, used internally as part of the // reduce sequence assert(dst.size() == 1 || dst.size() == 2); reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear()); reduce->operands[2] = Operand(v1.as_linear()); Temp tmp_dst = bld.tmp(dst.regClass()); reduce->definitions[0] = Definition(tmp_dst); reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally reduce->definitions[2] = Definition(); reduce->definitions[3] = Definition(scc, s1); reduce->definitions[4] = Definition(); reduce->reduce_op = reduce_op; reduce->cluster_size = cluster_size; ctx->block->instructions.emplace_back(std::move(reduce)); emit_wqm(ctx, tmp_dst, dst); } break; } case nir_intrinsic_quad_broadcast: { Temp src = get_ssa_temp(ctx, instr->src[0].ssa); if (!nir_dest_is_divergent(instr->dest)) { emit_uniform_subgroup(ctx, instr, src); } else { Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); unsigned lane = nir_src_as_const_value(instr->src[1])->u32; uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane); if (instr->dest.ssa.bit_size == 1) { assert(src.regClass() == bld.lm); assert(dst.regClass() == bld.lm); uint32_t half_mask = 0x11111111u << lane; Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask)); Temp tmp = bld.tmp(bld.lm); bld.sop1(Builder::s_wqm, Definition(tmp), bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp, bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)))); emit_wqm(ctx, tmp, dst); } else if (instr->dest.ssa.bit_size == 8) { Temp tmp = bld.tmp(v1); if (ctx->program->chip_class >= GFX8) emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp); else emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), tmp); bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v3b), tmp); } else if (instr->dest.ssa.bit_size == 16) { Temp tmp = bld.tmp(v1); if (ctx->program->chip_class >= GFX8) emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp); else emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), tmp); bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp); } else if (instr->dest.ssa.bit_size == 32) { if (ctx->program->chip_class >= GFX8) emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst); else emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst); } else if (instr->dest.ssa.bit_size == 64) { Temp lo = bld.tmp(v1), hi = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src); if (ctx->program->chip_class >= GFX8) { lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl)); hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl)); } else { lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl)); hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl)); } bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi); emit_split_vector(ctx, dst, 2); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } } break; } case nir_intrinsic_quad_swap_horizontal: case nir_intrinsic_quad_swap_vertical: case nir_intrinsic_quad_swap_diagonal: case nir_intrinsic_quad_swizzle_amd: { Temp src = get_ssa_temp(ctx, instr->src[0].ssa); if (!nir_dest_is_divergent(instr->dest)) { emit_uniform_subgroup(ctx, instr, src); break; } uint16_t dpp_ctrl = 0; switch (instr->intrinsic) { case nir_intrinsic_quad_swap_horizontal: dpp_ctrl = dpp_quad_perm(1, 0, 3, 2); break; case nir_intrinsic_quad_swap_vertical: dpp_ctrl = dpp_quad_perm(2, 3, 0, 1); break; case nir_intrinsic_quad_swap_diagonal: dpp_ctrl = dpp_quad_perm(3, 2, 1, 0); break; case nir_intrinsic_quad_swizzle_amd: dpp_ctrl = nir_intrinsic_swizzle_mask(instr); break; default: break; } if (ctx->program->chip_class < GFX8) dpp_ctrl |= (1 << 15); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); if (instr->dest.ssa.bit_size == 1) { assert(src.regClass() == bld.lm); src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src); if (ctx->program->chip_class >= GFX8) src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl); else src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl); Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src); emit_wqm(ctx, tmp, dst); } else if (instr->dest.ssa.bit_size == 8) { Temp tmp = bld.tmp(v1); if (ctx->program->chip_class >= GFX8) emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp); else emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl), tmp); bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v3b), tmp); } else if (instr->dest.ssa.bit_size == 16) { Temp tmp = bld.tmp(v1); if (ctx->program->chip_class >= GFX8) emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp); else emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl), tmp); bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp); } else if (instr->dest.ssa.bit_size == 32) { Temp tmp; if (ctx->program->chip_class >= GFX8) tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl); else tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl); emit_wqm(ctx, tmp, dst); } else if (instr->dest.ssa.bit_size == 64) { Temp lo = bld.tmp(v1), hi = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src); if (ctx->program->chip_class >= GFX8) { lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl)); hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl)); } else { lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl)); hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl)); } bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi); emit_split_vector(ctx, dst, 2); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_intrinsic_masked_swizzle_amd: { Temp src = get_ssa_temp(ctx, instr->src[0].ssa); if (!nir_dest_is_divergent(instr->dest)) { emit_uniform_subgroup(ctx, instr, src); break; } Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); uint32_t mask = nir_intrinsic_swizzle_mask(instr); if (instr->dest.ssa.bit_size == 1) { assert(src.regClass() == bld.lm); src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src); src = emit_masked_swizzle(ctx, bld, src, mask); Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src); emit_wqm(ctx, tmp, dst); } else if (dst.regClass() == v1b) { Temp tmp = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, src, mask)); emit_extract_vector(ctx, tmp, 0, dst); } else if (dst.regClass() == v2b) { Temp tmp = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, src, mask)); emit_extract_vector(ctx, tmp, 0, dst); } else if (dst.regClass() == v1) { emit_wqm(ctx, emit_masked_swizzle(ctx, bld, src, mask), dst); } else if (dst.regClass() == v2) { Temp lo = bld.tmp(v1), hi = bld.tmp(v1); bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src); lo = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, lo, mask)); hi = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, hi, mask)); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi); emit_split_vector(ctx, dst, 2); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_intrinsic_write_invocation_amd: { Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa)); Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa)); Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa)); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); if (dst.regClass() == v1) { /* src2 is ignored for writelane. RA assigns the same reg for dst */ emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst); } else if (dst.regClass() == v2) { Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1); Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1); bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src); bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val); Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi)); Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi)); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi); emit_split_vector(ctx, dst, 2); } else { fprintf(stderr, "Unimplemented NIR instr bit size: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); } break; } case nir_intrinsic_mbcnt_amd: { Temp src = get_ssa_temp(ctx, instr->src[0].ssa); RegClass rc = RegClass(src.type(), 1); Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc); bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi)); emit_wqm(ctx, wqm_tmp, dst); break; } case nir_intrinsic_load_helper_invocation: { Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); bld.pseudo(aco_opcode::p_load_helper, Definition(dst)); ctx->block->kind |= block_kind_needs_lowering; ctx->program->needs_exact = true; break; } case nir_intrinsic_is_helper_invocation: { Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); bld.pseudo(aco_opcode::p_is_helper, Definition(dst)); ctx->block->kind |= block_kind_needs_lowering; ctx->program->needs_exact = true; break; } case nir_intrinsic_demote: bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u)); if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent) ctx->cf_info.exec_potentially_empty_discard = true; ctx->block->kind |= block_kind_uses_demote; ctx->program->needs_exact = true; break; case nir_intrinsic_demote_if: { Temp src = get_ssa_temp(ctx, instr->src[0].ssa); assert(src.regClass() == bld.lm); Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)); bld.pseudo(aco_opcode::p_demote_to_helper, cond); if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent) ctx->cf_info.exec_potentially_empty_discard = true; ctx->block->kind |= block_kind_uses_demote; ctx->program->needs_exact = true; break; } case nir_intrinsic_first_invocation: { emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)), get_ssa_temp(ctx, &instr->dest.ssa)); break; } case nir_intrinsic_shader_clock: { Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); if (nir_intrinsic_memory_scope(instr) == NIR_SCOPE_SUBGROUP && ctx->options->chip_class >= GFX10_3) { /* "((size - 1) << 11) | register" (SHADER_CYCLES is encoded as register 29) */ Temp clock = bld.sopk(aco_opcode::s_getreg_b32, bld.def(s1), ((20 - 1) << 11) | 29); bld.pseudo(aco_opcode::p_create_vector, Definition(dst), clock, Operand(0u)); } else { aco_opcode opcode = nir_intrinsic_memory_scope(instr) == NIR_SCOPE_DEVICE ? aco_opcode::s_memrealtime : aco_opcode::s_memtime; bld.smem(opcode, Definition(dst), memory_sync_info(0, semantic_volatile)); } emit_split_vector(ctx, dst, 2); break; } case nir_intrinsic_load_vertex_id_zero_base: { Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id)); break; } case nir_intrinsic_load_first_vertex: { Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex)); break; } case nir_intrinsic_load_base_instance: { Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance)); break; } case nir_intrinsic_load_instance_id: { Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id)); break; } case nir_intrinsic_load_draw_id: { Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id)); break; } case nir_intrinsic_load_invocation_id: { Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); if (ctx->shader->info.stage == MESA_SHADER_GEOMETRY) { if (ctx->options->chip_class >= GFX10) bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand(127u), get_arg(ctx, ctx->args->ac.gs_invocation_id)); else bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_invocation_id)); } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) { bld.vop3(aco_opcode::v_bfe_u32, Definition(dst), get_arg(ctx, ctx->args->ac.tcs_rel_ids), Operand(8u), Operand(5u)); } else { unreachable("Unsupported stage for load_invocation_id"); } break; } case nir_intrinsic_load_primitive_id: { Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); switch (ctx->shader->info.stage) { case MESA_SHADER_GEOMETRY: bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_prim_id)); break; case MESA_SHADER_TESS_CTRL: bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tcs_patch_id)); break; case MESA_SHADER_TESS_EVAL: bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tes_patch_id)); break; default: unreachable("Unimplemented shader stage for nir_intrinsic_load_primitive_id"); } break; } case nir_intrinsic_load_patch_vertices_in: { assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL || ctx->shader->info.stage == MESA_SHADER_TESS_EVAL); Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); bld.copy(Definition(dst), Operand(ctx->args->options->key.tcs.input_vertices)); break; } case nir_intrinsic_emit_vertex_with_counter: { visit_emit_vertex_with_counter(ctx, instr); break; } case nir_intrinsic_end_primitive_with_counter: { unsigned stream = nir_intrinsic_stream_id(instr); bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(true, false, stream)); break; } case nir_intrinsic_set_vertex_count: { /* unused, the HW keeps track of this for us */ break; } default: fprintf(stderr, "Unimplemented intrinsic instr: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); abort(); break; } } void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr, Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr, enum glsl_base_type *stype) { nir_deref_instr *texture_deref_instr = NULL; nir_deref_instr *sampler_deref_instr = NULL; int plane = -1; for (unsigned i = 0; i < instr->num_srcs; i++) { switch (instr->src[i].src_type) { case nir_tex_src_texture_deref: texture_deref_instr = nir_src_as_deref(instr->src[i].src); break; case nir_tex_src_sampler_deref: sampler_deref_instr = nir_src_as_deref(instr->src[i].src); break; case nir_tex_src_plane: plane = nir_src_as_int(instr->src[i].src); break; default: break; } } *stype = glsl_get_sampler_result_type(texture_deref_instr->type); if (!sampler_deref_instr) sampler_deref_instr = texture_deref_instr; if (plane >= 0) { assert(instr->op != nir_texop_txf_ms && instr->op != nir_texop_samples_identical); assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF); *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false); } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) { *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false); } else if (instr->op == nir_texop_fragment_mask_fetch) { *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false); } else { *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false); } if (samp_ptr) { *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false); if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) { /* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */ Builder bld(ctx->program, ctx->block); /* to avoid unnecessary moves, we split and recombine sampler and image */ Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)}; Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)}; bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]), Definition(img[2]), Definition(img[3]), Definition(img[4]), Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr); bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]), Definition(samp[2]), Definition(samp[3]), *samp_ptr); samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]); *res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8), img[0], img[1], img[2], img[3], img[4], img[5], img[6], img[7]); *samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), samp[0], samp[1], samp[2], samp[3]); } } if (fmask_ptr && (instr->op == nir_texop_txf_ms || instr->op == nir_texop_samples_identical)) *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false); } void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv, Temp *out_ma, Temp *out_sc, Temp *out_tc) { Builder bld(ctx->program, ctx->block); Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1); Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1); Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1); Operand neg_one(0xbf800000u); Operand one(0x3f800000u); Operand two(0x40000000u); Operand four(0x40800000u); Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma); Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive); Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma); Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id); Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id); is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z); Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y); // select sc Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x); Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z), one, is_ma_y); *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn); // select tc tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y); sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y); *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn); // select ma tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y), deriv_z, is_ma_z); tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp); *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp); } void prepare_cube_coords(isel_context *ctx, std::vector& coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array) { Builder bld(ctx->program, ctx->block); Temp ma, tc, sc, id; aco_opcode madak = ctx->program->chip_class >= GFX10_3 ? aco_opcode::v_fmaak_f32 : aco_opcode::v_madak_f32; aco_opcode madmk = ctx->program->chip_class >= GFX10_3 ? aco_opcode::v_fmamk_f32 : aco_opcode::v_madmk_f32; if (is_array) { coords[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[3]); // see comment in ac_prepare_cube_coords() if (ctx->options->chip_class <= GFX8) coords[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coords[3]); } ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coords[0], coords[1], coords[2]); aco_ptr vop3a{create_instruction(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)}; vop3a->operands[0] = Operand(ma); vop3a->abs[0] = true; Temp invma = bld.tmp(v1); vop3a->definitions[0] = Definition(invma); ctx->block->instructions.emplace_back(std::move(vop3a)); sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coords[0], coords[1], coords[2]); if (!is_deriv) sc = bld.vop2(madak, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/)); tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coords[0], coords[1], coords[2]); if (!is_deriv) tc = bld.vop2(madak, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/)); id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coords[0], coords[1], coords[2]); if (is_deriv) { sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma); tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma); for (unsigned i = 0; i < 2; i++) { // see comment in ac_prepare_cube_coords() Temp deriv_ma; Temp deriv_sc, deriv_tc; build_cube_select(ctx, ma, id, i ? *ddy : *ddx, &deriv_ma, &deriv_sc, &deriv_tc); deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma); Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma), bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc)); Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma), bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc)); *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y); } sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc); tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc); } if (is_array) id = bld.vop2(madmk, bld.def(v1), coords[3], id, Operand(0x41000000u/*8.0*/)); coords.resize(3); coords[0] = sc; coords[1] = tc; coords[2] = id; } void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4]) { if (vec->parent_instr->type != nir_instr_type_alu) return; nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr); if (vec_instr->op != nir_op_vec(vec->num_components)) return; for (unsigned i = 0; i < vec->num_components; i++) { cv[i] = vec_instr->src[i].swizzle[0] == 0 ? nir_src_as_const_value(vec_instr->src[i].src) : NULL; } } void visit_tex(isel_context *ctx, nir_tex_instr *instr) { Builder bld(ctx->program, ctx->block); bool has_bias = false, has_lod = false, level_zero = false, has_compare = false, has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false, has_clamped_lod = false; Temp resource, sampler, fmask_ptr, bias = Temp(), compare = Temp(), sample_index = Temp(), lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp(), clamped_lod = Temp(); std::vector coords; std::vector derivs; nir_const_value *sample_index_cv = NULL; nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL}; enum glsl_base_type stype; tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype); bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 && (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT); bool tg4_integer_cube_workaround = tg4_integer_workarounds && instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE; for (unsigned i = 0; i < instr->num_srcs; i++) { switch (instr->src[i].src_type) { case nir_tex_src_coord: { Temp coord = get_ssa_temp(ctx, instr->src[i].src.ssa); for (unsigned i = 0; i < coord.size(); i++) coords.emplace_back(emit_extract_vector(ctx, coord, i, v1)); break; } case nir_tex_src_bias: bias = get_ssa_temp(ctx, instr->src[i].src.ssa); has_bias = true; break; case nir_tex_src_lod: { nir_const_value *val = nir_src_as_const_value(instr->src[i].src); if (val && val->f32 <= 0.0) { level_zero = true; } else { lod = get_ssa_temp(ctx, instr->src[i].src.ssa); has_lod = true; } break; } case nir_tex_src_min_lod: clamped_lod = get_ssa_temp(ctx, instr->src[i].src.ssa); has_clamped_lod = true; break; case nir_tex_src_comparator: if (instr->is_shadow) { compare = get_ssa_temp(ctx, instr->src[i].src.ssa); has_compare = true; } break; case nir_tex_src_offset: offset = get_ssa_temp(ctx, instr->src[i].src.ssa); get_const_vec(instr->src[i].src.ssa, const_offset); has_offset = true; break; case nir_tex_src_ddx: ddx = get_ssa_temp(ctx, instr->src[i].src.ssa); has_ddx = true; break; case nir_tex_src_ddy: ddy = get_ssa_temp(ctx, instr->src[i].src.ssa); has_ddy = true; break; case nir_tex_src_ms_index: sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa); sample_index_cv = nir_src_as_const_value(instr->src[i].src); has_sample_index = true; break; case nir_tex_src_texture_offset: case nir_tex_src_sampler_offset: default: break; } } if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true); if (instr->op == nir_texop_texture_samples) { Temp dword3 = emit_extract_vector(ctx, resource, 3, s1); Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16)); Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2); Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */)); Operand default_sample = Operand(1u); if (ctx->options->robust_buffer_access) { /* Extract the second dword of the descriptor, if it's * all zero, then it's a null descriptor. */ Temp dword1 = emit_extract_vector(ctx, resource, 1, s1); Temp is_non_null_descriptor = bld.sopc(aco_opcode::s_cmp_gt_u32, bld.def(s1, scc), dword1, Operand(0u)); default_sample = Operand(is_non_null_descriptor); } Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u)); bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), samples, default_sample, bld.scc(is_msaa)); return; } if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) { aco_ptr tmp_instr; Temp acc, pack = Temp(); uint32_t pack_const = 0; for (unsigned i = 0; i < offset.size(); i++) { if (!const_offset[i]) continue; pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i); } if (offset.type() == RegType::sgpr) { for (unsigned i = 0; i < offset.size(); i++) { if (const_offset[i]) continue; acc = emit_extract_vector(ctx, offset, i, s1); acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu)); if (i) { acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i)); } if (pack == Temp()) { pack = acc; } else { pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc); } } if (pack_const && pack != Temp()) pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack); } else { for (unsigned i = 0; i < offset.size(); i++) { if (const_offset[i]) continue; acc = emit_extract_vector(ctx, offset, i, v1); acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc); if (i) { acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc); } if (pack == Temp()) { pack = acc; } else { pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc); } } if (pack_const && pack != Temp()) pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack); } if (pack_const && pack == Temp()) offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const)); else if (pack == Temp()) has_offset = false; else offset = pack; } if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components) prepare_cube_coords(ctx, coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod); /* pack derivatives */ if (has_ddx || has_ddy) { if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) { assert(has_ddx && has_ddy && ddx.size() == 1 && ddy.size() == 1); Temp zero = bld.copy(bld.def(v1), Operand(0u)); derivs = {ddx, zero, ddy, zero}; } else { for (unsigned i = 0; has_ddx && i < ddx.size(); i++) derivs.emplace_back(emit_extract_vector(ctx, ddx, i, v1)); for (unsigned i = 0; has_ddy && i < ddy.size(); i++) derivs.emplace_back(emit_extract_vector(ctx, ddy, i, v1)); } has_derivs = true; } if (instr->coord_components > 1 && instr->sampler_dim == GLSL_SAMPLER_DIM_1D && instr->is_array && instr->op != nir_texop_txf) coords[1] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[1]); if (instr->coord_components > 2 && (instr->sampler_dim == GLSL_SAMPLER_DIM_2D || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) && instr->is_array && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms && instr->op != nir_texop_fragment_fetch && instr->op != nir_texop_fragment_mask_fetch) coords[2] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[2]); if (ctx->options->chip_class == GFX9 && instr->sampler_dim == GLSL_SAMPLER_DIM_1D && instr->op != nir_texop_lod && instr->coord_components) { assert(coords.size() > 0 && coords.size() < 3); coords.insert(std::next(coords.begin()), bld.copy(bld.def(v1), instr->op == nir_texop_txf ? Operand((uint32_t) 0) : Operand((uint32_t) 0x3f000000))); } bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array); if (instr->op == nir_texop_samples_identical) resource = fmask_ptr; else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) && instr->op != nir_texop_txs && instr->op != nir_texop_fragment_fetch && instr->op != nir_texop_fragment_mask_fetch) { assert(has_sample_index); Operand op(sample_index); if (sample_index_cv) op = Operand(sample_index_cv->u32); sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr); } if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) { for (unsigned i = 0; i < std::min(offset.size(), instr->coord_components); i++) { Temp off = emit_extract_vector(ctx, offset, i, v1); coords[i] = bld.vadd32(bld.def(v1), coords[i], off); } has_offset = false; } /* Build tex instruction */ unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa); unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array) : 0; Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); Temp tmp_dst = dst; /* gather4 selects the component by dmask and always returns vec4 */ if (instr->op == nir_texop_tg4) { assert(instr->dest.ssa.num_components == 4); if (instr->is_shadow) dmask = 1; else dmask = 1 << instr->component; if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr) tmp_dst = bld.tmp(v4); } else if (instr->op == nir_texop_samples_identical) { tmp_dst = bld.tmp(v1); } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) { tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask))); } aco_ptr tex; if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) { if (!has_lod) lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u)); bool div_by_6 = instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->is_array && (dmask & (1 << 2)); if (tmp_dst.id() == dst.id() && div_by_6) tmp_dst = bld.tmp(tmp_dst.regClass()); tex.reset(create_instruction(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1)); tex->operands[0] = Operand(resource); tex->operands[1] = Operand(s4); /* no sampler */ tex->operands[2] = Operand(as_vgpr(ctx,lod)); if (ctx->options->chip_class == GFX9 && instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_1D && instr->is_array) { tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1); } else if (instr->op == nir_texop_query_levels) { tex->dmask = 1 << 3; } else { tex->dmask = dmask; } tex->da = da; tex->definitions[0] = Definition(tmp_dst); tex->dim = dim; ctx->block->instructions.emplace_back(std::move(tex)); if (div_by_6) { /* divide 3rd value by 6 by multiplying with magic number */ emit_split_vector(ctx, tmp_dst, tmp_dst.size()); Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB)); Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c); assert(instr->dest.ssa.num_components == 3); Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3); tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), emit_extract_vector(ctx, tmp_dst, 0, v1), emit_extract_vector(ctx, tmp_dst, 1, v1), by_6); } expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask); return; } Temp tg4_compare_cube_wa64 = Temp(); if (tg4_integer_workarounds) { tex.reset(create_instruction(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1)); tex->operands[0] = Operand(resource); tex->operands[1] = Operand(s4); /* no sampler */ tex->operands[2] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u)); tex->dim = dim; tex->dmask = 0x3; tex->da = da; Temp size = bld.tmp(v2); tex->definitions[0] = Definition(size); ctx->block->instructions.emplace_back(std::move(tex)); emit_split_vector(ctx, size, size.size()); Temp half_texel[2]; for (unsigned i = 0; i < 2; i++) { half_texel[i] = emit_extract_vector(ctx, size, i, v1); half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]); half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]); half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]); } Temp new_coords[2] = { bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[0], half_texel[0]), bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[1], half_texel[1]) }; if (tg4_integer_cube_workaround) { // see comment in ac_nir_to_llvm.c's lower_gather4_integer() Temp desc[resource.size()]; aco_ptr split{create_instruction(aco_opcode::p_split_vector, Format::PSEUDO, 1, resource.size())}; split->operands[0] = Operand(resource); for (unsigned i = 0; i < resource.size(); i++) { desc[i] = bld.tmp(s1); split->definitions[i] = Definition(desc[i]); } ctx->block->instructions.emplace_back(std::move(split)); Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16))); Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt, Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8)); Temp nfmt; if (stype == GLSL_TYPE_UINT) { nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED), Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT), bld.scc(compare_cube_wa)); } else { nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED), Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT), bld.scc(compare_cube_wa)); } tg4_compare_cube_wa64 = bld.tmp(bld.lm); bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64); nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u)); desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1], Operand((uint32_t)C_008F14_NUM_FORMAT)); desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt); aco_ptr vec{create_instruction(aco_opcode::p_create_vector, Format::PSEUDO, resource.size(), 1)}; for (unsigned i = 0; i < resource.size(); i++) vec->operands[i] = Operand(desc[i]); resource = bld.tmp(resource.regClass()); vec->definitions[0] = Definition(resource); ctx->block->instructions.emplace_back(std::move(vec)); new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), new_coords[0], coords[0], tg4_compare_cube_wa64); new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), new_coords[1], coords[1], tg4_compare_cube_wa64); } coords[0] = new_coords[0]; coords[1] = new_coords[1]; } if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) { //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe() assert(coords.size() == 1); unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa)); aco_opcode op; switch (last_bit) { case 1: op = aco_opcode::buffer_load_format_x; break; case 2: op = aco_opcode::buffer_load_format_xy; break; case 3: op = aco_opcode::buffer_load_format_xyz; break; case 4: op = aco_opcode::buffer_load_format_xyzw; break; default: unreachable("Tex instruction loads more than 4 components."); } /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */ if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr) tmp_dst = dst; else tmp_dst = bld.tmp(RegType::vgpr, last_bit); aco_ptr mubuf{create_instruction(op, Format::MUBUF, 3, 1)}; mubuf->operands[0] = Operand(resource); mubuf->operands[1] = Operand(coords[0]); mubuf->operands[2] = Operand((uint32_t) 0); mubuf->definitions[0] = Definition(tmp_dst); mubuf->idxen = true; ctx->block->instructions.emplace_back(std::move(mubuf)); expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1); return; } /* gather MIMG address components */ std::vector args; if (has_offset) args.emplace_back(offset); if (has_bias) args.emplace_back(bias); if (has_compare) args.emplace_back(compare); if (has_derivs) args.insert(args.end(), derivs.begin(), derivs.end()); args.insert(args.end(), coords.begin(), coords.end()); if (has_sample_index) args.emplace_back(sample_index); if (has_lod) args.emplace_back(lod); if (has_clamped_lod) args.emplace_back(clamped_lod); Temp arg = bld.tmp(RegClass(RegType::vgpr, args.size())); aco_ptr vec{create_instruction(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)}; vec->definitions[0] = Definition(arg); for (unsigned i = 0; i < args.size(); i++) vec->operands[i] = Operand(args[i]); ctx->block->instructions.emplace_back(std::move(vec)); if (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms || instr->op == nir_texop_samples_identical || instr->op == nir_texop_fragment_fetch || instr->op == nir_texop_fragment_mask_fetch) { aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip; tex.reset(create_instruction(op, Format::MIMG, 3, 1)); tex->operands[0] = Operand(resource); tex->operands[1] = Operand(s4); /* no sampler */ tex->operands[2] = Operand(arg); tex->dim = dim; tex->dmask = dmask; tex->unrm = true; tex->da = da; tex->definitions[0] = Definition(tmp_dst); ctx->block->instructions.emplace_back(std::move(tex)); if (instr->op == nir_texop_samples_identical) { assert(dmask == 1 && dst.regClass() == v1); assert(dst.id() != tmp_dst.id()); Temp tmp = bld.tmp(bld.lm); bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc); bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp); } else { expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask); } return; } // TODO: would be better to do this by adding offsets, but needs the opcodes ordered. aco_opcode opcode = aco_opcode::image_sample; if (has_offset) { /* image_sample_*_o */ if (has_clamped_lod) { if (has_compare) { opcode = aco_opcode::image_sample_c_cl_o; if (has_derivs) opcode = aco_opcode::image_sample_c_d_cl_o; if (has_bias) opcode = aco_opcode::image_sample_c_b_cl_o; } else { opcode = aco_opcode::image_sample_cl_o; if (has_derivs) opcode = aco_opcode::image_sample_d_cl_o; if (has_bias) opcode = aco_opcode::image_sample_b_cl_o; } } else if (has_compare) { opcode = aco_opcode::image_sample_c_o; if (has_derivs) opcode = aco_opcode::image_sample_c_d_o; if (has_bias) opcode = aco_opcode::image_sample_c_b_o; if (level_zero) opcode = aco_opcode::image_sample_c_lz_o; if (has_lod) opcode = aco_opcode::image_sample_c_l_o; } else { opcode = aco_opcode::image_sample_o; if (has_derivs) opcode = aco_opcode::image_sample_d_o; if (has_bias) opcode = aco_opcode::image_sample_b_o; if (level_zero) opcode = aco_opcode::image_sample_lz_o; if (has_lod) opcode = aco_opcode::image_sample_l_o; } } else if (has_clamped_lod) { /* image_sample_*_cl */ if (has_compare) { opcode = aco_opcode::image_sample_c_cl; if (has_derivs) opcode = aco_opcode::image_sample_c_d_cl; if (has_bias) opcode = aco_opcode::image_sample_c_b_cl; } else { opcode = aco_opcode::image_sample_cl; if (has_derivs) opcode = aco_opcode::image_sample_d_cl; if (has_bias) opcode = aco_opcode::image_sample_b_cl; } } else { /* no offset */ if (has_compare) { opcode = aco_opcode::image_sample_c; if (has_derivs) opcode = aco_opcode::image_sample_c_d; if (has_bias) opcode = aco_opcode::image_sample_c_b; if (level_zero) opcode = aco_opcode::image_sample_c_lz; if (has_lod) opcode = aco_opcode::image_sample_c_l; } else { opcode = aco_opcode::image_sample; if (has_derivs) opcode = aco_opcode::image_sample_d; if (has_bias) opcode = aco_opcode::image_sample_b; if (level_zero) opcode = aco_opcode::image_sample_lz; if (has_lod) opcode = aco_opcode::image_sample_l; } } if (instr->op == nir_texop_tg4) { if (has_offset) { /* image_gather4_*_o */ if (has_compare) { opcode = aco_opcode::image_gather4_c_lz_o; if (has_lod) opcode = aco_opcode::image_gather4_c_l_o; if (has_bias) opcode = aco_opcode::image_gather4_c_b_o; } else { opcode = aco_opcode::image_gather4_lz_o; if (has_lod) opcode = aco_opcode::image_gather4_l_o; if (has_bias) opcode = aco_opcode::image_gather4_b_o; } } else { if (has_compare) { opcode = aco_opcode::image_gather4_c_lz; if (has_lod) opcode = aco_opcode::image_gather4_c_l; if (has_bias) opcode = aco_opcode::image_gather4_c_b; } else { opcode = aco_opcode::image_gather4_lz; if (has_lod) opcode = aco_opcode::image_gather4_l; if (has_bias) opcode = aco_opcode::image_gather4_b; } } } else if (instr->op == nir_texop_lod) { opcode = aco_opcode::image_get_lod; } /* we don't need the bias, sample index, compare value or offset to be * computed in WQM but if the p_create_vector copies the coordinates, then it * needs to be in WQM */ if (ctx->stage == fragment_fs && !has_derivs && !has_lod && !level_zero && instr->sampler_dim != GLSL_SAMPLER_DIM_MS && instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS) arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true); tex.reset(create_instruction(opcode, Format::MIMG, 3, 1)); tex->operands[0] = Operand(resource); tex->operands[1] = Operand(sampler); tex->operands[2] = Operand(arg); tex->dim = dim; tex->dmask = dmask; tex->da = da; tex->definitions[0] = Definition(tmp_dst); ctx->block->instructions.emplace_back(std::move(tex)); if (tg4_integer_cube_workaround) { assert(tmp_dst.id() != dst.id()); assert(tmp_dst.size() == dst.size() && dst.size() == 4); emit_split_vector(ctx, tmp_dst, tmp_dst.size()); Temp val[4]; for (unsigned i = 0; i < dst.size(); i++) { val[i] = emit_extract_vector(ctx, tmp_dst, i, v1); Temp cvt_val; if (stype == GLSL_TYPE_UINT) cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]); else cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]); val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64); } Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4); tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), val[0], val[1], val[2], val[3]); } unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask; expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask); } Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa, RegClass rc, bool logical) { Temp tmp = get_ssa_temp(ctx, ssa); if (ssa->parent_instr->type == nir_instr_type_ssa_undef) { return Operand(rc); } else if (logical && ssa->bit_size == 1 && ssa->parent_instr->type == nir_instr_type_load_const) { if (ctx->program->wave_size == 64) return Operand(nir_instr_as_load_const(ssa->parent_instr)->value[0].b ? UINT64_MAX : 0u); else return Operand(nir_instr_as_load_const(ssa->parent_instr)->value[0].b ? UINT32_MAX : 0u); } else { return Operand(tmp); } } void visit_phi(isel_context *ctx, nir_phi_instr *instr) { aco_ptr phi; Temp dst = get_ssa_temp(ctx, &instr->dest.ssa); assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask); bool logical = !dst.is_linear() || nir_dest_is_divergent(instr->dest); logical |= ctx->block->kind & block_kind_merge; aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi; /* we want a sorted list of sources, since the predecessor list is also sorted */ std::map phi_src; nir_foreach_phi_src(src, instr) phi_src[src->pred->index] = src->src.ssa; std::vector& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds; unsigned num_operands = 0; Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size()) + 1]; unsigned num_defined = 0; unsigned cur_pred_idx = 0; for (std::pair src : phi_src) { if (cur_pred_idx < preds.size()) { /* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */ unsigned block = ctx->cf_info.nir_to_aco[src.first]; unsigned skipped = 0; while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block) skipped++; if (cur_pred_idx + skipped < preds.size()) { for (unsigned i = 0; i < skipped; i++) operands[num_operands++] = Operand(dst.regClass()); cur_pred_idx += skipped; } else { continue; } } /* Handle missing predecessors at the end. This shouldn't happen with loop * headers and we can't ignore these sources for loop header phis. */ if (!(ctx->block->kind & block_kind_loop_header) && cur_pred_idx >= preds.size()) continue; cur_pred_idx++; Operand op = get_phi_operand(ctx, src.second, dst.regClass(), logical); operands[num_operands++] = op; num_defined += !op.isUndefined(); } /* handle block_kind_continue_or_break at loop exit blocks */ while (cur_pred_idx++ < preds.size()) operands[num_operands++] = Operand(dst.regClass()); /* If the loop ends with a break, still add a linear continue edge in case * that break is divergent or continue_or_break is used. We'll either remove * this operand later in visit_loop() if it's not necessary or replace the * undef with something correct. */ if (!logical && ctx->block->kind & block_kind_loop_header) { nir_loop *loop = nir_cf_node_as_loop(instr->instr.block->cf_node.parent); nir_block *last = nir_loop_last_block(loop); if (last->successors[0] != instr->instr.block) operands[num_operands++] = Operand(RegClass()); } if (num_defined == 0) { Builder bld(ctx->program, ctx->block); if (dst.regClass() == s1) { bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u)); } else if (dst.regClass() == v1) { bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u)); } else { aco_ptr vec{create_instruction(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)}; for (unsigned i = 0; i < dst.size(); i++) vec->operands[i] = Operand(0u); vec->definitions[0] = Definition(dst); ctx->block->instructions.emplace_back(std::move(vec)); } return; } /* we can use a linear phi in some cases if one src is undef */ if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) { phi.reset(create_instruction(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1)); Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]]; Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]]; assert(invert->kind & block_kind_invert); unsigned then_block = invert->linear_preds[0]; Block* insert_block = NULL; for (unsigned i = 0; i < num_operands; i++) { Operand op = operands[i]; if (op.isUndefined()) continue; insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block; phi->operands[0] = op; break; } assert(insert_block); /* should be handled by the "num_defined == 0" case above */ phi->operands[1] = Operand(dst.regClass()); phi->definitions[0] = Definition(dst); insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi)); return; } /* try to scalarize vector phis */ if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) { // TODO: scalarize linear phis on divergent ifs bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge)); std::array new_vec; for (unsigned i = 0; can_scalarize && (i < num_operands); i++) { Operand src = operands[i]; if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end()) can_scalarize = false; } if (can_scalarize) { unsigned num_components = instr->dest.ssa.num_components; assert(dst.size() % num_components == 0); RegClass rc = RegClass(dst.type(), dst.size() / num_components); aco_ptr vec{create_instruction(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)}; for (unsigned k = 0; k < num_components; k++) { phi.reset(create_instruction(opcode, Format::PSEUDO, num_operands, 1)); for (unsigned i = 0; i < num_operands; i++) { Operand src = operands[i]; phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc); } Temp phi_dst = {ctx->program->allocateId(), rc}; phi->definitions[0] = Definition(phi_dst); ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi)); new_vec[k] = phi_dst; vec->operands[k] = Operand(phi_dst); } vec->definitions[0] = Definition(dst); ctx->block->instructions.emplace_back(std::move(vec)); ctx->allocated_vec.emplace(dst.id(), new_vec); return; } } phi.reset(create_instruction(opcode, Format::PSEUDO, num_operands, 1)); for (unsigned i = 0; i < num_operands; i++) phi->operands[i] = operands[i]; phi->definitions[0] = Definition(dst); ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi)); } void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr) { Temp dst = get_ssa_temp(ctx, &instr->def); assert(dst.type() == RegType::sgpr); if (dst.size() == 1) { Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u)); } else { aco_ptr vec{create_instruction(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)}; for (unsigned i = 0; i < dst.size(); i++) vec->operands[i] = Operand(0u); vec->definitions[0] = Definition(dst); ctx->block->instructions.emplace_back(std::move(vec)); } } void visit_jump(isel_context *ctx, nir_jump_instr *instr) { Builder bld(ctx->program, ctx->block); Block *logical_target; append_logical_end(ctx->block); unsigned idx = ctx->block->index; switch (instr->type) { case nir_jump_break: logical_target = ctx->cf_info.parent_loop.exit; add_logical_edge(idx, logical_target); ctx->block->kind |= block_kind_break; if (!ctx->cf_info.parent_if.is_divergent && !ctx->cf_info.parent_loop.has_divergent_continue) { /* uniform break - directly jump out of the loop */ ctx->block->kind |= block_kind_uniform; ctx->cf_info.has_branch = true; bld.branch(aco_opcode::p_branch); add_linear_edge(idx, logical_target); return; } ctx->cf_info.parent_loop.has_divergent_branch = true; ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index; break; case nir_jump_continue: logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx]; add_logical_edge(idx, logical_target); ctx->block->kind |= block_kind_continue; if (ctx->cf_info.parent_if.is_divergent) { /* for potential uniform breaks after this continue, we must ensure that they are handled correctly */ ctx->cf_info.parent_loop.has_divergent_continue = true; ctx->cf_info.parent_loop.has_divergent_branch = true; ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index; } else { /* uniform continue - directly jump to the loop header */ ctx->block->kind |= block_kind_uniform; ctx->cf_info.has_branch = true; bld.branch(aco_opcode::p_branch); add_linear_edge(idx, logical_target); return; } break; default: fprintf(stderr, "Unknown NIR jump instr: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); abort(); } if (ctx->cf_info.parent_if.is_divergent && !ctx->cf_info.exec_potentially_empty_break) { ctx->cf_info.exec_potentially_empty_break = true; ctx->cf_info.exec_potentially_empty_break_depth = ctx->cf_info.loop_nest_depth; } /* remove critical edges from linear CFG */ bld.branch(aco_opcode::p_branch); Block* break_block = ctx->program->create_and_insert_block(); break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth; break_block->kind |= block_kind_uniform; add_linear_edge(idx, break_block); /* the loop_header pointer might be invalidated by this point */ if (instr->type == nir_jump_continue) logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx]; add_linear_edge(break_block->index, logical_target); bld.reset(break_block); bld.branch(aco_opcode::p_branch); Block* continue_block = ctx->program->create_and_insert_block(); continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth; add_linear_edge(idx, continue_block); append_logical_start(continue_block); ctx->block = continue_block; return; } void visit_block(isel_context *ctx, nir_block *block) { nir_foreach_instr(instr, block) { switch (instr->type) { case nir_instr_type_alu: visit_alu_instr(ctx, nir_instr_as_alu(instr)); break; case nir_instr_type_load_const: visit_load_const(ctx, nir_instr_as_load_const(instr)); break; case nir_instr_type_intrinsic: visit_intrinsic(ctx, nir_instr_as_intrinsic(instr)); break; case nir_instr_type_tex: visit_tex(ctx, nir_instr_as_tex(instr)); break; case nir_instr_type_phi: visit_phi(ctx, nir_instr_as_phi(instr)); break; case nir_instr_type_ssa_undef: visit_undef(ctx, nir_instr_as_ssa_undef(instr)); break; case nir_instr_type_deref: break; case nir_instr_type_jump: visit_jump(ctx, nir_instr_as_jump(instr)); break; default: fprintf(stderr, "Unknown NIR instr type: "); nir_print_instr(instr, stderr); fprintf(stderr, "\n"); //abort(); } } if (!ctx->cf_info.parent_loop.has_divergent_branch) ctx->cf_info.nir_to_aco[block->index] = ctx->block->index; } static Operand create_continue_phis(isel_context *ctx, unsigned first, unsigned last, aco_ptr& header_phi, Operand *vals) { vals[0] = Operand(header_phi->definitions[0].getTemp()); RegClass rc = vals[0].regClass(); unsigned loop_nest_depth = ctx->program->blocks[first].loop_nest_depth; unsigned next_pred = 1; for (unsigned idx = first + 1; idx <= last; idx++) { Block& block = ctx->program->blocks[idx]; if (block.loop_nest_depth != loop_nest_depth) { vals[idx - first] = vals[idx - 1 - first]; continue; } if (block.kind & block_kind_continue) { vals[idx - first] = header_phi->operands[next_pred]; next_pred++; continue; } bool all_same = true; for (unsigned i = 1; all_same && (i < block.linear_preds.size()); i++) all_same = vals[block.linear_preds[i] - first] == vals[block.linear_preds[0] - first]; Operand val; if (all_same) { val = vals[block.linear_preds[0] - first]; } else { aco_ptr phi(create_instruction( aco_opcode::p_linear_phi, Format::PSEUDO, block.linear_preds.size(), 1)); for (unsigned i = 0; i < block.linear_preds.size(); i++) phi->operands[i] = vals[block.linear_preds[i] - first]; val = Operand(Temp(ctx->program->allocateId(), rc)); phi->definitions[0] = Definition(val.getTemp()); block.instructions.emplace(block.instructions.begin(), std::move(phi)); } vals[idx - first] = val; } return vals[last - first]; } static void visit_loop(isel_context *ctx, nir_loop *loop) { //TODO: we might want to wrap the loop around a branch if exec_potentially_empty=true append_logical_end(ctx->block); ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform; Builder bld(ctx->program, ctx->block); bld.branch(aco_opcode::p_branch); unsigned loop_preheader_idx = ctx->block->index; Block loop_exit = Block(); loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth; loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level)); Block* loop_header = ctx->program->create_and_insert_block(); loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1; loop_header->kind |= block_kind_loop_header; add_edge(loop_preheader_idx, loop_header); ctx->block = loop_header; /* emit loop body */ unsigned loop_header_idx = loop_header->index; loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit); append_logical_start(ctx->block); bool unreachable = visit_cf_list(ctx, &loop->body); //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken? if (!ctx->cf_info.has_branch) { append_logical_end(ctx->block); if (ctx->cf_info.exec_potentially_empty_discard || ctx->cf_info.exec_potentially_empty_break) { /* Discards can result in code running with an empty exec mask. * This would result in divergent breaks not ever being taken. As a * workaround, break the loop when the loop mask is empty instead of * always continuing. */ ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform); unsigned block_idx = ctx->block->index; /* create helper blocks to avoid critical edges */ Block *break_block = ctx->program->create_and_insert_block(); break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth; break_block->kind = block_kind_uniform; bld.reset(break_block); bld.branch(aco_opcode::p_branch); add_linear_edge(block_idx, break_block); add_linear_edge(break_block->index, &loop_exit); Block *continue_block = ctx->program->create_and_insert_block(); continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth; continue_block->kind = block_kind_uniform; bld.reset(continue_block); bld.branch(aco_opcode::p_branch); add_linear_edge(block_idx, continue_block); add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]); if (!ctx->cf_info.parent_loop.has_divergent_branch) add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]); ctx->block = &ctx->program->blocks[block_idx]; } else { ctx->block->kind |= (block_kind_continue | block_kind_uniform); if (!ctx->cf_info.parent_loop.has_divergent_branch) add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]); else add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]); } bld.reset(ctx->block); bld.branch(aco_opcode::p_branch); } /* Fixup phis in loop header from unreachable blocks. * has_branch/has_divergent_branch also indicates if the loop ends with a * break/continue instruction, but we don't emit those if unreachable=true */ if (unreachable) { assert(ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch); bool linear = ctx->cf_info.has_branch; bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch; for (aco_ptr& instr : ctx->program->blocks[loop_header_idx].instructions) { if ((logical && instr->opcode == aco_opcode::p_phi) || (linear && instr->opcode == aco_opcode::p_linear_phi)) { /* the last operand should be the one that needs to be removed */ instr->operands.pop_back(); } else if (!is_phi(instr)) { break; } } } /* Fixup linear phis in loop header from expecting a continue. Both this fixup * and the previous one shouldn't both happen at once because a break in the * merge block would get CSE'd */ if (nir_loop_last_block(loop)->successors[0] != nir_loop_first_block(loop)) { unsigned num_vals = ctx->cf_info.has_branch ? 1 : (ctx->block->index - loop_header_idx + 1); Operand vals[num_vals]; for (aco_ptr& instr : ctx->program->blocks[loop_header_idx].instructions) { if (instr->opcode == aco_opcode::p_linear_phi) { if (ctx->cf_info.has_branch) instr->operands.pop_back(); else instr->operands.back() = create_continue_phis(ctx, loop_header_idx, ctx->block->index, instr, vals); } else if (!is_phi(instr)) { break; } } } ctx->cf_info.has_branch = false; // TODO: if the loop has not a single exit, we must add one °° /* emit loop successor block */ ctx->block = ctx->program->insert_block(std::move(loop_exit)); append_logical_start(ctx->block); #if 0 // TODO: check if it is beneficial to not branch on continues /* trim linear phis in loop header */ for (auto&& instr : loop_entry->instructions) { if (instr->opcode == aco_opcode::p_linear_phi) { aco_ptr new_phi{create_instruction(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)}; new_phi->definitions[0] = instr->definitions[0]; for (unsigned i = 0; i < new_phi->operands.size(); i++) new_phi->operands[i] = instr->operands[i]; /* check that the remaining operands are all the same */ for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++) assert(instr->operands[i].tempId() == instr->operands.back().tempId()); instr.swap(new_phi); } else if (instr->opcode == aco_opcode::p_phi) { continue; } else { break; } } #endif } static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond) { ic->cond = cond; append_logical_end(ctx->block); ctx->block->kind |= block_kind_branch; /* branch to linear then block */ assert(cond.regClass() == ctx->program->lane_mask); aco_ptr branch; branch.reset(create_instruction(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0)); branch->operands[0] = Operand(cond); ctx->block->instructions.push_back(std::move(branch)); ic->BB_if_idx = ctx->block->index; ic->BB_invert = Block(); ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth; /* Invert blocks are intentionally not marked as top level because they * are not part of the logical cfg. */ ic->BB_invert.kind |= block_kind_invert; ic->BB_endif = Block(); ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth; ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level)); ic->exec_potentially_empty_discard_old = ctx->cf_info.exec_potentially_empty_discard; ic->exec_potentially_empty_break_old = ctx->cf_info.exec_potentially_empty_break; ic->exec_potentially_empty_break_depth_old = ctx->cf_info.exec_potentially_empty_break_depth; ic->divergent_old = ctx->cf_info.parent_if.is_divergent; ctx->cf_info.parent_if.is_divergent = true; /* divergent branches use cbranch_execz */ ctx->cf_info.exec_potentially_empty_discard = false; ctx->cf_info.exec_potentially_empty_break = false; ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX; /** emit logical then block */ Block* BB_then_logical = ctx->program->create_and_insert_block(); BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth; add_edge(ic->BB_if_idx, BB_then_logical); ctx->block = BB_then_logical; append_logical_start(BB_then_logical); } static void begin_divergent_if_else(isel_context *ctx, if_context *ic) { Block *BB_then_logical = ctx->block; append_logical_end(BB_then_logical); /* branch from logical then block to invert block */ aco_ptr branch; branch.reset(create_instruction(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0)); BB_then_logical->instructions.emplace_back(std::move(branch)); add_linear_edge(BB_then_logical->index, &ic->BB_invert); if (!ctx->cf_info.parent_loop.has_divergent_branch) add_logical_edge(BB_then_logical->index, &ic->BB_endif); BB_then_logical->kind |= block_kind_uniform; assert(!ctx->cf_info.has_branch); ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch; ctx->cf_info.parent_loop.has_divergent_branch = false; /** emit linear then block */ Block* BB_then_linear = ctx->program->create_and_insert_block(); BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth; BB_then_linear->kind |= block_kind_uniform; add_linear_edge(ic->BB_if_idx, BB_then_linear); /* branch from linear then block to invert block */ branch.reset(create_instruction(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0)); BB_then_linear->instructions.emplace_back(std::move(branch)); add_linear_edge(BB_then_linear->index, &ic->BB_invert); /** emit invert merge block */ ctx->block = ctx->program->insert_block(std::move(ic->BB_invert)); ic->invert_idx = ctx->block->index; /* branch to linear else block (skip else) */ branch.reset(create_instruction(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0)); branch->operands[0] = Operand(ic->cond); ctx->block->instructions.push_back(std::move(branch)); ic->exec_potentially_empty_discard_old |= ctx->cf_info.exec_potentially_empty_discard; ic->exec_potentially_empty_break_old |= ctx->cf_info.exec_potentially_empty_break; ic->exec_potentially_empty_break_depth_old = std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth); /* divergent branches use cbranch_execz */ ctx->cf_info.exec_potentially_empty_discard = false; ctx->cf_info.exec_potentially_empty_break = false; ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX; /** emit logical else block */ Block* BB_else_logical = ctx->program->create_and_insert_block(); BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth; add_logical_edge(ic->BB_if_idx, BB_else_logical); add_linear_edge(ic->invert_idx, BB_else_logical); ctx->block = BB_else_logical; append_logical_start(BB_else_logical); } static void end_divergent_if(isel_context *ctx, if_context *ic) { Block *BB_else_logical = ctx->block; append_logical_end(BB_else_logical); /* branch from logical else block to endif block */ aco_ptr branch; branch.reset(create_instruction(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0)); BB_else_logical->instructions.emplace_back(std::move(branch)); add_linear_edge(BB_else_logical->index, &ic->BB_endif); if (!ctx->cf_info.parent_loop.has_divergent_branch) add_logical_edge(BB_else_logical->index, &ic->BB_endif); BB_else_logical->kind |= block_kind_uniform; assert(!ctx->cf_info.has_branch); ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent; /** emit linear else block */ Block* BB_else_linear = ctx->program->create_and_insert_block(); BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth; BB_else_linear->kind |= block_kind_uniform; add_linear_edge(ic->invert_idx, BB_else_linear); /* branch from linear else block to endif block */ branch.reset(create_instruction(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0)); BB_else_linear->instructions.emplace_back(std::move(branch)); add_linear_edge(BB_else_linear->index, &ic->BB_endif); /** emit endif merge block */ ctx->block = ctx->program->insert_block(std::move(ic->BB_endif)); append_logical_start(ctx->block); ctx->cf_info.parent_if.is_divergent = ic->divergent_old; ctx->cf_info.exec_potentially_empty_discard |= ic->exec_potentially_empty_discard_old; ctx->cf_info.exec_potentially_empty_break |= ic->exec_potentially_empty_break_old; ctx->cf_info.exec_potentially_empty_break_depth = std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth); if (ctx->cf_info.loop_nest_depth == ctx->cf_info.exec_potentially_empty_break_depth && !ctx->cf_info.parent_if.is_divergent) { ctx->cf_info.exec_potentially_empty_break = false; ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX; } /* uniform control flow never has an empty exec-mask */ if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) { ctx->cf_info.exec_potentially_empty_discard = false; ctx->cf_info.exec_potentially_empty_break = false; ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX; } } static void begin_uniform_if_then(isel_context *ctx, if_context *ic, Temp cond) { assert(cond.regClass() == s1); append_logical_end(ctx->block); ctx->block->kind |= block_kind_uniform; aco_ptr branch; aco_opcode branch_opcode = aco_opcode::p_cbranch_z; branch.reset(create_instruction(branch_opcode, Format::PSEUDO_BRANCH, 1, 0)); branch->operands[0] = Operand(cond); branch->operands[0].setFixed(scc); ctx->block->instructions.emplace_back(std::move(branch)); ic->BB_if_idx = ctx->block->index; ic->BB_endif = Block(); ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth; ic->BB_endif.kind |= ctx->block->kind & block_kind_top_level; ctx->cf_info.has_branch = false; ctx->cf_info.parent_loop.has_divergent_branch = false; /** emit then block */ Block* BB_then = ctx->program->create_and_insert_block(); BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth; add_edge(ic->BB_if_idx, BB_then); append_logical_start(BB_then); ctx->block = BB_then; } static void begin_uniform_if_else(isel_context *ctx, if_context *ic) { Block *BB_then = ctx->block; ic->uniform_has_then_branch = ctx->cf_info.has_branch; ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch; if (!ic->uniform_has_then_branch) { append_logical_end(BB_then); /* branch from then block to endif block */ aco_ptr branch; branch.reset(create_instruction(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0)); BB_then->instructions.emplace_back(std::move(branch)); add_linear_edge(BB_then->index, &ic->BB_endif); if (!ic->then_branch_divergent) add_logical_edge(BB_then->index, &ic->BB_endif); BB_then->kind |= block_kind_uniform; } ctx->cf_info.has_branch = false; ctx->cf_info.parent_loop.has_divergent_branch = false; /** emit else block */ Block* BB_else = ctx->program->create_and_insert_block(); BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth; add_edge(ic->BB_if_idx, BB_else); append_logical_start(BB_else); ctx->block = BB_else; } static void end_uniform_if(isel_context *ctx, if_context *ic) { Block *BB_else = ctx->block; if (!ctx->cf_info.has_branch) { append_logical_end(BB_else); /* branch from then block to endif block */ aco_ptr branch; branch.reset(create_instruction(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0)); BB_else->instructions.emplace_back(std::move(branch)); add_linear_edge(BB_else->index, &ic->BB_endif); if (!ctx->cf_info.parent_loop.has_divergent_branch) add_logical_edge(BB_else->index, &ic->BB_endif); BB_else->kind |= block_kind_uniform; } ctx->cf_info.has_branch &= ic->uniform_has_then_branch; ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent; /** emit endif merge block */ if (!ctx->cf_info.has_branch) { ctx->block = ctx->program->insert_block(std::move(ic->BB_endif)); append_logical_start(ctx->block); } } static bool visit_if(isel_context *ctx, nir_if *if_stmt) { Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa); Builder bld(ctx->program, ctx->block); aco_ptr branch; if_context ic; if (!nir_src_is_divergent(if_stmt->condition)) { /* uniform condition */ /** * Uniform conditionals are represented in the following way*) : * * The linear and logical CFG: * BB_IF * / \ * BB_THEN (logical) BB_ELSE (logical) * \ / * BB_ENDIF * * *) Exceptions may be due to break and continue statements within loops * If a break/continue happens within uniform control flow, it branches * to the loop exit/entry block. Otherwise, it branches to the next * merge block. **/ // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction assert(cond.regClass() == ctx->program->lane_mask); cond = bool_to_scalar_condition(ctx, cond); begin_uniform_if_then(ctx, &ic, cond); visit_cf_list(ctx, &if_stmt->then_list); begin_uniform_if_else(ctx, &ic); visit_cf_list(ctx, &if_stmt->else_list); end_uniform_if(ctx, &ic); } else { /* non-uniform condition */ /** * To maintain a logical and linear CFG without critical edges, * non-uniform conditionals are represented in the following way*) : * * The linear CFG: * BB_IF * / \ * BB_THEN (logical) BB_THEN (linear) * \ / * BB_INVERT (linear) * / \ * BB_ELSE (logical) BB_ELSE (linear) * \ / * BB_ENDIF * * The logical CFG: * BB_IF * / \ * BB_THEN (logical) BB_ELSE (logical) * \ / * BB_ENDIF * * *) Exceptions may be due to break and continue statements within loops **/ begin_divergent_if_then(ctx, &ic, cond); visit_cf_list(ctx, &if_stmt->then_list); begin_divergent_if_else(ctx, &ic); visit_cf_list(ctx, &if_stmt->else_list); end_divergent_if(ctx, &ic); } return !ctx->cf_info.has_branch && !ctx->block->logical_preds.empty(); } static bool visit_cf_list(isel_context *ctx, struct exec_list *list) { foreach_list_typed(nir_cf_node, node, node, list) { switch (node->type) { case nir_cf_node_block: visit_block(ctx, nir_cf_node_as_block(node)); break; case nir_cf_node_if: if (!visit_if(ctx, nir_cf_node_as_if(node))) return true; break; case nir_cf_node_loop: visit_loop(ctx, nir_cf_node_as_loop(node)); break; default: unreachable("unimplemented cf list type"); } } return false; } static void create_null_export(isel_context *ctx) { /* Some shader stages always need to have exports. * So when there is none, we need to add a null export. */ unsigned dest = (ctx->program->stage & hw_fs) ? 9 /* NULL */ : V_008DFC_SQ_EXP_POS; bool vm = (ctx->program->stage & hw_fs) || ctx->program->chip_class >= GFX10; Builder bld(ctx->program, ctx->block); bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1), /* enabled_mask */ 0, dest, /* compr */ false, /* done */ true, vm); } static bool export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos) { assert(ctx->stage == vertex_vs || ctx->stage == tess_eval_vs || ctx->stage == gs_copy_vs || ctx->stage == ngg_vertex_gs || ctx->stage == ngg_tess_eval_gs); int offset = (ctx->stage & sw_tes) ? ctx->program->info->tes.outinfo.vs_output_param_offset[slot] : ctx->program->info->vs.outinfo.vs_output_param_offset[slot]; uint64_t mask = ctx->outputs.mask[slot]; if (!is_pos && !mask) return false; if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED) return false; aco_ptr exp{create_instruction(aco_opcode::exp, Format::EXP, 4, 0)}; exp->enabled_mask = mask; for (unsigned i = 0; i < 4; ++i) { if (mask & (1 << i)) exp->operands[i] = Operand(ctx->outputs.temps[slot * 4u + i]); else exp->operands[i] = Operand(v1); } /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang. * Setting valid_mask=1 prevents it and has no other effect. */ exp->valid_mask = ctx->options->chip_class >= GFX10 && is_pos && *next_pos == 0; exp->done = false; exp->compressed = false; if (is_pos) exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++; else exp->dest = V_008DFC_SQ_EXP_PARAM + offset; ctx->block->instructions.emplace_back(std::move(exp)); return true; } static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos) { aco_ptr exp{create_instruction(aco_opcode::exp, Format::EXP, 4, 0)}; exp->enabled_mask = 0; for (unsigned i = 0; i < 4; ++i) exp->operands[i] = Operand(v1); if (ctx->outputs.mask[VARYING_SLOT_PSIZ]) { exp->operands[0] = Operand(ctx->outputs.temps[VARYING_SLOT_PSIZ * 4u]); exp->enabled_mask |= 0x1; } if (ctx->outputs.mask[VARYING_SLOT_LAYER]) { exp->operands[2] = Operand(ctx->outputs.temps[VARYING_SLOT_LAYER * 4u]); exp->enabled_mask |= 0x4; } if (ctx->outputs.mask[VARYING_SLOT_VIEWPORT]) { if (ctx->options->chip_class < GFX9) { exp->operands[3] = Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]); exp->enabled_mask |= 0x8; } else { Builder bld(ctx->program, ctx->block); Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u])); if (exp->operands[2].isTemp()) out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]); exp->operands[2] = Operand(out); exp->enabled_mask |= 0x4; } } exp->valid_mask = ctx->options->chip_class >= GFX10 && *next_pos == 0; exp->done = false; exp->compressed = false; exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++; ctx->block->instructions.emplace_back(std::move(exp)); } static void create_export_phis(isel_context *ctx) { /* Used when exports are needed, but the output temps are defined in a preceding block. * This function will set up phis in order to access the outputs in the next block. */ assert(ctx->block->instructions.back()->opcode == aco_opcode::p_logical_start); aco_ptr logical_start = aco_ptr(ctx->block->instructions.back().release()); ctx->block->instructions.pop_back(); Builder bld(ctx->program, ctx->block); for (unsigned slot = 0; slot <= VARYING_SLOT_VAR31; ++slot) { uint64_t mask = ctx->outputs.mask[slot]; for (unsigned i = 0; i < 4; ++i) { if (!(mask & (1 << i))) continue; Temp old = ctx->outputs.temps[slot * 4 + i]; Temp phi = bld.pseudo(aco_opcode::p_phi, bld.def(v1), old, Operand(v1)); ctx->outputs.temps[slot * 4 + i] = phi; } } bld.insert(std::move(logical_start)); } static void create_vs_exports(isel_context *ctx) { assert(ctx->stage == vertex_vs || ctx->stage == tess_eval_vs || ctx->stage == gs_copy_vs || ctx->stage == ngg_vertex_gs || ctx->stage == ngg_tess_eval_gs); radv_vs_output_info *outinfo = (ctx->stage & sw_tes) ? &ctx->program->info->tes.outinfo : &ctx->program->info->vs.outinfo; if (outinfo->export_prim_id && !(ctx->stage & hw_ngg_gs)) { ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1; ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = get_arg(ctx, ctx->args->vs_prim_id); } if (ctx->options->key.has_multiview_view_index) { ctx->outputs.mask[VARYING_SLOT_LAYER] |= 0x1; ctx->outputs.temps[VARYING_SLOT_LAYER * 4u] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index)); } /* the order these position exports are created is important */ int next_pos = 0; bool exported_pos = export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos); if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) { export_vs_psiz_layer_viewport(ctx, &next_pos); exported_pos = true; } if (ctx->num_clip_distances + ctx->num_cull_distances > 0) exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos); if (ctx->num_clip_distances + ctx->num_cull_distances > 4) exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos); if (ctx->export_clip_dists) { if (ctx->num_clip_distances + ctx->num_cull_distances > 0) export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos); if (ctx->num_clip_distances + ctx->num_cull_distances > 4) export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos); } for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) { if (i < VARYING_SLOT_VAR0 && i != VARYING_SLOT_LAYER && i != VARYING_SLOT_PRIMITIVE_ID && i != VARYING_SLOT_VIEWPORT) continue; export_vs_varying(ctx, i, false, NULL); } if (!exported_pos) create_null_export(ctx); } static bool export_fs_mrt_z(isel_context *ctx) { Builder bld(ctx->program, ctx->block); unsigned enabled_channels = 0; bool compr = false; Operand values[4]; for (unsigned i = 0; i < 4; ++i) { values[i] = Operand(v1); } /* Both stencil and sample mask only need 16-bits. */ if (!ctx->program->info->ps.writes_z && (ctx->program->info->ps.writes_stencil || ctx->program->info->ps.writes_sample_mask)) { compr = true; /* COMPR flag */ if (ctx->program->info->ps.writes_stencil) { /* Stencil should be in X[23:16]. */ values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]); values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]); enabled_channels |= 0x3; } if (ctx->program->info->ps.writes_sample_mask) { /* SampleMask should be in Y[15:0]. */ values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]); enabled_channels |= 0xc; } } else { if (ctx->program->info->ps.writes_z) { values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_DEPTH * 4u]); enabled_channels |= 0x1; } if (ctx->program->info->ps.writes_stencil) { values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]); enabled_channels |= 0x2; } if (ctx->program->info->ps.writes_sample_mask) { values[2] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]); enabled_channels |= 0x4; } } /* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X * writemask component. */ if (ctx->options->chip_class == GFX6 && ctx->options->family != CHIP_OLAND && ctx->options->family != CHIP_HAINAN) { enabled_channels |= 0x1; } bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3], enabled_channels, V_008DFC_SQ_EXP_MRTZ, compr); return true; } static bool export_fs_mrt_color(isel_context *ctx, int slot) { Builder bld(ctx->program, ctx->block); unsigned write_mask = ctx->outputs.mask[slot]; Operand values[4]; for (unsigned i = 0; i < 4; ++i) { if (write_mask & (1 << i)) { values[i] = Operand(ctx->outputs.temps[slot * 4u + i]); } else { values[i] = Operand(v1); } } unsigned target, col_format; unsigned enabled_channels = 0; aco_opcode compr_op = (aco_opcode)0; slot -= FRAG_RESULT_DATA0; target = V_008DFC_SQ_EXP_MRT + slot; col_format = (ctx->options->key.fs.col_format >> (4 * slot)) & 0xf; bool is_int8 = (ctx->options->key.fs.is_int8 >> slot) & 1; bool is_int10 = (ctx->options->key.fs.is_int10 >> slot) & 1; bool is_16bit = values[0].regClass() == v2b; switch (col_format) { case V_028714_SPI_SHADER_ZERO: enabled_channels = 0; /* writemask */ target = V_008DFC_SQ_EXP_NULL; break; case V_028714_SPI_SHADER_32_R: enabled_channels = 1; break; case V_028714_SPI_SHADER_32_GR: enabled_channels = 0x3; break; case V_028714_SPI_SHADER_32_AR: if (ctx->options->chip_class >= GFX10) { /* Special case: on GFX10, the outputs are different for 32_AR */ enabled_channels = 0x3; values[1] = values[3]; values[3] = Operand(v1); } else { enabled_channels = 0x9; } break; case V_028714_SPI_SHADER_FP16_ABGR: enabled_channels = 0x5; compr_op = aco_opcode::v_cvt_pkrtz_f16_f32; if (is_16bit) { if (ctx->options->chip_class >= GFX9) { /* Pack the FP16 values together instead of converting them to * FP32 and back to FP16. * TODO: use p_create_vector and let the compiler optimizes. */ compr_op = aco_opcode::v_pack_b32_f16; } else { for (unsigned i = 0; i < 4; i++) { if ((write_mask >> i) & 1) values[i] = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), values[i]); } } } break; case V_028714_SPI_SHADER_UNORM16_ABGR: enabled_channels = 0x5; if (is_16bit && ctx->options->chip_class >= GFX9) { compr_op = aco_opcode::v_cvt_pknorm_u16_f16; } else { compr_op = aco_opcode::v_cvt_pknorm_u16_f32; } break; case V_028714_SPI_SHADER_SNORM16_ABGR: enabled_channels = 0x5; if (is_16bit && ctx->options->chip_class >= GFX9) { compr_op = aco_opcode::v_cvt_pknorm_i16_f16; } else { compr_op = aco_opcode::v_cvt_pknorm_i16_f32; } break; case V_028714_SPI_SHADER_UINT16_ABGR: { enabled_channels = 0x5; compr_op = aco_opcode::v_cvt_pk_u16_u32; if (is_int8 || is_int10) { /* clamp */ uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0; Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb)); for (unsigned i = 0; i < 4; i++) { if ((write_mask >> i) & 1) { values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1), i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val), values[i]); } } } else if (is_16bit) { for (unsigned i = 0; i < 4; i++) { if ((write_mask >> i) & 1) { Temp tmp = convert_int(ctx, bld, values[i].getTemp(), 16, 32, false); values[i] = Operand(tmp); } } } break; } case V_028714_SPI_SHADER_SINT16_ABGR: enabled_channels = 0x5; compr_op = aco_opcode::v_cvt_pk_i16_i32; if (is_int8 || is_int10) { /* clamp */ uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0; uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0; Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb)); Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb)); for (unsigned i = 0; i < 4; i++) { if ((write_mask >> i) & 1) { values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1), i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val), values[i]); values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val), values[i]); } } } else if (is_16bit) { for (unsigned i = 0; i < 4; i++) { if ((write_mask >> i) & 1) { Temp tmp = convert_int(ctx, bld, values[i].getTemp(), 16, 32, true); values[i] = Operand(tmp); } } } break; case V_028714_SPI_SHADER_32_ABGR: enabled_channels = 0xF; break; default: break; } if (target == V_008DFC_SQ_EXP_NULL) return false; /* Replace NaN by zero (only 32-bit) to fix game bugs if requested. */ if (ctx->options->enable_mrt_output_nan_fixup && !is_16bit && (col_format == V_028714_SPI_SHADER_32_R || col_format == V_028714_SPI_SHADER_32_GR || col_format == V_028714_SPI_SHADER_32_AR || col_format == V_028714_SPI_SHADER_32_ABGR || col_format == V_028714_SPI_SHADER_FP16_ABGR)) { for (int i = 0; i < 4; i++) { if (!(write_mask & (1 << i))) continue; Temp isnan = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)), values[i], bld.copy(bld.def(v1), Operand(3u))); values[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), values[i], bld.copy(bld.def(v1), Operand(0u)), isnan); } } if ((bool) compr_op) { for (int i = 0; i < 2; i++) { /* check if at least one of the values to be compressed is enabled */ unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1; if (enabled) { enabled_channels |= enabled << (i*2); values[i] = bld.vop3(compr_op, bld.def(v1), values[i*2].isUndefined() ? Operand(0u) : values[i*2], values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]); } else { values[i] = Operand(v1); } } values[2] = Operand(v1); values[3] = Operand(v1); } else { for (int i = 0; i < 4; i++) values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1); } bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3], enabled_channels, target, (bool) compr_op); return true; } static void create_fs_exports(isel_context *ctx) { bool exported = false; /* Export depth, stencil and sample mask. */ if (ctx->outputs.mask[FRAG_RESULT_DEPTH] || ctx->outputs.mask[FRAG_RESULT_STENCIL] || ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK]) exported |= export_fs_mrt_z(ctx); /* Export all color render targets. */ for (unsigned i = FRAG_RESULT_DATA0; i < FRAG_RESULT_DATA7 + 1; ++i) if (ctx->outputs.mask[i]) exported |= export_fs_mrt_color(ctx, i); if (!exported) create_null_export(ctx); } static void create_workgroup_barrier(Builder& bld) { bld.barrier(aco_opcode::p_barrier, memory_sync_info(storage_shared, semantic_acqrel, scope_workgroup), scope_workgroup); } static void write_tcs_tess_factors(isel_context *ctx) { unsigned outer_comps; unsigned inner_comps; switch (ctx->args->options->key.tcs.primitive_mode) { case GL_ISOLINES: outer_comps = 2; inner_comps = 0; break; case GL_TRIANGLES: outer_comps = 3; inner_comps = 1; break; case GL_QUADS: outer_comps = 4; inner_comps = 2; break; default: return; } Builder bld(ctx->program, ctx->block); create_workgroup_barrier(bld); Temp tcs_rel_ids = get_arg(ctx, ctx->args->ac.tcs_rel_ids); Temp invocation_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), tcs_rel_ids, Operand(8u), Operand(5u)); Temp invocation_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), invocation_id); if_context ic_invocation_id_is_zero; begin_divergent_if_then(ctx, &ic_invocation_id_is_zero, invocation_id_is_zero); bld.reset(ctx->block); Temp hs_ring_tess_factor = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_FACTOR * 16u)); std::pair lds_base = get_tcs_output_lds_offset(ctx); unsigned stride = inner_comps + outer_comps; unsigned lds_align = calculate_lds_alignment(ctx, lds_base.second); Temp tf_inner_vec; Temp tf_outer_vec; Temp out[6]; assert(stride <= (sizeof(out) / sizeof(Temp))); if (ctx->args->options->key.tcs.primitive_mode == GL_ISOLINES) { // LINES reversal tf_outer_vec = load_lds(ctx, 4, bld.tmp(v2), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align); out[1] = emit_extract_vector(ctx, tf_outer_vec, 0, v1); out[0] = emit_extract_vector(ctx, tf_outer_vec, 1, v1); } else { tf_outer_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, outer_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align); tf_inner_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, inner_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_in_loc, lds_align); for (unsigned i = 0; i < outer_comps; ++i) out[i] = emit_extract_vector(ctx, tf_outer_vec, i, v1); for (unsigned i = 0; i < inner_comps; ++i) out[outer_comps + i] = emit_extract_vector(ctx, tf_inner_vec, i, v1); } Temp rel_patch_id = get_tess_rel_patch_id(ctx); Temp tf_base = get_arg(ctx, ctx->args->tess_factor_offset); Temp byte_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, stride * 4u); unsigned tf_const_offset = 0; if (ctx->program->chip_class <= GFX8) { Temp rel_patch_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), rel_patch_id); if_context ic_rel_patch_id_is_zero; begin_divergent_if_then(ctx, &ic_rel_patch_id_is_zero, rel_patch_id_is_zero); bld.reset(ctx->block); /* Store the dynamic HS control word. */ Temp control_word = bld.copy(bld.def(v1), Operand(0x80000000u)); bld.mubuf(aco_opcode::buffer_store_dword, /* SRSRC */ hs_ring_tess_factor, /* VADDR */ Operand(v1), /* SOFFSET */ tf_base, /* VDATA */ control_word, /* immediate OFFSET */ 0, /* OFFEN */ false, /* swizzled */ false, /* idxen*/ false, /* addr64 */ false, /* disable_wqm */ false, /* glc */ true); tf_const_offset += 4; begin_divergent_if_else(ctx, &ic_rel_patch_id_is_zero); end_divergent_if(ctx, &ic_rel_patch_id_is_zero); bld.reset(ctx->block); } assert(stride == 2 || stride == 4 || stride == 6); Temp tf_vec = create_vec_from_array(ctx, out, stride, RegType::vgpr, 4u); store_vmem_mubuf(ctx, tf_vec, hs_ring_tess_factor, byte_offset, tf_base, tf_const_offset, 4, (1 << stride) - 1, true, memory_sync_info()); /* Store to offchip for TES to read - only if TES reads them */ if (ctx->args->options->key.tcs.tes_reads_tess_factors) { Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u)); Temp oc_lds = get_arg(ctx, ctx->args->oc_lds); std::pair vmem_offs_outer = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_out_loc); store_vmem_mubuf(ctx, tf_outer_vec, hs_ring_tess_offchip, vmem_offs_outer.first, oc_lds, vmem_offs_outer.second, 4, (1 << outer_comps) - 1, true, memory_sync_info(storage_vmem_output)); if (likely(inner_comps)) { std::pair vmem_offs_inner = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_in_loc); store_vmem_mubuf(ctx, tf_inner_vec, hs_ring_tess_offchip, vmem_offs_inner.first, oc_lds, vmem_offs_inner.second, 4, (1 << inner_comps) - 1, true, memory_sync_info(storage_vmem_output)); } } begin_divergent_if_else(ctx, &ic_invocation_id_is_zero); end_divergent_if(ctx, &ic_invocation_id_is_zero); } static void emit_stream_output(isel_context *ctx, Temp const *so_buffers, Temp const *so_write_offset, const struct radv_stream_output *output) { unsigned num_comps = util_bitcount(output->component_mask); unsigned writemask = (1 << num_comps) - 1; unsigned loc = output->location; unsigned buf = output->buffer; assert(num_comps && num_comps <= 4); if (!num_comps || num_comps > 4) return; unsigned start = ffs(output->component_mask) - 1; Temp out[4]; bool all_undef = true; assert(ctx->stage & hw_vs); for (unsigned i = 0; i < num_comps; i++) { out[i] = ctx->outputs.temps[loc * 4 + start + i]; all_undef = all_undef && !out[i].id(); } if (all_undef) return; while (writemask) { int start, count; u_bit_scan_consecutive_range(&writemask, &start, &count); if (count == 3 && ctx->options->chip_class == GFX6) { /* GFX6 doesn't support storing vec3, split it. */ writemask |= 1u << (start + 2); count = 2; } unsigned offset = output->offset + start * 4; Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, count)}; aco_ptr vec{create_instruction(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)}; for (int i = 0; i < count; ++i) vec->operands[i] = (ctx->outputs.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u); vec->definitions[0] = Definition(write_data); ctx->block->instructions.emplace_back(std::move(vec)); aco_opcode opcode; switch (count) { case 1: opcode = aco_opcode::buffer_store_dword; break; case 2: opcode = aco_opcode::buffer_store_dwordx2; break; case 3: opcode = aco_opcode::buffer_store_dwordx3; break; case 4: opcode = aco_opcode::buffer_store_dwordx4; break; default: unreachable("Unsupported dword count."); } aco_ptr store{create_instruction(opcode, Format::MUBUF, 4, 0)}; store->operands[0] = Operand(so_buffers[buf]); store->operands[1] = Operand(so_write_offset[buf]); store->operands[2] = Operand((uint32_t) 0); store->operands[3] = Operand(write_data); if (offset > 4095) { /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */ Builder bld(ctx->program, ctx->block); store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf])); } else { store->offset = offset; } store->offen = true; store->glc = true; store->dlc = false; store->slc = true; ctx->block->instructions.emplace_back(std::move(store)); } } static void emit_streamout(isel_context *ctx, unsigned stream) { Builder bld(ctx->program, ctx->block); Temp so_buffers[4]; Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers)); for (unsigned i = 0; i < 4; i++) { unsigned stride = ctx->program->info->so.strides[i]; if (!stride) continue; Operand off = bld.copy(bld.def(s1), Operand(i * 16u)); so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, off); } Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u)); Temp tid = emit_mbcnt(ctx, bld.def(v1)); Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid); if_context ic; begin_divergent_if_then(ctx, &ic, can_emit); bld.reset(ctx->block); Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid); Temp so_write_offset[4]; for (unsigned i = 0; i < 4; i++) { unsigned stride = ctx->program->info->so.strides[i]; if (!stride) continue; if (stride == 1) { Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->streamout_write_idx), get_arg(ctx, ctx->args->streamout_offset[i])); Temp new_offset = bld.vadd32(bld.def(v1), offset, tid); so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset); } else { Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u); Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u), get_arg(ctx, ctx->args->streamout_offset[i])); so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2); } } for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) { struct radv_stream_output *output = &ctx->program->info->so.outputs[i]; if (stream != output->stream) continue; emit_stream_output(ctx, so_buffers, so_write_offset, output); } begin_divergent_if_else(ctx, &ic); end_divergent_if(ctx, &ic); } } /* end namespace */ void fix_ls_vgpr_init_bug(isel_context *ctx, Pseudo_instruction *startpgm) { assert(ctx->shader->info.stage == MESA_SHADER_VERTEX); Builder bld(ctx->program, ctx->block); constexpr unsigned hs_idx = 1u; Builder::Result hs_thread_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand((8u << 16) | (hs_idx * 8u))); Temp ls_has_nonzero_hs_threads = bool_to_vector_condition(ctx, hs_thread_count.def(1).getTemp()); /* If there are no HS threads, SPI mistakenly loads the LS VGPRs starting at VGPR 0. */ Temp instance_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), get_arg(ctx, ctx->args->rel_auto_id), get_arg(ctx, ctx->args->ac.instance_id), ls_has_nonzero_hs_threads); Temp rel_auto_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), get_arg(ctx, ctx->args->ac.tcs_rel_ids), get_arg(ctx, ctx->args->rel_auto_id), ls_has_nonzero_hs_threads); Temp vertex_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), get_arg(ctx, ctx->args->ac.tcs_patch_id), get_arg(ctx, ctx->args->ac.vertex_id), ls_has_nonzero_hs_threads); ctx->arg_temps[ctx->args->ac.instance_id.arg_index] = instance_id; ctx->arg_temps[ctx->args->rel_auto_id.arg_index] = rel_auto_id; ctx->arg_temps[ctx->args->ac.vertex_id.arg_index] = vertex_id; } void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm) { /* Split all arguments except for the first (ring_offsets) and the last * (exec) so that the dead channels don't stay live throughout the program. */ for (int i = 1; i < startpgm->definitions.size() - 1; i++) { if (startpgm->definitions[i].regClass().size() > 1) { emit_split_vector(ctx, startpgm->definitions[i].getTemp(), startpgm->definitions[i].regClass().size()); } } } void handle_bc_optimize(isel_context *ctx) { /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */ Builder bld(ctx->program, ctx->block); uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena; bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena); bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena); ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid); ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid); if (uses_center && uses_centroid) { Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)), get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u)); if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) { Temp new_coord[2]; for (unsigned i = 0; i < 2; i++) { Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1); Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1); new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), persp_centroid, persp_center, sel); } ctx->persp_centroid = bld.tmp(v2); bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid), Operand(new_coord[0]), Operand(new_coord[1])); emit_split_vector(ctx, ctx->persp_centroid, 2); } if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) { Temp new_coord[2]; for (unsigned i = 0; i < 2; i++) { Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1); Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1); new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), linear_centroid, linear_center, sel); } ctx->linear_centroid = bld.tmp(v2); bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid), Operand(new_coord[0]), Operand(new_coord[1])); emit_split_vector(ctx, ctx->linear_centroid, 2); } } } void setup_fp_mode(isel_context *ctx, nir_shader *shader) { Program *program = ctx->program; unsigned float_controls = shader->info.float_controls_execution_mode; program->next_fp_mode.preserve_signed_zero_inf_nan32 = float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32; program->next_fp_mode.preserve_signed_zero_inf_nan16_64 = float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 | FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64); program->next_fp_mode.must_flush_denorms32 = float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32; program->next_fp_mode.must_flush_denorms16_64 = float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 | FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64); program->next_fp_mode.care_about_round32 = float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32); program->next_fp_mode.care_about_round16_64 = float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64); /* default to preserving fp16 and fp64 denorms, since it's free for fp64 and * the precision seems needed for Wolfenstein: Youngblood to render correctly */ if (program->next_fp_mode.must_flush_denorms16_64) program->next_fp_mode.denorm16_64 = 0; else program->next_fp_mode.denorm16_64 = fp_denorm_keep; /* preserving fp32 denorms is expensive, so only do it if asked */ if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32) program->next_fp_mode.denorm32 = fp_denorm_keep; else program->next_fp_mode.denorm32 = 0; if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) program->next_fp_mode.round32 = fp_round_tz; else program->next_fp_mode.round32 = fp_round_ne; if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64)) program->next_fp_mode.round16_64 = fp_round_tz; else program->next_fp_mode.round16_64 = fp_round_ne; ctx->block->fp_mode = program->next_fp_mode; } void cleanup_cfg(Program *program) { /* create linear_succs/logical_succs */ for (Block& BB : program->blocks) { for (unsigned idx : BB.linear_preds) program->blocks[idx].linear_succs.emplace_back(BB.index); for (unsigned idx : BB.logical_preds) program->blocks[idx].logical_succs.emplace_back(BB.index); } } Temp merged_wave_info_to_mask(isel_context *ctx, unsigned i) { Builder bld(ctx->program, ctx->block); /* The s_bfm only cares about s0.u[5:0] so we don't need either s_bfe nor s_and here */ Temp count = i == 0 ? get_arg(ctx, ctx->args->merged_wave_info) : bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(i * 8u)); Temp mask = bld.sop2(aco_opcode::s_bfm_b64, bld.def(s2), count, Operand(0u)); Temp cond; if (ctx->program->wave_size == 64) { /* Special case for 64 active invocations, because 64 doesn't work with s_bfm */ Temp active_64 = bld.sopc(aco_opcode::s_bitcmp1_b32, bld.def(s1, scc), count, Operand(6u /* log2(64) */)); cond = bld.sop2(Builder::s_cselect, bld.def(bld.lm), Operand(-1u), mask, bld.scc(active_64)); } else { /* We use s_bfm_b64 (not _b32) which works with 32, but we need to extract the lower half of the register */ cond = emit_extract_vector(ctx, mask, 0, bld.lm); } return cond; } bool ngg_early_prim_export(isel_context *ctx) { /* TODO: Check edge flags, and if they are written, return false. (Needed for OpenGL, not for Vulkan.) */ return true; } void ngg_emit_sendmsg_gs_alloc_req(isel_context *ctx) { Builder bld(ctx->program, ctx->block); /* It is recommended to do the GS_ALLOC_REQ as soon and as quickly as possible, so we set the maximum priority (3). */ bld.sopp(aco_opcode::s_setprio, -1u, 0x3u); /* Get the id of the current wave within the threadgroup (workgroup) */ Builder::Result wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16))); /* Execute the following code only on the first wave (wave id 0), * use the SCC def to tell if the wave id is zero or not. */ Temp cond = wave_id_in_tg.def(1).getTemp(); if_context ic; begin_uniform_if_then(ctx, &ic, cond); begin_uniform_if_else(ctx, &ic); bld.reset(ctx->block); /* Number of vertices output by VS/TES */ Temp vtx_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->gs_tg_info), Operand(12u | (9u << 16u))); /* Number of primitives output by VS/TES */ Temp prm_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->gs_tg_info), Operand(22u | (9u << 16u))); /* Put the number of vertices and primitives into m0 for the GS_ALLOC_REQ */ Temp tmp = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), prm_cnt, Operand(12u)); tmp = bld.sop2(aco_opcode::s_or_b32, bld.m0(bld.def(s1)), bld.def(s1, scc), tmp, vtx_cnt); /* Request the SPI to allocate space for the primitives and vertices that will be exported by the threadgroup. */ bld.sopp(aco_opcode::s_sendmsg, bld.m0(tmp), -1, sendmsg_gs_alloc_req); end_uniform_if(ctx, &ic); /* After the GS_ALLOC_REQ is done, reset priority to default (0). */ bld.reset(ctx->block); bld.sopp(aco_opcode::s_setprio, -1u, 0x0u); } Temp ngg_get_prim_exp_arg(isel_context *ctx, unsigned num_vertices, const Temp vtxindex[]) { Builder bld(ctx->program, ctx->block); if (ctx->args->options->key.vs_common_out.as_ngg_passthrough) { return get_arg(ctx, ctx->args->gs_vtx_offset[0]); } Temp gs_invocation_id = get_arg(ctx, ctx->args->ac.gs_invocation_id); Temp tmp; for (unsigned i = 0; i < num_vertices; ++i) { assert(vtxindex[i].id()); if (i) tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), vtxindex[i], Operand(10u * i), tmp); else tmp = vtxindex[i]; /* The initial edge flag is always false in tess eval shaders. */ if (ctx->stage == ngg_vertex_gs) { Temp edgeflag = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), gs_invocation_id, Operand(8 + i), Operand(1u)); tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), edgeflag, Operand(10u * i + 9u), tmp); } } /* TODO: Set isnull field in case of merged NGG VS+GS. */ return tmp; } void ngg_emit_prim_export(isel_context *ctx, unsigned num_vertices_per_primitive, const Temp vtxindex[]) { Builder bld(ctx->program, ctx->block); Temp prim_exp_arg = ngg_get_prim_exp_arg(ctx, num_vertices_per_primitive, vtxindex); bld.exp(aco_opcode::exp, prim_exp_arg, Operand(v1), Operand(v1), Operand(v1), 1 /* enabled mask */, V_008DFC_SQ_EXP_PRIM /* dest */, false /* compressed */, true/* done */, false /* valid mask */); } void ngg_emit_nogs_gsthreads(isel_context *ctx) { /* Emit the things that NGG GS threads need to do, for shaders that don't have SW GS. * These must always come before VS exports. * * It is recommended to do these as early as possible. They can be at the beginning when * there is no SW GS and the shader doesn't write edge flags. */ if_context ic; Temp is_gs_thread = merged_wave_info_to_mask(ctx, 1); begin_divergent_if_then(ctx, &ic, is_gs_thread); Builder bld(ctx->program, ctx->block); constexpr unsigned max_vertices_per_primitive = 3; unsigned num_vertices_per_primitive = max_vertices_per_primitive; if (ctx->stage == ngg_vertex_gs) { /* TODO: optimize for points & lines */ } else if (ctx->stage == ngg_tess_eval_gs) { if (ctx->shader->info.tess.point_mode) num_vertices_per_primitive = 1; else if (ctx->shader->info.tess.primitive_mode == GL_ISOLINES) num_vertices_per_primitive = 2; } else { unreachable("Unsupported NGG shader stage"); } Temp vtxindex[max_vertices_per_primitive]; vtxindex[0] = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), get_arg(ctx, ctx->args->gs_vtx_offset[0])); vtxindex[1] = num_vertices_per_primitive < 2 ? Temp(0, v1) : bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), get_arg(ctx, ctx->args->gs_vtx_offset[0]), Operand(16u), Operand(16u)); vtxindex[2] = num_vertices_per_primitive < 3 ? Temp(0, v1) : bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), get_arg(ctx, ctx->args->gs_vtx_offset[2])); /* Export primitive data to the index buffer. */ ngg_emit_prim_export(ctx, num_vertices_per_primitive, vtxindex); /* Export primitive ID. */ if (ctx->stage == ngg_vertex_gs && ctx->args->options->key.vs_common_out.export_prim_id) { /* Copy Primitive IDs from GS threads to the LDS address corresponding to the ES thread of the provoking vertex. */ Temp prim_id = get_arg(ctx, ctx->args->ac.gs_prim_id); Temp provoking_vtx_index = vtxindex[0]; Temp addr = bld.v_mul_imm(bld.def(v1), provoking_vtx_index, 4u); store_lds(ctx, 4, prim_id, 0x1u, addr, 0u, 4u); } begin_divergent_if_else(ctx, &ic); end_divergent_if(ctx, &ic); } void ngg_emit_nogs_output(isel_context *ctx) { /* Emits NGG GS output, for stages that don't have SW GS. */ if_context ic; Builder bld(ctx->program, ctx->block); bool late_prim_export = !ngg_early_prim_export(ctx); /* NGG streamout is currently disabled by default. */ assert(!ctx->args->shader_info->so.num_outputs); if (late_prim_export) { /* VS exports are output to registers in a predecessor block. Emit phis to get them into this block. */ create_export_phis(ctx); /* Do what we need to do in the GS threads. */ ngg_emit_nogs_gsthreads(ctx); /* What comes next should be executed on ES threads. */ Temp is_es_thread = merged_wave_info_to_mask(ctx, 0); begin_divergent_if_then(ctx, &ic, is_es_thread); bld.reset(ctx->block); } /* Export VS outputs */ ctx->block->kind |= block_kind_export_end; create_vs_exports(ctx); /* Export primitive ID */ if (ctx->args->options->key.vs_common_out.export_prim_id) { Temp prim_id; if (ctx->stage == ngg_vertex_gs) { /* Wait for GS threads to store primitive ID in LDS. */ create_workgroup_barrier(bld); /* Calculate LDS address where the GS threads stored the primitive ID. */ Temp wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16))); Temp thread_id_in_wave = emit_mbcnt(ctx, bld.def(v1)); Temp wave_id_mul = bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_id_in_tg), ctx->program->wave_size); Temp thread_id_in_tg = bld.vadd32(bld.def(v1), Operand(wave_id_mul), Operand(thread_id_in_wave)); Temp addr = bld.v_mul24_imm(bld.def(v1), thread_id_in_tg, 4u); /* Load primitive ID from LDS. */ prim_id = load_lds(ctx, 4, bld.tmp(v1), addr, 0u, 4u); } else if (ctx->stage == ngg_tess_eval_gs) { /* TES: Just use the patch ID as the primitive ID. */ prim_id = get_arg(ctx, ctx->args->ac.tes_patch_id); } else { unreachable("unsupported NGG shader stage."); } ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1; ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = prim_id; export_vs_varying(ctx, VARYING_SLOT_PRIMITIVE_ID, false, nullptr); } if (late_prim_export) { begin_divergent_if_else(ctx, &ic); end_divergent_if(ctx, &ic); bld.reset(ctx->block); } } void select_program(Program *program, unsigned shader_count, struct nir_shader *const *shaders, ac_shader_config* config, struct radv_shader_args *args) { isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args, false); if_context ic_merged_wave_info; bool ngg_no_gs = ctx.stage == ngg_vertex_gs || ctx.stage == ngg_tess_eval_gs; for (unsigned i = 0; i < shader_count; i++) { nir_shader *nir = shaders[i]; init_context(&ctx, nir); setup_fp_mode(&ctx, nir); if (!i) { /* needs to be after init_context() for FS */ Pseudo_instruction *startpgm = add_startpgm(&ctx); append_logical_start(ctx.block); if (unlikely(args->options->has_ls_vgpr_init_bug && ctx.stage == vertex_tess_control_hs)) fix_ls_vgpr_init_bug(&ctx, startpgm); split_arguments(&ctx, startpgm); } if (ngg_no_gs) { ngg_emit_sendmsg_gs_alloc_req(&ctx); if (ngg_early_prim_export(&ctx)) ngg_emit_nogs_gsthreads(&ctx); } /* In a merged VS+TCS HS, the VS implementation can be completely empty. */ nir_function_impl *func = nir_shader_get_entrypoint(nir); bool empty_shader = nir_cf_list_is_empty_block(&func->body) && ((nir->info.stage == MESA_SHADER_VERTEX && (ctx.stage == vertex_tess_control_hs || ctx.stage == vertex_geometry_gs)) || (nir->info.stage == MESA_SHADER_TESS_EVAL && ctx.stage == tess_eval_geometry_gs)); bool check_merged_wave_info = ctx.tcs_in_out_eq ? i == 0 : ((shader_count >= 2 && !empty_shader) || ngg_no_gs); bool endif_merged_wave_info = ctx.tcs_in_out_eq ? i == 1 : check_merged_wave_info; if (check_merged_wave_info) { Temp cond = merged_wave_info_to_mask(&ctx, i); begin_divergent_if_then(&ctx, &ic_merged_wave_info, cond); } if (i) { Builder bld(ctx.program, ctx.block); create_workgroup_barrier(bld); if (ctx.stage == vertex_geometry_gs || ctx.stage == tess_eval_geometry_gs) { ctx.gs_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1, m0), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | 16u)); } } else if (ctx.stage == geometry_gs) ctx.gs_wave_id = get_arg(&ctx, args->gs_wave_id); if (ctx.stage == fragment_fs) handle_bc_optimize(&ctx); visit_cf_list(&ctx, &func->body); if (ctx.program->info->so.num_outputs && (ctx.stage & hw_vs)) emit_streamout(&ctx, 0); if (ctx.stage & hw_vs) { create_vs_exports(&ctx); ctx.block->kind |= block_kind_export_end; } else if (ngg_no_gs && ngg_early_prim_export(&ctx)) { ngg_emit_nogs_output(&ctx); } else if (nir->info.stage == MESA_SHADER_GEOMETRY) { Builder bld(ctx.program, ctx.block); bld.barrier(aco_opcode::p_barrier, memory_sync_info(storage_vmem_output, semantic_release, scope_device)); bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx.gs_wave_id), -1, sendmsg_gs_done(false, false, 0)); } else if (nir->info.stage == MESA_SHADER_TESS_CTRL) { write_tcs_tess_factors(&ctx); } if (ctx.stage == fragment_fs) { create_fs_exports(&ctx); ctx.block->kind |= block_kind_export_end; } if (endif_merged_wave_info) { begin_divergent_if_else(&ctx, &ic_merged_wave_info); end_divergent_if(&ctx, &ic_merged_wave_info); } if (ngg_no_gs && !ngg_early_prim_export(&ctx)) ngg_emit_nogs_output(&ctx); if (i == 0 && ctx.stage == vertex_tess_control_hs && ctx.tcs_in_out_eq) { /* Outputs of the previous stage are inputs to the next stage */ ctx.inputs = ctx.outputs; ctx.outputs = shader_io_state(); } } program->config->float_mode = program->blocks[0].fp_mode.val; append_logical_end(ctx.block); ctx.block->kind |= block_kind_uniform; Builder bld(ctx.program, ctx.block); if (ctx.program->wb_smem_l1_on_end) bld.smem(aco_opcode::s_dcache_wb, memory_sync_info(storage_buffer, semantic_volatile)); bld.sopp(aco_opcode::s_endpgm); cleanup_cfg(program); } void select_gs_copy_shader(Program *program, struct nir_shader *gs_shader, ac_shader_config* config, struct radv_shader_args *args) { isel_context ctx = setup_isel_context(program, 1, &gs_shader, config, args, true); ctx.block->fp_mode = program->next_fp_mode; add_startpgm(&ctx); append_logical_start(ctx.block); Builder bld(ctx.program, ctx.block); Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), program->private_segment_buffer, Operand(RING_GSVS_VS * 16u)); Operand stream_id(0u); if (args->shader_info->so.num_outputs) stream_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(&ctx, ctx.args->streamout_config), Operand(0x20018u)); Temp vtx_offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), get_arg(&ctx, ctx.args->ac.vertex_id)); std::stack endif_blocks; for (unsigned stream = 0; stream < 4; stream++) { if (stream_id.isConstant() && stream != stream_id.constantValue()) continue; unsigned num_components = args->shader_info->gs.num_stream_output_components[stream]; if (stream > 0 && (!num_components || !args->shader_info->so.num_outputs)) continue; memset(ctx.outputs.mask, 0, sizeof(ctx.outputs.mask)); unsigned BB_if_idx = ctx.block->index; Block BB_endif = Block(); if (!stream_id.isConstant()) { /* begin IF */ Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), stream_id, Operand(stream)); append_logical_end(ctx.block); ctx.block->kind |= block_kind_uniform; bld.branch(aco_opcode::p_cbranch_z, cond); BB_endif.kind |= ctx.block->kind & block_kind_top_level; ctx.block = ctx.program->create_and_insert_block(); add_edge(BB_if_idx, ctx.block); bld.reset(ctx.block); append_logical_start(ctx.block); } unsigned offset = 0; for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) { if (args->shader_info->gs.output_streams[i] != stream) continue; unsigned output_usage_mask = args->shader_info->gs.output_usage_mask[i]; unsigned length = util_last_bit(output_usage_mask); for (unsigned j = 0; j < length; ++j) { if (!(output_usage_mask & (1 << j))) continue; unsigned const_offset = offset * args->shader_info->gs.vertices_out * 16 * 4; Temp voffset = vtx_offset; if (const_offset >= 4096u) { voffset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), voffset); const_offset %= 4096u; } aco_ptr mubuf{create_instruction(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)}; mubuf->definitions[0] = bld.def(v1); mubuf->operands[0] = Operand(gsvs_ring); mubuf->operands[1] = Operand(voffset); mubuf->operands[2] = Operand(0u); mubuf->offen = true; mubuf->offset = const_offset; mubuf->glc = true; mubuf->slc = true; mubuf->dlc = args->options->chip_class >= GFX10; ctx.outputs.mask[i] |= 1 << j; ctx.outputs.temps[i * 4u + j] = mubuf->definitions[0].getTemp(); bld.insert(std::move(mubuf)); offset++; } } if (args->shader_info->so.num_outputs) { emit_streamout(&ctx, stream); bld.reset(ctx.block); } if (stream == 0) { create_vs_exports(&ctx); ctx.block->kind |= block_kind_export_end; } if (!stream_id.isConstant()) { append_logical_end(ctx.block); /* branch from then block to endif block */ bld.branch(aco_opcode::p_branch); add_edge(ctx.block->index, &BB_endif); ctx.block->kind |= block_kind_uniform; /* emit else block */ ctx.block = ctx.program->create_and_insert_block(); add_edge(BB_if_idx, ctx.block); bld.reset(ctx.block); append_logical_start(ctx.block); endif_blocks.push(std::move(BB_endif)); } } while (!endif_blocks.empty()) { Block BB_endif = std::move(endif_blocks.top()); endif_blocks.pop(); Block *BB_else = ctx.block; append_logical_end(BB_else); /* branch from else block to endif block */ bld.branch(aco_opcode::p_branch); add_edge(BB_else->index, &BB_endif); BB_else->kind |= block_kind_uniform; /** emit endif merge block */ ctx.block = program->insert_block(std::move(BB_endif)); bld.reset(ctx.block); append_logical_start(ctx.block); } program->config->float_mode = program->blocks[0].fp_mode.val; append_logical_end(ctx.block); ctx.block->kind |= block_kind_uniform; bld.sopp(aco_opcode::s_endpgm); cleanup_cfg(program); } }