/* * Copyright 2014 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * */ /* based on pieces from si_pipe.c and radeon_llvm_emit.c */ #include "ac_llvm_util.h" #include #include "c11/threads.h" #include #include #include "util/bitscan.h" #include "util/macros.h" static void ac_init_llvm_target() { #if HAVE_LLVM < 0x0307 LLVMInitializeR600TargetInfo(); LLVMInitializeR600Target(); LLVMInitializeR600TargetMC(); LLVMInitializeR600AsmPrinter(); #else LLVMInitializeAMDGPUTargetInfo(); LLVMInitializeAMDGPUTarget(); LLVMInitializeAMDGPUTargetMC(); LLVMInitializeAMDGPUAsmPrinter(); #endif } static once_flag ac_init_llvm_target_once_flag = ONCE_FLAG_INIT; static LLVMTargetRef ac_get_llvm_target(const char *triple) { LLVMTargetRef target = NULL; char *err_message = NULL; call_once(&ac_init_llvm_target_once_flag, ac_init_llvm_target); if (LLVMGetTargetFromTriple(triple, &target, &err_message)) { fprintf(stderr, "Cannot find target for triple %s ", triple); if (err_message) { fprintf(stderr, "%s\n", err_message); } LLVMDisposeMessage(err_message); return NULL; } return target; } static const char *ac_get_llvm_processor_name(enum radeon_family family) { switch (family) { case CHIP_TAHITI: return "tahiti"; case CHIP_PITCAIRN: return "pitcairn"; case CHIP_VERDE: return "verde"; case CHIP_OLAND: return "oland"; case CHIP_HAINAN: return "hainan"; case CHIP_BONAIRE: return "bonaire"; case CHIP_KABINI: return "kabini"; case CHIP_KAVERI: return "kaveri"; case CHIP_HAWAII: return "hawaii"; case CHIP_MULLINS: return "mullins"; case CHIP_TONGA: return "tonga"; case CHIP_ICELAND: return "iceland"; case CHIP_CARRIZO: return "carrizo"; #if HAVE_LLVM <= 0x0307 case CHIP_FIJI: return "tonga"; case CHIP_STONEY: return "carrizo"; #else case CHIP_FIJI: return "fiji"; case CHIP_STONEY: return "stoney"; #endif #if HAVE_LLVM <= 0x0308 case CHIP_POLARIS10: return "tonga"; case CHIP_POLARIS11: return "tonga"; #else case CHIP_POLARIS10: return "polaris10"; case CHIP_POLARIS11: return "polaris11"; #endif default: return ""; } } LLVMTargetMachineRef ac_create_target_machine(enum radeon_family family) { assert(family >= CHIP_TAHITI); const char *triple = "amdgcn--"; LLVMTargetRef target = ac_get_llvm_target(triple); LLVMTargetMachineRef tm = LLVMCreateTargetMachine( target, triple, ac_get_llvm_processor_name(family), "+DumpCode,+vgpr-spilling", LLVMCodeGenLevelDefault, LLVMRelocDefault, LLVMCodeModelDefault); return tm; } /* Initialize module-independent parts of the context. * * The caller is responsible for initializing ctx::module and ctx::builder. */ void ac_llvm_context_init(struct ac_llvm_context *ctx, LLVMContextRef context) { LLVMValueRef args[1]; ctx->context = context; ctx->module = NULL; ctx->builder = NULL; ctx->i32 = LLVMIntTypeInContext(ctx->context, 32); ctx->f32 = LLVMFloatTypeInContext(ctx->context); ctx->fpmath_md_kind = LLVMGetMDKindIDInContext(ctx->context, "fpmath", 6); args[0] = LLVMConstReal(ctx->f32, 2.5); ctx->fpmath_md_2p5_ulp = LLVMMDNodeInContext(ctx->context, args, 1); } #if HAVE_LLVM < 0x0400 static LLVMAttribute ac_attr_to_llvm_attr(enum ac_func_attr attr) { switch (attr) { case AC_FUNC_ATTR_ALWAYSINLINE: return LLVMAlwaysInlineAttribute; case AC_FUNC_ATTR_BYVAL: return LLVMByValAttribute; case AC_FUNC_ATTR_INREG: return LLVMInRegAttribute; case AC_FUNC_ATTR_NOALIAS: return LLVMNoAliasAttribute; case AC_FUNC_ATTR_NOUNWIND: return LLVMNoUnwindAttribute; case AC_FUNC_ATTR_READNONE: return LLVMReadNoneAttribute; case AC_FUNC_ATTR_READONLY: return LLVMReadOnlyAttribute; default: fprintf(stderr, "Unhandled function attribute: %x\n", attr); return 0; } } #else static const char *attr_to_str(enum ac_func_attr attr) { switch (attr) { case AC_FUNC_ATTR_ALWAYSINLINE: return "alwaysinline"; case AC_FUNC_ATTR_BYVAL: return "byval"; case AC_FUNC_ATTR_INREG: return "inreg"; case AC_FUNC_ATTR_NOALIAS: return "noalias"; case AC_FUNC_ATTR_NOUNWIND: return "nounwind"; case AC_FUNC_ATTR_READNONE: return "readnone"; case AC_FUNC_ATTR_READONLY: return "readonly"; default: fprintf(stderr, "Unhandled function attribute: %x\n", attr); return 0; } } #endif void ac_add_function_attr(LLVMValueRef function, int attr_idx, enum ac_func_attr attr) { #if HAVE_LLVM < 0x0400 LLVMAttribute llvm_attr = ac_attr_to_llvm_attr(attr); if (attr_idx == -1) { LLVMAddFunctionAttr(function, llvm_attr); } else { LLVMAddAttribute(LLVMGetParam(function, attr_idx - 1), llvm_attr); } #else LLVMContextRef context = LLVMGetModuleContext(LLVMGetGlobalParent(function)); const char *attr_name = attr_to_str(attr); unsigned kind_id = LLVMGetEnumAttributeKindForName(attr_name, strlen(attr_name)); LLVMAttributeRef llvm_attr = LLVMCreateEnumAttribute(context, kind_id, 0); LLVMAddAttributeAtIndex(function, attr_idx, llvm_attr); #endif } LLVMValueRef ac_emit_llvm_intrinsic(struct ac_llvm_context *ctx, const char *name, LLVMTypeRef return_type, LLVMValueRef *params, unsigned param_count, unsigned attrib_mask) { LLVMValueRef function; function = LLVMGetNamedFunction(ctx->module, name); if (!function) { LLVMTypeRef param_types[32], function_type; unsigned i; assert(param_count <= 32); for (i = 0; i < param_count; ++i) { assert(params[i]); param_types[i] = LLVMTypeOf(params[i]); } function_type = LLVMFunctionType(return_type, param_types, param_count, 0); function = LLVMAddFunction(ctx->module, name, function_type); LLVMSetFunctionCallConv(function, LLVMCCallConv); LLVMSetLinkage(function, LLVMExternalLinkage); attrib_mask |= AC_FUNC_ATTR_NOUNWIND; while (attrib_mask) { enum ac_func_attr attr = 1u << u_bit_scan(&attrib_mask); ac_add_function_attr(function, -1, attr); } } return LLVMBuildCall(ctx->builder, function, params, param_count, ""); } LLVMValueRef ac_build_gather_values_extended(struct ac_llvm_context *ctx, LLVMValueRef *values, unsigned value_count, unsigned value_stride, bool load) { LLVMBuilderRef builder = ctx->builder; LLVMValueRef vec; unsigned i; if (value_count == 1) { if (load) return LLVMBuildLoad(builder, values[0], ""); return values[0]; } else if (!value_count) unreachable("value_count is 0"); for (i = 0; i < value_count; i++) { LLVMValueRef value = values[i * value_stride]; if (load) value = LLVMBuildLoad(builder, value, ""); if (!i) vec = LLVMGetUndef( LLVMVectorType(LLVMTypeOf(value), value_count)); LLVMValueRef index = LLVMConstInt(ctx->i32, i, false); vec = LLVMBuildInsertElement(builder, vec, value, index, ""); } return vec; } LLVMValueRef ac_build_gather_values(struct ac_llvm_context *ctx, LLVMValueRef *values, unsigned value_count) { return ac_build_gather_values_extended(ctx, values, value_count, 1, false); } LLVMValueRef ac_emit_fdiv(struct ac_llvm_context *ctx, LLVMValueRef num, LLVMValueRef den) { LLVMValueRef ret = LLVMBuildFDiv(ctx->builder, num, den, ""); if (!LLVMIsConstant(ret)) LLVMSetMetadata(ret, ctx->fpmath_md_kind, ctx->fpmath_md_2p5_ulp); return ret; } /* Coordinates for cube map selection. sc, tc, and ma are as in Table 8.27 * of the OpenGL 4.5 (Compatibility Profile) specification, except ma is * already multiplied by two. id is the cube face number. */ struct cube_selection_coords { LLVMValueRef stc[2]; LLVMValueRef ma; LLVMValueRef id; }; static void build_cube_intrinsic(struct ac_llvm_context *ctx, LLVMValueRef in[3], struct cube_selection_coords *out) { LLVMBuilderRef builder = ctx->builder; if (HAVE_LLVM >= 0x0309) { LLVMTypeRef f32 = ctx->f32; out->stc[1] = ac_emit_llvm_intrinsic(ctx, "llvm.amdgcn.cubetc", f32, in, 3, AC_FUNC_ATTR_READNONE); out->stc[0] = ac_emit_llvm_intrinsic(ctx, "llvm.amdgcn.cubesc", f32, in, 3, AC_FUNC_ATTR_READNONE); out->ma = ac_emit_llvm_intrinsic(ctx, "llvm.amdgcn.cubema", f32, in, 3, AC_FUNC_ATTR_READNONE); out->id = ac_emit_llvm_intrinsic(ctx, "llvm.amdgcn.cubeid", f32, in, 3, AC_FUNC_ATTR_READNONE); } else { LLVMValueRef c[4] = { in[0], in[1], in[2], LLVMGetUndef(LLVMTypeOf(in[0])) }; LLVMValueRef vec = ac_build_gather_values(ctx, c, 4); LLVMValueRef tmp = ac_emit_llvm_intrinsic(ctx, "llvm.AMDGPU.cube", LLVMTypeOf(vec), &vec, 1, AC_FUNC_ATTR_READNONE); out->stc[1] = LLVMBuildExtractElement(builder, tmp, LLVMConstInt(ctx->i32, 0, 0), ""); out->stc[0] = LLVMBuildExtractElement(builder, tmp, LLVMConstInt(ctx->i32, 1, 0), ""); out->ma = LLVMBuildExtractElement(builder, tmp, LLVMConstInt(ctx->i32, 2, 0), ""); out->id = LLVMBuildExtractElement(builder, tmp, LLVMConstInt(ctx->i32, 3, 0), ""); } } /** * Build a manual selection sequence for cube face sc/tc coordinates and * major axis vector (multiplied by 2 for consistency) for the given * vec3 \p coords, for the face implied by \p selcoords. * * For the major axis, we always adjust the sign to be in the direction of * selcoords.ma; i.e., a positive out_ma means that coords is pointed towards * the selcoords major axis. */ static void build_cube_select(LLVMBuilderRef builder, const struct cube_selection_coords *selcoords, const LLVMValueRef *coords, LLVMValueRef *out_st, LLVMValueRef *out_ma) { LLVMTypeRef f32 = LLVMTypeOf(coords[0]); LLVMValueRef is_ma_positive; LLVMValueRef sgn_ma; LLVMValueRef is_ma_z, is_not_ma_z; LLVMValueRef is_ma_y; LLVMValueRef is_ma_x; LLVMValueRef sgn; LLVMValueRef tmp; is_ma_positive = LLVMBuildFCmp(builder, LLVMRealUGE, selcoords->ma, LLVMConstReal(f32, 0.0), ""); sgn_ma = LLVMBuildSelect(builder, is_ma_positive, LLVMConstReal(f32, 1.0), LLVMConstReal(f32, -1.0), ""); is_ma_z = LLVMBuildFCmp(builder, LLVMRealUGE, selcoords->id, LLVMConstReal(f32, 4.0), ""); is_not_ma_z = LLVMBuildNot(builder, is_ma_z, ""); is_ma_y = LLVMBuildAnd(builder, is_not_ma_z, LLVMBuildFCmp(builder, LLVMRealUGE, selcoords->id, LLVMConstReal(f32, 2.0), ""), ""); is_ma_x = LLVMBuildAnd(builder, is_not_ma_z, LLVMBuildNot(builder, is_ma_y, ""), ""); /* Select sc */ tmp = LLVMBuildSelect(builder, is_ma_z, coords[2], coords[0], ""); sgn = LLVMBuildSelect(builder, is_ma_y, LLVMConstReal(f32, 1.0), LLVMBuildSelect(builder, is_ma_x, sgn_ma, LLVMBuildFNeg(builder, sgn_ma, ""), ""), ""); out_st[0] = LLVMBuildFMul(builder, tmp, sgn, ""); /* Select tc */ tmp = LLVMBuildSelect(builder, is_ma_y, coords[2], coords[1], ""); sgn = LLVMBuildSelect(builder, is_ma_y, LLVMBuildFNeg(builder, sgn_ma, ""), LLVMConstReal(f32, -1.0), ""); out_st[1] = LLVMBuildFMul(builder, tmp, sgn, ""); /* Select ma */ tmp = LLVMBuildSelect(builder, is_ma_z, coords[2], LLVMBuildSelect(builder, is_ma_y, coords[1], coords[0], ""), ""); sgn = LLVMBuildSelect(builder, is_ma_positive, LLVMConstReal(f32, 2.0), LLVMConstReal(f32, -2.0), ""); *out_ma = LLVMBuildFMul(builder, tmp, sgn, ""); } void ac_prepare_cube_coords(struct ac_llvm_context *ctx, bool is_deriv, bool is_array, LLVMValueRef *coords_arg, LLVMValueRef *derivs_arg) { LLVMBuilderRef builder = ctx->builder; struct cube_selection_coords selcoords; LLVMValueRef coords[3]; LLVMValueRef invma; build_cube_intrinsic(ctx, coords_arg, &selcoords); invma = ac_emit_llvm_intrinsic(ctx, "llvm.fabs.f32", ctx->f32, &selcoords.ma, 1, AC_FUNC_ATTR_READNONE); invma = ac_emit_fdiv(ctx, LLVMConstReal(ctx->f32, 1.0), invma); for (int i = 0; i < 2; ++i) coords[i] = LLVMBuildFMul(builder, selcoords.stc[i], invma, ""); coords[2] = selcoords.id; if (is_deriv && derivs_arg) { LLVMValueRef derivs[4]; int axis; /* Convert cube derivatives to 2D derivatives. */ for (axis = 0; axis < 2; axis++) { LLVMValueRef deriv_st[2]; LLVMValueRef deriv_ma; /* Transform the derivative alongside the texture * coordinate. Mathematically, the correct formula is * as follows. Assume we're projecting onto the +Z face * and denote by dx/dh the derivative of the (original) * X texture coordinate with respect to horizontal * window coordinates. The projection onto the +Z face * plane is: * * f(x,z) = x/z * * Then df/dh = df/dx * dx/dh + df/dz * dz/dh * = 1/z * dx/dh - x/z * 1/z * dz/dh. * * This motivatives the implementation below. * * Whether this actually gives the expected results for * apps that might feed in derivatives obtained via * finite differences is anyone's guess. The OpenGL spec * seems awfully quiet about how textureGrad for cube * maps should be handled. */ build_cube_select(builder, &selcoords, &derivs_arg[axis * 3], deriv_st, &deriv_ma); deriv_ma = LLVMBuildFMul(builder, deriv_ma, invma, ""); for (int i = 0; i < 2; ++i) derivs[axis * 2 + i] = LLVMBuildFSub(builder, LLVMBuildFMul(builder, deriv_st[i], invma, ""), LLVMBuildFMul(builder, deriv_ma, coords[i], ""), ""); } memcpy(derivs_arg, derivs, sizeof(derivs)); } /* Shift the texture coordinate. This must be applied after the * derivative calculation. */ for (int i = 0; i < 2; ++i) coords[i] = LLVMBuildFAdd(builder, coords[i], LLVMConstReal(ctx->f32, 1.5), ""); if (is_array) { /* for cube arrays coord.z = coord.w(array_index) * 8 + face */ /* coords_arg.w component - array_index for cube arrays */ LLVMValueRef tmp = LLVMBuildFMul(ctx->builder, coords_arg[3], LLVMConstReal(ctx->f32, 8.0), ""); coords[2] = LLVMBuildFAdd(ctx->builder, tmp, coords[2], ""); } memcpy(coords_arg, coords, sizeof(coords)); }