summaryrefslogtreecommitdiff
path: root/src/mesa/drivers/dri/i965/brw_fs.cpp
diff options
context:
space:
mode:
authorJason Ekstrand <jason.ekstrand@intel.com>2017-02-28 09:10:43 -0800
committerEmil Velikov <emil.l.velikov@gmail.com>2017-03-13 11:16:34 +0000
commit700bebb958e93f4d472c383de62ced9db8e64bec (patch)
tree0075c098c56c338f38ba0db80b9dba3e7e268a17 /src/mesa/drivers/dri/i965/brw_fs.cpp
parentd0d4a5f43b4dd79bd7bfff7c7deaade10bfebf7c (diff)
i965: Move the back-end compiler to src/intel/compiler
Mostly a dummy git mv with a couple of noticable parts: - With the earlier header cleanups, nothing in src/intel depends files from src/mesa/drivers/dri/i965/ - Both Autoconf and Android builds are addressed. Thanks to Mauro and Tapani for the fixups in the latter - brw_util.[ch] is not really compiler specific, so it's moved to i965. v2: - move brw_eu_defines.h instead of brw_defines.h - remove no-longer applicable includes - add missing vulkan/ prefix in the Android build (thanks Tapani) v3: - don't list brw_defines.h in src/intel/Makefile.sources (Jason) - rebase on top of the oa patches [Emil Velikov: commit message, various small fixes througout] Signed-off-by: Emil Velikov <emil.velikov@collabora.com> Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
Diffstat (limited to 'src/mesa/drivers/dri/i965/brw_fs.cpp')
-rw-r--r--src/mesa/drivers/dri/i965/brw_fs.cpp6805
1 files changed, 0 insertions, 6805 deletions
diff --git a/src/mesa/drivers/dri/i965/brw_fs.cpp b/src/mesa/drivers/dri/i965/brw_fs.cpp
deleted file mode 100644
index c410efc29d6..00000000000
--- a/src/mesa/drivers/dri/i965/brw_fs.cpp
+++ /dev/null
@@ -1,6805 +0,0 @@
-/*
- * Copyright © 2010 Intel Corporation
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice (including the next
- * paragraph) shall be included in all copies or substantial portions of the
- * Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- * IN THE SOFTWARE.
- */
-
-/** @file brw_fs.cpp
- *
- * This file drives the GLSL IR -> LIR translation, contains the
- * optimizations on the LIR, and drives the generation of native code
- * from the LIR.
- */
-
-#include "main/macros.h"
-#include "brw_eu.h"
-#include "brw_fs.h"
-#include "brw_nir.h"
-#include "brw_vec4_gs_visitor.h"
-#include "brw_cfg.h"
-#include "brw_dead_control_flow.h"
-#include "common/gen_debug.h"
-#include "compiler/glsl_types.h"
-#include "compiler/nir/nir_builder.h"
-#include "program/prog_parameter.h"
-
-using namespace brw;
-
-static unsigned get_lowered_simd_width(const struct gen_device_info *devinfo,
- const fs_inst *inst);
-
-void
-fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
- const fs_reg *src, unsigned sources)
-{
- memset(this, 0, sizeof(*this));
-
- this->src = new fs_reg[MAX2(sources, 3)];
- for (unsigned i = 0; i < sources; i++)
- this->src[i] = src[i];
-
- this->opcode = opcode;
- this->dst = dst;
- this->sources = sources;
- this->exec_size = exec_size;
- this->base_mrf = -1;
-
- assert(dst.file != IMM && dst.file != UNIFORM);
-
- assert(this->exec_size != 0);
-
- this->conditional_mod = BRW_CONDITIONAL_NONE;
-
- /* This will be the case for almost all instructions. */
- switch (dst.file) {
- case VGRF:
- case ARF:
- case FIXED_GRF:
- case MRF:
- case ATTR:
- this->size_written = dst.component_size(exec_size);
- break;
- case BAD_FILE:
- this->size_written = 0;
- break;
- case IMM:
- case UNIFORM:
- unreachable("Invalid destination register file");
- }
-
- this->writes_accumulator = false;
-}
-
-fs_inst::fs_inst()
-{
- init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
-}
-
-fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
-{
- init(opcode, exec_size, reg_undef, NULL, 0);
-}
-
-fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
-{
- init(opcode, exec_size, dst, NULL, 0);
-}
-
-fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
- const fs_reg &src0)
-{
- const fs_reg src[1] = { src0 };
- init(opcode, exec_size, dst, src, 1);
-}
-
-fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
- const fs_reg &src0, const fs_reg &src1)
-{
- const fs_reg src[2] = { src0, src1 };
- init(opcode, exec_size, dst, src, 2);
-}
-
-fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
- const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
-{
- const fs_reg src[3] = { src0, src1, src2 };
- init(opcode, exec_size, dst, src, 3);
-}
-
-fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
- const fs_reg src[], unsigned sources)
-{
- init(opcode, exec_width, dst, src, sources);
-}
-
-fs_inst::fs_inst(const fs_inst &that)
-{
- memcpy(this, &that, sizeof(that));
-
- this->src = new fs_reg[MAX2(that.sources, 3)];
-
- for (unsigned i = 0; i < that.sources; i++)
- this->src[i] = that.src[i];
-}
-
-fs_inst::~fs_inst()
-{
- delete[] this->src;
-}
-
-void
-fs_inst::resize_sources(uint8_t num_sources)
-{
- if (this->sources != num_sources) {
- fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
-
- for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
- src[i] = this->src[i];
-
- delete[] this->src;
- this->src = src;
- this->sources = num_sources;
- }
-}
-
-void
-fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
- const fs_reg &dst,
- const fs_reg &surf_index,
- const fs_reg &varying_offset,
- uint32_t const_offset)
-{
- /* We have our constant surface use a pitch of 4 bytes, so our index can
- * be any component of a vector, and then we load 4 contiguous
- * components starting from that.
- *
- * We break down the const_offset to a portion added to the variable offset
- * and a portion done using fs_reg::offset, which means that if you have
- * GLSL using something like "uniform vec4 a[20]; gl_FragColor = a[i]",
- * we'll temporarily generate 4 vec4 loads from offset i * 4, and CSE can
- * later notice that those loads are all the same and eliminate the
- * redundant ones.
- */
- fs_reg vec4_offset = vgrf(glsl_type::uint_type);
- bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
-
- /* The pull load message will load a vec4 (16 bytes). If we are loading
- * a double this means we are only loading 2 elements worth of data.
- * We also want to use a 32-bit data type for the dst of the load operation
- * so other parts of the driver don't get confused about the size of the
- * result.
- */
- fs_reg vec4_result = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
- fs_inst *inst = bld.emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
- vec4_result, surf_index, vec4_offset);
- inst->size_written = 4 * vec4_result.component_size(inst->exec_size);
-
- if (type_sz(dst.type) == 8) {
- shuffle_32bit_load_result_to_64bit_data(
- bld, retype(vec4_result, dst.type), vec4_result, 2);
- }
-
- vec4_result.type = dst.type;
- bld.MOV(dst, offset(vec4_result, bld,
- (const_offset & 0xf) / type_sz(vec4_result.type)));
-}
-
-/**
- * A helper for MOV generation for fixing up broken hardware SEND dependency
- * handling.
- */
-void
-fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
-{
- /* The caller always wants uncompressed to emit the minimal extra
- * dependencies, and to avoid having to deal with aligning its regs to 2.
- */
- const fs_builder ubld = bld.annotate("send dependency resolve")
- .half(0);
-
- ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
-}
-
-bool
-fs_inst::equals(fs_inst *inst) const
-{
- return (opcode == inst->opcode &&
- dst.equals(inst->dst) &&
- src[0].equals(inst->src[0]) &&
- src[1].equals(inst->src[1]) &&
- src[2].equals(inst->src[2]) &&
- saturate == inst->saturate &&
- predicate == inst->predicate &&
- conditional_mod == inst->conditional_mod &&
- mlen == inst->mlen &&
- base_mrf == inst->base_mrf &&
- target == inst->target &&
- eot == inst->eot &&
- header_size == inst->header_size &&
- shadow_compare == inst->shadow_compare &&
- exec_size == inst->exec_size &&
- offset == inst->offset);
-}
-
-bool
-fs_inst::is_send_from_grf() const
-{
- switch (opcode) {
- case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
- case SHADER_OPCODE_SHADER_TIME_ADD:
- case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
- case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
- case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
- case SHADER_OPCODE_UNTYPED_ATOMIC:
- case SHADER_OPCODE_UNTYPED_SURFACE_READ:
- case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
- case SHADER_OPCODE_TYPED_ATOMIC:
- case SHADER_OPCODE_TYPED_SURFACE_READ:
- case SHADER_OPCODE_TYPED_SURFACE_WRITE:
- case SHADER_OPCODE_URB_WRITE_SIMD8:
- case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
- case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
- case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
- case SHADER_OPCODE_URB_READ_SIMD8:
- case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
- return true;
- case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
- return src[1].file == VGRF;
- case FS_OPCODE_FB_WRITE:
- case FS_OPCODE_FB_READ:
- return src[0].file == VGRF;
- default:
- if (is_tex())
- return src[0].file == VGRF;
-
- return false;
- }
-}
-
-/**
- * Returns true if this instruction's sources and destinations cannot
- * safely be the same register.
- *
- * In most cases, a register can be written over safely by the same
- * instruction that is its last use. For a single instruction, the
- * sources are dereferenced before writing of the destination starts
- * (naturally).
- *
- * However, there are a few cases where this can be problematic:
- *
- * - Virtual opcodes that translate to multiple instructions in the
- * code generator: if src == dst and one instruction writes the
- * destination before a later instruction reads the source, then
- * src will have been clobbered.
- *
- * - SIMD16 compressed instructions with certain regioning (see below).
- *
- * The register allocator uses this information to set up conflicts between
- * GRF sources and the destination.
- */
-bool
-fs_inst::has_source_and_destination_hazard() const
-{
- switch (opcode) {
- case FS_OPCODE_PACK_HALF_2x16_SPLIT:
- /* Multiple partial writes to the destination */
- return true;
- default:
- /* The SIMD16 compressed instruction
- *
- * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
- *
- * is actually decoded in hardware as:
- *
- * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
- * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
- *
- * Which is safe. However, if we have uniform accesses
- * happening, we get into trouble:
- *
- * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
- * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
- *
- * Now our destination for the first instruction overwrote the
- * second instruction's src0, and we get garbage for those 8
- * pixels. There's a similar issue for the pre-gen6
- * pixel_x/pixel_y, which are registers of 16-bit values and thus
- * would get stomped by the first decode as well.
- */
- if (exec_size == 16) {
- for (int i = 0; i < sources; i++) {
- if (src[i].file == VGRF && (src[i].stride == 0 ||
- src[i].type == BRW_REGISTER_TYPE_UW ||
- src[i].type == BRW_REGISTER_TYPE_W ||
- src[i].type == BRW_REGISTER_TYPE_UB ||
- src[i].type == BRW_REGISTER_TYPE_B)) {
- return true;
- }
- }
- }
- return false;
- }
-}
-
-bool
-fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
-{
- if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
- return false;
-
- fs_reg reg = this->src[0];
- if (reg.file != VGRF || reg.offset != 0 || reg.stride != 1)
- return false;
-
- if (grf_alloc.sizes[reg.nr] * REG_SIZE != this->size_written)
- return false;
-
- for (int i = 0; i < this->sources; i++) {
- reg.type = this->src[i].type;
- if (!this->src[i].equals(reg))
- return false;
-
- if (i < this->header_size) {
- reg.offset += REG_SIZE;
- } else {
- reg = horiz_offset(reg, this->exec_size);
- }
- }
-
- return true;
-}
-
-bool
-fs_inst::can_do_source_mods(const struct gen_device_info *devinfo)
-{
- if (devinfo->gen == 6 && is_math())
- return false;
-
- if (is_send_from_grf())
- return false;
-
- if (!backend_instruction::can_do_source_mods())
- return false;
-
- return true;
-}
-
-bool
-fs_inst::can_change_types() const
-{
- return dst.type == src[0].type &&
- !src[0].abs && !src[0].negate && !saturate &&
- (opcode == BRW_OPCODE_MOV ||
- (opcode == BRW_OPCODE_SEL &&
- dst.type == src[1].type &&
- predicate != BRW_PREDICATE_NONE &&
- !src[1].abs && !src[1].negate));
-}
-
-bool
-fs_inst::has_side_effects() const
-{
- return this->eot || backend_instruction::has_side_effects();
-}
-
-void
-fs_reg::init()
-{
- memset(this, 0, sizeof(*this));
- stride = 1;
-}
-
-/** Generic unset register constructor. */
-fs_reg::fs_reg()
-{
- init();
- this->file = BAD_FILE;
-}
-
-fs_reg::fs_reg(struct ::brw_reg reg) :
- backend_reg(reg)
-{
- this->offset = 0;
- this->stride = 1;
- if (this->file == IMM &&
- (this->type != BRW_REGISTER_TYPE_V &&
- this->type != BRW_REGISTER_TYPE_UV &&
- this->type != BRW_REGISTER_TYPE_VF)) {
- this->stride = 0;
- }
-}
-
-bool
-fs_reg::equals(const fs_reg &r) const
-{
- return (this->backend_reg::equals(r) &&
- stride == r.stride);
-}
-
-bool
-fs_reg::is_contiguous() const
-{
- return stride == 1;
-}
-
-unsigned
-fs_reg::component_size(unsigned width) const
-{
- const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
- hstride == 0 ? 0 :
- 1 << (hstride - 1));
- return MAX2(width * stride, 1) * type_sz(type);
-}
-
-extern "C" int
-type_size_scalar(const struct glsl_type *type)
-{
- unsigned int size, i;
-
- switch (type->base_type) {
- case GLSL_TYPE_UINT:
- case GLSL_TYPE_INT:
- case GLSL_TYPE_FLOAT:
- case GLSL_TYPE_BOOL:
- return type->components();
- case GLSL_TYPE_DOUBLE:
- case GLSL_TYPE_UINT64:
- case GLSL_TYPE_INT64:
- return type->components() * 2;
- case GLSL_TYPE_ARRAY:
- return type_size_scalar(type->fields.array) * type->length;
- case GLSL_TYPE_STRUCT:
- size = 0;
- for (i = 0; i < type->length; i++) {
- size += type_size_scalar(type->fields.structure[i].type);
- }
- return size;
- case GLSL_TYPE_SAMPLER:
- /* Samplers take up no register space, since they're baked in at
- * link time.
- */
- return 0;
- case GLSL_TYPE_ATOMIC_UINT:
- return 0;
- case GLSL_TYPE_SUBROUTINE:
- return 1;
- case GLSL_TYPE_IMAGE:
- return BRW_IMAGE_PARAM_SIZE;
- case GLSL_TYPE_VOID:
- case GLSL_TYPE_ERROR:
- case GLSL_TYPE_INTERFACE:
- case GLSL_TYPE_FUNCTION:
- unreachable("not reached");
- }
-
- return 0;
-}
-
-/**
- * Create a MOV to read the timestamp register.
- *
- * The caller is responsible for emitting the MOV. The return value is
- * the destination of the MOV, with extra parameters set.
- */
-fs_reg
-fs_visitor::get_timestamp(const fs_builder &bld)
-{
- assert(devinfo->gen >= 7);
-
- fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
- BRW_ARF_TIMESTAMP,
- 0),
- BRW_REGISTER_TYPE_UD));
-
- fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
-
- /* We want to read the 3 fields we care about even if it's not enabled in
- * the dispatch.
- */
- bld.group(4, 0).exec_all().MOV(dst, ts);
-
- return dst;
-}
-
-void
-fs_visitor::emit_shader_time_begin()
-{
- /* We want only the low 32 bits of the timestamp. Since it's running
- * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
- * which is plenty of time for our purposes. It is identical across the
- * EUs, but since it's tracking GPU core speed it will increment at a
- * varying rate as render P-states change.
- */
- shader_start_time = component(
- get_timestamp(bld.annotate("shader time start")), 0);
-}
-
-void
-fs_visitor::emit_shader_time_end()
-{
- /* Insert our code just before the final SEND with EOT. */
- exec_node *end = this->instructions.get_tail();
- assert(end && ((fs_inst *) end)->eot);
- const fs_builder ibld = bld.annotate("shader time end")
- .exec_all().at(NULL, end);
- const fs_reg timestamp = get_timestamp(ibld);
-
- /* We only use the low 32 bits of the timestamp - see
- * emit_shader_time_begin()).
- *
- * We could also check if render P-states have changed (or anything
- * else that might disrupt timing) by setting smear to 2 and checking if
- * that field is != 0.
- */
- const fs_reg shader_end_time = component(timestamp, 0);
-
- /* Check that there weren't any timestamp reset events (assuming these
- * were the only two timestamp reads that happened).
- */
- const fs_reg reset = component(timestamp, 2);
- set_condmod(BRW_CONDITIONAL_Z,
- ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
- ibld.IF(BRW_PREDICATE_NORMAL);
-
- fs_reg start = shader_start_time;
- start.negate = true;
- const fs_reg diff = component(fs_reg(VGRF, alloc.allocate(1),
- BRW_REGISTER_TYPE_UD),
- 0);
- const fs_builder cbld = ibld.group(1, 0);
- cbld.group(1, 0).ADD(diff, start, shader_end_time);
-
- /* If there were no instructions between the two timestamp gets, the diff
- * is 2 cycles. Remove that overhead, so I can forget about that when
- * trying to determine the time taken for single instructions.
- */
- cbld.ADD(diff, diff, brw_imm_ud(-2u));
- SHADER_TIME_ADD(cbld, 0, diff);
- SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
- ibld.emit(BRW_OPCODE_ELSE);
- SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
- ibld.emit(BRW_OPCODE_ENDIF);
-}
-
-void
-fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
- int shader_time_subindex,
- fs_reg value)
-{
- int index = shader_time_index * 3 + shader_time_subindex;
- struct brw_reg offset = brw_imm_d(index * BRW_SHADER_TIME_STRIDE);
-
- fs_reg payload;
- if (dispatch_width == 8)
- payload = vgrf(glsl_type::uvec2_type);
- else
- payload = vgrf(glsl_type::uint_type);
-
- bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
-}
-
-void
-fs_visitor::vfail(const char *format, va_list va)
-{
- char *msg;
-
- if (failed)
- return;
-
- failed = true;
-
- msg = ralloc_vasprintf(mem_ctx, format, va);
- msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
-
- this->fail_msg = msg;
-
- if (debug_enabled) {
- fprintf(stderr, "%s", msg);
- }
-}
-
-void
-fs_visitor::fail(const char *format, ...)
-{
- va_list va;
-
- va_start(va, format);
- vfail(format, va);
- va_end(va);
-}
-
-/**
- * Mark this program as impossible to compile with dispatch width greater
- * than n.
- *
- * During the SIMD8 compile (which happens first), we can detect and flag
- * things that are unsupported in SIMD16+ mode, so the compiler can skip the
- * SIMD16+ compile altogether.
- *
- * During a compile of dispatch width greater than n (if one happens anyway),
- * this just calls fail().
- */
-void
-fs_visitor::limit_dispatch_width(unsigned n, const char *msg)
-{
- if (dispatch_width > n) {
- fail("%s", msg);
- } else {
- max_dispatch_width = n;
- compiler->shader_perf_log(log_data,
- "Shader dispatch width limited to SIMD%d: %s",
- n, msg);
- }
-}
-
-/**
- * Returns true if the instruction has a flag that means it won't
- * update an entire destination register.
- *
- * For example, dead code elimination and live variable analysis want to know
- * when a write to a variable screens off any preceding values that were in
- * it.
- */
-bool
-fs_inst::is_partial_write() const
-{
- return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
- (this->exec_size * type_sz(this->dst.type)) < 32 ||
- !this->dst.is_contiguous() ||
- this->dst.offset % REG_SIZE != 0);
-}
-
-unsigned
-fs_inst::components_read(unsigned i) const
-{
- /* Return zero if the source is not present. */
- if (src[i].file == BAD_FILE)
- return 0;
-
- switch (opcode) {
- case FS_OPCODE_LINTERP:
- if (i == 0)
- return 2;
- else
- return 1;
-
- case FS_OPCODE_PIXEL_X:
- case FS_OPCODE_PIXEL_Y:
- assert(i == 0);
- return 2;
-
- case FS_OPCODE_FB_WRITE_LOGICAL:
- assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
- /* First/second FB write color. */
- if (i < 2)
- return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
- else
- return 1;
-
- case SHADER_OPCODE_TEX_LOGICAL:
- case SHADER_OPCODE_TXD_LOGICAL:
- case SHADER_OPCODE_TXF_LOGICAL:
- case SHADER_OPCODE_TXL_LOGICAL:
- case SHADER_OPCODE_TXS_LOGICAL:
- case FS_OPCODE_TXB_LOGICAL:
- case SHADER_OPCODE_TXF_CMS_LOGICAL:
- case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
- case SHADER_OPCODE_TXF_UMS_LOGICAL:
- case SHADER_OPCODE_TXF_MCS_LOGICAL:
- case SHADER_OPCODE_LOD_LOGICAL:
- case SHADER_OPCODE_TG4_LOGICAL:
- case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
- case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
- assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
- src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
- /* Texture coordinates. */
- if (i == TEX_LOGICAL_SRC_COORDINATE)
- return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
- /* Texture derivatives. */
- else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
- opcode == SHADER_OPCODE_TXD_LOGICAL)
- return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
- /* Texture offset. */
- else if (i == TEX_LOGICAL_SRC_TG4_OFFSET)
- return 2;
- /* MCS */
- else if (i == TEX_LOGICAL_SRC_MCS && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
- return 2;
- else
- return 1;
-
- case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
- case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
- assert(src[3].file == IMM);
- /* Surface coordinates. */
- if (i == 0)
- return src[3].ud;
- /* Surface operation source (ignored for reads). */
- else if (i == 1)
- return 0;
- else
- return 1;
-
- case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
- case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
- assert(src[3].file == IMM &&
- src[4].file == IMM);
- /* Surface coordinates. */
- if (i == 0)
- return src[3].ud;
- /* Surface operation source. */
- else if (i == 1)
- return src[4].ud;
- else
- return 1;
-
- case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
- case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
- assert(src[3].file == IMM &&
- src[4].file == IMM);
- const unsigned op = src[4].ud;
- /* Surface coordinates. */
- if (i == 0)
- return src[3].ud;
- /* Surface operation source. */
- else if (i == 1 && op == BRW_AOP_CMPWR)
- return 2;
- else if (i == 1 && (op == BRW_AOP_INC || op == BRW_AOP_DEC ||
- op == BRW_AOP_PREDEC))
- return 0;
- else
- return 1;
- }
-
- default:
- return 1;
- }
-}
-
-unsigned
-fs_inst::size_read(int arg) const
-{
- switch (opcode) {
- case FS_OPCODE_FB_WRITE:
- case FS_OPCODE_FB_READ:
- case SHADER_OPCODE_URB_WRITE_SIMD8:
- case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
- case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
- case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
- case SHADER_OPCODE_URB_READ_SIMD8:
- case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
- case SHADER_OPCODE_UNTYPED_ATOMIC:
- case SHADER_OPCODE_UNTYPED_SURFACE_READ:
- case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
- case SHADER_OPCODE_TYPED_ATOMIC:
- case SHADER_OPCODE_TYPED_SURFACE_READ:
- case SHADER_OPCODE_TYPED_SURFACE_WRITE:
- case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
- if (arg == 0)
- return mlen * REG_SIZE;
- break;
-
- case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
- /* The payload is actually stored in src1 */
- if (arg == 1)
- return mlen * REG_SIZE;
- break;
-
- case FS_OPCODE_LINTERP:
- if (arg == 1)
- return 16;
- break;
-
- case SHADER_OPCODE_LOAD_PAYLOAD:
- if (arg < this->header_size)
- return REG_SIZE;
- break;
-
- case CS_OPCODE_CS_TERMINATE:
- case SHADER_OPCODE_BARRIER:
- return REG_SIZE;
-
- case SHADER_OPCODE_MOV_INDIRECT:
- if (arg == 0) {
- assert(src[2].file == IMM);
- return src[2].ud;
- }
- break;
-
- default:
- if (is_tex() && arg == 0 && src[0].file == VGRF)
- return mlen * REG_SIZE;
- break;
- }
-
- switch (src[arg].file) {
- case UNIFORM:
- case IMM:
- return components_read(arg) * type_sz(src[arg].type);
- case BAD_FILE:
- case ARF:
- case FIXED_GRF:
- case VGRF:
- case ATTR:
- return components_read(arg) * src[arg].component_size(exec_size);
- case MRF:
- unreachable("MRF registers are not allowed as sources");
- }
- return 0;
-}
-
-namespace {
- /* Return the subset of flag registers that an instruction could
- * potentially read or write based on the execution controls and flag
- * subregister number of the instruction.
- */
- unsigned
- flag_mask(const fs_inst *inst)
- {
- const unsigned start = inst->flag_subreg * 16 + inst->group;
- const unsigned end = start + inst->exec_size;
- return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1);
- }
-}
-
-unsigned
-fs_inst::flags_read(const gen_device_info *devinfo) const
-{
- /* XXX - This doesn't consider explicit uses of the flag register as source
- * region.
- */
- if (predicate == BRW_PREDICATE_ALIGN1_ANYV ||
- predicate == BRW_PREDICATE_ALIGN1_ALLV) {
- /* The vertical predication modes combine corresponding bits from
- * f0.0 and f1.0 on Gen7+, and f0.0 and f0.1 on older hardware.
- */
- const unsigned shift = devinfo->gen >= 7 ? 4 : 2;
- return flag_mask(this) << shift | flag_mask(this);
- } else if (predicate) {
- return flag_mask(this);
- } else {
- return 0;
- }
-}
-
-unsigned
-fs_inst::flags_written() const
-{
- /* XXX - This doesn't consider explicit uses of the flag register as
- * destination region.
- */
- if ((conditional_mod && (opcode != BRW_OPCODE_SEL &&
- opcode != BRW_OPCODE_IF &&
- opcode != BRW_OPCODE_WHILE)) ||
- opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
- return flag_mask(this);
- } else {
- return 0;
- }
-}
-
-/**
- * Returns how many MRFs an FS opcode will write over.
- *
- * Note that this is not the 0 or 1 implied writes in an actual gen
- * instruction -- the FS opcodes often generate MOVs in addition.
- */
-int
-fs_visitor::implied_mrf_writes(fs_inst *inst)
-{
- if (inst->mlen == 0)
- return 0;
-
- if (inst->base_mrf == -1)
- return 0;
-
- switch (inst->opcode) {
- case SHADER_OPCODE_RCP:
- case SHADER_OPCODE_RSQ:
- case SHADER_OPCODE_SQRT:
- case SHADER_OPCODE_EXP2:
- case SHADER_OPCODE_LOG2:
- case SHADER_OPCODE_SIN:
- case SHADER_OPCODE_COS:
- return 1 * dispatch_width / 8;
- case SHADER_OPCODE_POW:
- case SHADER_OPCODE_INT_QUOTIENT:
- case SHADER_OPCODE_INT_REMAINDER:
- return 2 * dispatch_width / 8;
- case SHADER_OPCODE_TEX:
- case FS_OPCODE_TXB:
- case SHADER_OPCODE_TXD:
- case SHADER_OPCODE_TXF:
- case SHADER_OPCODE_TXF_CMS:
- case SHADER_OPCODE_TXF_MCS:
- case SHADER_OPCODE_TG4:
- case SHADER_OPCODE_TG4_OFFSET:
- case SHADER_OPCODE_TXL:
- case SHADER_OPCODE_TXS:
- case SHADER_OPCODE_LOD:
- case SHADER_OPCODE_SAMPLEINFO:
- return 1;
- case FS_OPCODE_FB_WRITE:
- return 2;
- case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
- case SHADER_OPCODE_GEN4_SCRATCH_READ:
- return 1;
- case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
- return inst->mlen;
- case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
- return inst->mlen;
- default:
- unreachable("not reached");
- }
-}
-
-fs_reg
-fs_visitor::vgrf(const glsl_type *const type)
-{
- int reg_width = dispatch_width / 8;
- return fs_reg(VGRF, alloc.allocate(type_size_scalar(type) * reg_width),
- brw_type_for_base_type(type));
-}
-
-fs_reg::fs_reg(enum brw_reg_file file, int nr)
-{
- init();
- this->file = file;
- this->nr = nr;
- this->type = BRW_REGISTER_TYPE_F;
- this->stride = (file == UNIFORM ? 0 : 1);
-}
-
-fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
-{
- init();
- this->file = file;
- this->nr = nr;
- this->type = type;
- this->stride = (file == UNIFORM ? 0 : 1);
-}
-
-/* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
- * This brings in those uniform definitions
- */
-void
-fs_visitor::import_uniforms(fs_visitor *v)
-{
- this->push_constant_loc = v->push_constant_loc;
- this->pull_constant_loc = v->pull_constant_loc;
- this->uniforms = v->uniforms;
-}
-
-void
-fs_visitor::emit_fragcoord_interpolation(fs_reg wpos)
-{
- assert(stage == MESA_SHADER_FRAGMENT);
-
- /* gl_FragCoord.x */
- bld.MOV(wpos, this->pixel_x);
- wpos = offset(wpos, bld, 1);
-
- /* gl_FragCoord.y */
- bld.MOV(wpos, this->pixel_y);
- wpos = offset(wpos, bld, 1);
-
- /* gl_FragCoord.z */
- if (devinfo->gen >= 6) {
- bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
- } else {
- bld.emit(FS_OPCODE_LINTERP, wpos,
- this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL],
- interp_reg(VARYING_SLOT_POS, 2));
- }
- wpos = offset(wpos, bld, 1);
-
- /* gl_FragCoord.w: Already set up in emit_interpolation */
- bld.MOV(wpos, this->wpos_w);
-}
-
-enum brw_barycentric_mode
-brw_barycentric_mode(enum glsl_interp_mode mode, nir_intrinsic_op op)
-{
- /* Barycentric modes don't make sense for flat inputs. */
- assert(mode != INTERP_MODE_FLAT);
-
- unsigned bary;
- switch (op) {
- case nir_intrinsic_load_barycentric_pixel:
- case nir_intrinsic_load_barycentric_at_offset:
- bary = BRW_BARYCENTRIC_PERSPECTIVE_PIXEL;
- break;
- case nir_intrinsic_load_barycentric_centroid:
- bary = BRW_BARYCENTRIC_PERSPECTIVE_CENTROID;
- break;
- case nir_intrinsic_load_barycentric_sample:
- case nir_intrinsic_load_barycentric_at_sample:
- bary = BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE;
- break;
- default:
- unreachable("invalid intrinsic");
- }
-
- if (mode == INTERP_MODE_NOPERSPECTIVE)
- bary += 3;
-
- return (enum brw_barycentric_mode) bary;
-}
-
-/**
- * Turn one of the two CENTROID barycentric modes into PIXEL mode.
- */
-static enum brw_barycentric_mode
-centroid_to_pixel(enum brw_barycentric_mode bary)
-{
- assert(bary == BRW_BARYCENTRIC_PERSPECTIVE_CENTROID ||
- bary == BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
- return (enum brw_barycentric_mode) ((unsigned) bary - 1);
-}
-
-fs_reg *
-fs_visitor::emit_frontfacing_interpolation()
-{
- fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
-
- if (devinfo->gen >= 6) {
- /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
- * a boolean result from this (~0/true or 0/false).
- *
- * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
- * this task in only one instruction:
- * - a negation source modifier will flip the bit; and
- * - a W -> D type conversion will sign extend the bit into the high
- * word of the destination.
- *
- * An ASR 15 fills the low word of the destination.
- */
- fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
- g0.negate = true;
-
- bld.ASR(*reg, g0, brw_imm_d(15));
- } else {
- /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
- * a boolean result from this (1/true or 0/false).
- *
- * Like in the above case, since the bit is the MSB of g1.6:UD we can use
- * the negation source modifier to flip it. Unfortunately the SHR
- * instruction only operates on UD (or D with an abs source modifier)
- * sources without negation.
- *
- * Instead, use ASR (which will give ~0/true or 0/false).
- */
- fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
- g1_6.negate = true;
-
- bld.ASR(*reg, g1_6, brw_imm_d(31));
- }
-
- return reg;
-}
-
-void
-fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
-{
- assert(stage == MESA_SHADER_FRAGMENT);
- struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
- assert(dst.type == BRW_REGISTER_TYPE_F);
-
- if (wm_prog_data->persample_dispatch) {
- /* Convert int_sample_pos to floating point */
- bld.MOV(dst, int_sample_pos);
- /* Scale to the range [0, 1] */
- bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
- }
- else {
- /* From ARB_sample_shading specification:
- * "When rendering to a non-multisample buffer, or if multisample
- * rasterization is disabled, gl_SamplePosition will always be
- * (0.5, 0.5).
- */
- bld.MOV(dst, brw_imm_f(0.5f));
- }
-}
-
-fs_reg *
-fs_visitor::emit_samplepos_setup()
-{
- assert(devinfo->gen >= 6);
-
- const fs_builder abld = bld.annotate("compute sample position");
- fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
- fs_reg pos = *reg;
- fs_reg int_sample_x = vgrf(glsl_type::int_type);
- fs_reg int_sample_y = vgrf(glsl_type::int_type);
-
- /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
- * mode will be enabled.
- *
- * From the Ivy Bridge PRM, volume 2 part 1, page 344:
- * R31.1:0 Position Offset X/Y for Slot[3:0]
- * R31.3:2 Position Offset X/Y for Slot[7:4]
- * .....
- *
- * The X, Y sample positions come in as bytes in thread payload. So, read
- * the positions using vstride=16, width=8, hstride=2.
- */
- struct brw_reg sample_pos_reg =
- stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
- BRW_REGISTER_TYPE_B), 16, 8, 2);
-
- if (dispatch_width == 8) {
- abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
- } else {
- abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
- abld.half(1).MOV(half(int_sample_x, 1),
- fs_reg(suboffset(sample_pos_reg, 16)));
- }
- /* Compute gl_SamplePosition.x */
- compute_sample_position(pos, int_sample_x);
- pos = offset(pos, abld, 1);
- if (dispatch_width == 8) {
- abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
- } else {
- abld.half(0).MOV(half(int_sample_y, 0),
- fs_reg(suboffset(sample_pos_reg, 1)));
- abld.half(1).MOV(half(int_sample_y, 1),
- fs_reg(suboffset(sample_pos_reg, 17)));
- }
- /* Compute gl_SamplePosition.y */
- compute_sample_position(pos, int_sample_y);
- return reg;
-}
-
-fs_reg *
-fs_visitor::emit_sampleid_setup()
-{
- assert(stage == MESA_SHADER_FRAGMENT);
- brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
- assert(devinfo->gen >= 6);
-
- const fs_builder abld = bld.annotate("compute sample id");
- fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
-
- if (!key->multisample_fbo) {
- /* As per GL_ARB_sample_shading specification:
- * "When rendering to a non-multisample buffer, or if multisample
- * rasterization is disabled, gl_SampleID will always be zero."
- */
- abld.MOV(*reg, brw_imm_d(0));
- } else if (devinfo->gen >= 8) {
- /* Sample ID comes in as 4-bit numbers in g1.0:
- *
- * 15:12 Slot 3 SampleID (only used in SIMD16)
- * 11:8 Slot 2 SampleID (only used in SIMD16)
- * 7:4 Slot 1 SampleID
- * 3:0 Slot 0 SampleID
- *
- * Each slot corresponds to four channels, so we want to replicate each
- * half-byte value to 4 channels in a row:
- *
- * dst+0: .7 .6 .5 .4 .3 .2 .1 .0
- * 7:4 7:4 7:4 7:4 3:0 3:0 3:0 3:0
- *
- * dst+1: .7 .6 .5 .4 .3 .2 .1 .0 (if SIMD16)
- * 15:12 15:12 15:12 15:12 11:8 11:8 11:8 11:8
- *
- * First, we read g1.0 with a <1,8,0>UB region, causing the first 8
- * channels to read the first byte (7:0), and the second group of 8
- * channels to read the second byte (15:8). Then, we shift right by
- * a vector immediate of <4, 4, 4, 4, 0, 0, 0, 0>, moving the slot 1 / 3
- * values into place. Finally, we AND with 0xf to keep the low nibble.
- *
- * shr(16) tmp<1>W g1.0<1,8,0>B 0x44440000:V
- * and(16) dst<1>D tmp<8,8,1>W 0xf:W
- *
- * TODO: These payload bits exist on Gen7 too, but they appear to always
- * be zero, so this code fails to work. We should find out why.
- */
- fs_reg tmp(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
-
- abld.SHR(tmp, fs_reg(stride(retype(brw_vec1_grf(1, 0),
- BRW_REGISTER_TYPE_B), 1, 8, 0)),
- brw_imm_v(0x44440000));
- abld.AND(*reg, tmp, brw_imm_w(0xf));
- } else {
- const fs_reg t1 = component(fs_reg(VGRF, alloc.allocate(1),
- BRW_REGISTER_TYPE_D), 0);
- const fs_reg t2(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
-
- /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
- * 8x multisampling, subspan 0 will represent sample N (where N
- * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
- * 7. We can find the value of N by looking at R0.0 bits 7:6
- * ("Starting Sample Pair Index (SSPI)") and multiplying by two
- * (since samples are always delivered in pairs). That is, we
- * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
- * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
- * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
- * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
- * populating a temporary variable with the sequence (0, 1, 2, 3),
- * and then reading from it using vstride=1, width=4, hstride=0.
- * These computations hold good for 4x multisampling as well.
- *
- * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
- * the first four slots are sample 0 of subspan 0; the next four
- * are sample 1 of subspan 0; the third group is sample 0 of
- * subspan 1, and finally sample 1 of subspan 1.
- */
-
- /* SKL+ has an extra bit for the Starting Sample Pair Index to
- * accomodate 16x MSAA.
- */
- abld.exec_all().group(1, 0)
- .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
- brw_imm_ud(0xc0));
- abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
-
- /* This works for both SIMD8 and SIMD16 */
- abld.exec_all().group(4, 0).MOV(t2, brw_imm_v(0x3210));
-
- /* This special instruction takes care of setting vstride=1,
- * width=4, hstride=0 of t2 during an ADD instruction.
- */
- abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
- }
-
- return reg;
-}
-
-fs_reg *
-fs_visitor::emit_samplemaskin_setup()
-{
- assert(stage == MESA_SHADER_FRAGMENT);
- struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
- assert(devinfo->gen >= 6);
-
- fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
-
- fs_reg coverage_mask(retype(brw_vec8_grf(payload.sample_mask_in_reg, 0),
- BRW_REGISTER_TYPE_D));
-
- if (wm_prog_data->persample_dispatch) {
- /* gl_SampleMaskIn[] comes from two sources: the input coverage mask,
- * and a mask representing which sample is being processed by the
- * current shader invocation.
- *
- * From the OES_sample_variables specification:
- * "When per-sample shading is active due to the use of a fragment input
- * qualified by "sample" or due to the use of the gl_SampleID or
- * gl_SamplePosition variables, only the bit for the current sample is
- * set in gl_SampleMaskIn."
- */
- const fs_builder abld = bld.annotate("compute gl_SampleMaskIn");
-
- if (nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
- nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
-
- fs_reg one = vgrf(glsl_type::int_type);
- fs_reg enabled_mask = vgrf(glsl_type::int_type);
- abld.MOV(one, brw_imm_d(1));
- abld.SHL(enabled_mask, one, nir_system_values[SYSTEM_VALUE_SAMPLE_ID]);
- abld.AND(*reg, enabled_mask, coverage_mask);
- } else {
- /* In per-pixel mode, the coverage mask is sufficient. */
- *reg = coverage_mask;
- }
- return reg;
-}
-
-fs_reg
-fs_visitor::resolve_source_modifiers(const fs_reg &src)
-{
- if (!src.abs && !src.negate)
- return src;
-
- fs_reg temp = bld.vgrf(src.type);
- bld.MOV(temp, src);
-
- return temp;
-}
-
-void
-fs_visitor::emit_discard_jump()
-{
- assert(brw_wm_prog_data(this->prog_data)->uses_kill);
-
- /* For performance, after a discard, jump to the end of the
- * shader if all relevant channels have been discarded.
- */
- fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
- discard_jump->flag_subreg = 1;
-
- discard_jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
- discard_jump->predicate_inverse = true;
-}
-
-void
-fs_visitor::emit_gs_thread_end()
-{
- assert(stage == MESA_SHADER_GEOMETRY);
-
- struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
-
- if (gs_compile->control_data_header_size_bits > 0) {
- emit_gs_control_data_bits(this->final_gs_vertex_count);
- }
-
- const fs_builder abld = bld.annotate("thread end");
- fs_inst *inst;
-
- if (gs_prog_data->static_vertex_count != -1) {
- foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
- if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
- prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
- prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
- prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
- prev->eot = true;
-
- /* Delete now dead instructions. */
- foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
- if (dead == prev)
- break;
- dead->remove();
- }
- return;
- } else if (prev->is_control_flow() || prev->has_side_effects()) {
- break;
- }
- }
- fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
- abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
- inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
- inst->mlen = 1;
- } else {
- fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
- fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
- sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
- sources[1] = this->final_gs_vertex_count;
- abld.LOAD_PAYLOAD(payload, sources, 2, 2);
- inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
- inst->mlen = 2;
- }
- inst->eot = true;
- inst->offset = 0;
-}
-
-void
-fs_visitor::assign_curb_setup()
-{
- prog_data->curb_read_length = ALIGN(stage_prog_data->nr_params, 8) / 8;
-
- /* Map the offsets in the UNIFORM file to fixed HW regs. */
- foreach_block_and_inst(block, fs_inst, inst, cfg) {
- for (unsigned int i = 0; i < inst->sources; i++) {
- if (inst->src[i].file == UNIFORM) {
- int uniform_nr = inst->src[i].nr + inst->src[i].offset / 4;
- int constant_nr;
- if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
- constant_nr = push_constant_loc[uniform_nr];
- } else {
- /* Section 5.11 of the OpenGL 4.1 spec says:
- * "Out-of-bounds reads return undefined values, which include
- * values from other variables of the active program or zero."
- * Just return the first push constant.
- */
- constant_nr = 0;
- }
-
- struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
- constant_nr / 8,
- constant_nr % 8);
- brw_reg.abs = inst->src[i].abs;
- brw_reg.negate = inst->src[i].negate;
-
- assert(inst->src[i].stride == 0);
- inst->src[i] = byte_offset(
- retype(brw_reg, inst->src[i].type),
- inst->src[i].offset % 4);
- }
- }
- }
-
- /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
- this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
-}
-
-void
-fs_visitor::calculate_urb_setup()
-{
- assert(stage == MESA_SHADER_FRAGMENT);
- struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
- brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
-
- memset(prog_data->urb_setup, -1,
- sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
-
- int urb_next = 0;
- /* Figure out where each of the incoming setup attributes lands. */
- if (devinfo->gen >= 6) {
- if (_mesa_bitcount_64(nir->info->inputs_read &
- BRW_FS_VARYING_INPUT_MASK) <= 16) {
- /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
- * first 16 varying inputs, so we can put them wherever we want.
- * Just put them in order.
- *
- * This is useful because it means that (a) inputs not used by the
- * fragment shader won't take up valuable register space, and (b) we
- * won't have to recompile the fragment shader if it gets paired with
- * a different vertex (or geometry) shader.
- */
- for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
- if (nir->info->inputs_read & BRW_FS_VARYING_INPUT_MASK &
- BITFIELD64_BIT(i)) {
- prog_data->urb_setup[i] = urb_next++;
- }
- }
- } else {
- bool include_vue_header =
- nir->info->inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT);
-
- /* We have enough input varyings that the SF/SBE pipeline stage can't
- * arbitrarily rearrange them to suit our whim; we have to put them
- * in an order that matches the output of the previous pipeline stage
- * (geometry or vertex shader).
- */
- struct brw_vue_map prev_stage_vue_map;
- brw_compute_vue_map(devinfo, &prev_stage_vue_map,
- key->input_slots_valid,
- nir->info->separate_shader);
- int first_slot =
- include_vue_header ? 0 : 2 * BRW_SF_URB_ENTRY_READ_OFFSET;
-
- assert(prev_stage_vue_map.num_slots <= first_slot + 32);
- for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
- slot++) {
- int varying = prev_stage_vue_map.slot_to_varying[slot];
- if (varying != BRW_VARYING_SLOT_PAD &&
- (nir->info->inputs_read & BRW_FS_VARYING_INPUT_MASK &
- BITFIELD64_BIT(varying))) {
- prog_data->urb_setup[varying] = slot - first_slot;
- }
- }
- urb_next = prev_stage_vue_map.num_slots - first_slot;
- }
- } else {
- /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
- for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
- /* Point size is packed into the header, not as a general attribute */
- if (i == VARYING_SLOT_PSIZ)
- continue;
-
- if (key->input_slots_valid & BITFIELD64_BIT(i)) {
- /* The back color slot is skipped when the front color is
- * also written to. In addition, some slots can be
- * written in the vertex shader and not read in the
- * fragment shader. So the register number must always be
- * incremented, mapped or not.
- */
- if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
- prog_data->urb_setup[i] = urb_next;
- urb_next++;
- }
- }
-
- /*
- * It's a FS only attribute, and we did interpolation for this attribute
- * in SF thread. So, count it here, too.
- *
- * See compile_sf_prog() for more info.
- */
- if (nir->info->inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
- prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
- }
-
- prog_data->num_varying_inputs = urb_next;
-}
-
-void
-fs_visitor::assign_urb_setup()
-{
- assert(stage == MESA_SHADER_FRAGMENT);
- struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
-
- int urb_start = payload.num_regs + prog_data->base.curb_read_length;
-
- /* Offset all the urb_setup[] index by the actual position of the
- * setup regs, now that the location of the constants has been chosen.
- */
- foreach_block_and_inst(block, fs_inst, inst, cfg) {
- if (inst->opcode == FS_OPCODE_LINTERP) {
- assert(inst->src[1].file == FIXED_GRF);
- inst->src[1].nr += urb_start;
- }
-
- if (inst->opcode == FS_OPCODE_CINTERP) {
- assert(inst->src[0].file == FIXED_GRF);
- inst->src[0].nr += urb_start;
- }
- }
-
- /* Each attribute is 4 setup channels, each of which is half a reg. */
- this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
-}
-
-void
-fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
-{
- for (int i = 0; i < inst->sources; i++) {
- if (inst->src[i].file == ATTR) {
- int grf = payload.num_regs +
- prog_data->curb_read_length +
- inst->src[i].nr +
- inst->src[i].offset / REG_SIZE;
-
- /* As explained at brw_reg_from_fs_reg, From the Haswell PRM:
- *
- * VertStride must be used to cross GRF register boundaries. This
- * rule implies that elements within a 'Width' cannot cross GRF
- * boundaries.
- *
- * So, for registers that are large enough, we have to split the exec
- * size in two and trust the compression state to sort it out.
- */
- unsigned total_size = inst->exec_size *
- inst->src[i].stride *
- type_sz(inst->src[i].type);
-
- assert(total_size <= 2 * REG_SIZE);
- const unsigned exec_size =
- (total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2;
-
- unsigned width = inst->src[i].stride == 0 ? 1 : exec_size;
- struct brw_reg reg =
- stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
- inst->src[i].offset % REG_SIZE),
- exec_size * inst->src[i].stride,
- width, inst->src[i].stride);
- reg.abs = inst->src[i].abs;
- reg.negate = inst->src[i].negate;
-
- inst->src[i] = reg;
- }
- }
-}
-
-void
-fs_visitor::assign_vs_urb_setup()
-{
- struct brw_vs_prog_data *vs_prog_data = brw_vs_prog_data(prog_data);
-
- assert(stage == MESA_SHADER_VERTEX);
-
- /* Each attribute is 4 regs. */
- this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots;
-
- assert(vs_prog_data->base.urb_read_length <= 15);
-
- /* Rewrite all ATTR file references to the hw grf that they land in. */
- foreach_block_and_inst(block, fs_inst, inst, cfg) {
- convert_attr_sources_to_hw_regs(inst);
- }
-}
-
-void
-fs_visitor::assign_tcs_single_patch_urb_setup()
-{
- assert(stage == MESA_SHADER_TESS_CTRL);
-
- /* Rewrite all ATTR file references to HW_REGs. */
- foreach_block_and_inst(block, fs_inst, inst, cfg) {
- convert_attr_sources_to_hw_regs(inst);
- }
-}
-
-void
-fs_visitor::assign_tes_urb_setup()
-{
- assert(stage == MESA_SHADER_TESS_EVAL);
-
- struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
-
- first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
-
- /* Rewrite all ATTR file references to HW_REGs. */
- foreach_block_and_inst(block, fs_inst, inst, cfg) {
- convert_attr_sources_to_hw_regs(inst);
- }
-}
-
-void
-fs_visitor::assign_gs_urb_setup()
-{
- assert(stage == MESA_SHADER_GEOMETRY);
-
- struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
-
- first_non_payload_grf +=
- 8 * vue_prog_data->urb_read_length * nir->info->gs.vertices_in;
-
- foreach_block_and_inst(block, fs_inst, inst, cfg) {
- /* Rewrite all ATTR file references to GRFs. */
- convert_attr_sources_to_hw_regs(inst);
- }
-}
-
-
-/**
- * Split large virtual GRFs into separate components if we can.
- *
- * This is mostly duplicated with what brw_fs_vector_splitting does,
- * but that's really conservative because it's afraid of doing
- * splitting that doesn't result in real progress after the rest of
- * the optimization phases, which would cause infinite looping in
- * optimization. We can do it once here, safely. This also has the
- * opportunity to split interpolated values, or maybe even uniforms,
- * which we don't have at the IR level.
- *
- * We want to split, because virtual GRFs are what we register
- * allocate and spill (due to contiguousness requirements for some
- * instructions), and they're what we naturally generate in the
- * codegen process, but most virtual GRFs don't actually need to be
- * contiguous sets of GRFs. If we split, we'll end up with reduced
- * live intervals and better dead code elimination and coalescing.
- */
-void
-fs_visitor::split_virtual_grfs()
-{
- /* Compact the register file so we eliminate dead vgrfs. This
- * only defines split points for live registers, so if we have
- * too large dead registers they will hit assertions later.
- */
- compact_virtual_grfs();
-
- int num_vars = this->alloc.count;
-
- /* Count the total number of registers */
- int reg_count = 0;
- int vgrf_to_reg[num_vars];
- for (int i = 0; i < num_vars; i++) {
- vgrf_to_reg[i] = reg_count;
- reg_count += alloc.sizes[i];
- }
-
- /* An array of "split points". For each register slot, this indicates
- * if this slot can be separated from the previous slot. Every time an
- * instruction uses multiple elements of a register (as a source or
- * destination), we mark the used slots as inseparable. Then we go
- * through and split the registers into the smallest pieces we can.
- */
- bool split_points[reg_count];
- memset(split_points, 0, sizeof(split_points));
-
- /* Mark all used registers as fully splittable */
- foreach_block_and_inst(block, fs_inst, inst, cfg) {
- if (inst->dst.file == VGRF) {
- int reg = vgrf_to_reg[inst->dst.nr];
- for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
- split_points[reg + j] = true;
- }
-
- for (int i = 0; i < inst->sources; i++) {
- if (inst->src[i].file == VGRF) {
- int reg = vgrf_to_reg[inst->src[i].nr];
- for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
- split_points[reg + j] = true;
- }
- }
- }
-
- foreach_block_and_inst(block, fs_inst, inst, cfg) {
- if (inst->dst.file == VGRF) {
- int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
- for (unsigned j = 1; j < regs_written(inst); j++)
- split_points[reg + j] = false;
- }
- for (int i = 0; i < inst->sources; i++) {
- if (inst->src[i].file == VGRF) {
- int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
- for (unsigned j = 1; j < regs_read(inst, i); j++)
- split_points[reg + j] = false;
- }
- }
- }
-
- int new_virtual_grf[reg_count];
- int new_reg_offset[reg_count];
-
- int reg = 0;
- for (int i = 0; i < num_vars; i++) {
- /* The first one should always be 0 as a quick sanity check. */
- assert(split_points[reg] == false);
-
- /* j = 0 case */
- new_reg_offset[reg] = 0;
- reg++;
- int offset = 1;
-
- /* j > 0 case */
- for (unsigned j = 1; j < alloc.sizes[i]; j++) {
- /* If this is a split point, reset the offset to 0 and allocate a
- * new virtual GRF for the previous offset many registers
- */
- if (split_points[reg]) {
- assert(offset <= MAX_VGRF_SIZE);
- int grf = alloc.allocate(offset);
- for (int k = reg - offset; k < reg; k++)
- new_virtual_grf[k] = grf;
- offset = 0;
- }
- new_reg_offset[reg] = offset;
- offset++;
- reg++;
- }
-
- /* The last one gets the original register number */
- assert(offset <= MAX_VGRF_SIZE);
- alloc.sizes[i] = offset;
- for (int k = reg - offset; k < reg; k++)
- new_virtual_grf[k] = i;
- }
- assert(reg == reg_count);
-
- foreach_block_and_inst(block, fs_inst, inst, cfg) {
- if (inst->dst.file == VGRF) {
- reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
- inst->dst.nr = new_virtual_grf[reg];
- inst->dst.offset = new_reg_offset[reg] * REG_SIZE +
- inst->dst.offset % REG_SIZE;
- assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
- }
- for (int i = 0; i < inst->sources; i++) {
- if (inst->src[i].file == VGRF) {
- reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
- inst->src[i].nr = new_virtual_grf[reg];
- inst->src[i].offset = new_reg_offset[reg] * REG_SIZE +
- inst->src[i].offset % REG_SIZE;
- assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
- }
- }
- }
- invalidate_live_intervals();
-}
-
-/**
- * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
- *
- * During code generation, we create tons of temporary variables, many of
- * which get immediately killed and are never used again. Yet, in later
- * optimization and analysis passes, such as compute_live_intervals, we need
- * to loop over all the virtual GRFs. Compacting them can save a lot of
- * overhead.
- */
-bool
-fs_visitor::compact_virtual_grfs()
-{
- bool progress = false;
- int remap_table[this->alloc.count];
- memset(remap_table, -1, sizeof(remap_table));
-
- /* Mark which virtual GRFs are used. */
- foreach_block_and_inst(block, const fs_inst, inst, cfg) {
- if (inst->dst.file == VGRF)
- remap_table[inst->dst.nr] = 0;
-
- for (int i = 0; i < inst->sources; i++) {
- if (inst->src[i].file == VGRF)
- remap_table[inst->src[i].nr] = 0;
- }
- }
-
- /* Compact the GRF arrays. */
- int new_index = 0;
- for (unsigned i = 0; i < this->alloc.count; i++) {
- if (remap_table[i] == -1) {
- /* We just found an unused register. This means that we are
- * actually going to compact something.
- */
- progress = true;
- } else {
- remap_table[i] = new_index;
- alloc.sizes[new_index] = alloc.sizes[i];
- invalidate_live_intervals();
- ++new_index;
- }
- }
-
- this->alloc.count = new_index;
-
- /* Patch all the instructions to use the newly renumbered registers */
- foreach_block_and_inst(block, fs_inst, inst, cfg) {
- if (inst->dst.file == VGRF)
- inst->dst.nr = remap_table[inst->dst.nr];
-
- for (int i = 0; i < inst->sources; i++) {
- if (inst->src[i].file == VGRF)
- inst->src[i].nr = remap_table[inst->src[i].nr];
- }
- }
-
- /* Patch all the references to delta_xy, since they're used in register
- * allocation. If they're unused, switch them to BAD_FILE so we don't
- * think some random VGRF is delta_xy.
- */
- for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
- if (delta_xy[i].file == VGRF) {
- if (remap_table[delta_xy[i].nr] != -1) {
- delta_xy[i].nr = remap_table[delta_xy[i].nr];
- } else {
- delta_xy[i].file = BAD_FILE;
- }
- }
- }
-
- return progress;
-}
-
-static void
-set_push_pull_constant_loc(unsigned uniform, int *chunk_start,
- unsigned *max_chunk_bitsize,
- bool contiguous, unsigned bitsize,
- const unsigned target_bitsize,
- int *push_constant_loc, int *pull_constant_loc,
- unsigned *num_push_constants,
- unsigned *num_pull_constants,
- const unsigned max_push_components,
- const unsigned max_chunk_size,
- struct brw_stage_prog_data *stage_prog_data)
-{
- /* This is the first live uniform in the chunk */
- if (*chunk_start < 0)
- *chunk_start = uniform;
-
- /* Keep track of the maximum bit size access in contiguous uniforms */
- *max_chunk_bitsize = MAX2(*max_chunk_bitsize, bitsize);
-
- /* If this element does not need to be contiguous with the next, we
- * split at this point and everything between chunk_start and u forms a
- * single chunk.
- */
- if (!contiguous) {
- /* If bitsize doesn't match the target one, skip it */
- if (*max_chunk_bitsize != target_bitsize) {
- /* FIXME: right now we only support 32 and 64-bit accesses */
- assert(*max_chunk_bitsize == 4 || *max_chunk_bitsize == 8);
- *max_chunk_bitsize = 0;
- *chunk_start = -1;
- return;
- }
-
- unsigned chunk_size = uniform - *chunk_start + 1;
-
- /* Decide whether we should push or pull this parameter. In the
- * Vulkan driver, push constants are explicitly exposed via the API
- * so we push everything. In GL, we only push small arrays.
- */
- if (stage_prog_data->pull_param == NULL ||
- (*num_push_constants + chunk_size <= max_push_components &&
- chunk_size <= max_chunk_size)) {
- assert(*num_push_constants + chunk_size <= max_push_components);
- for (unsigned j = *chunk_start; j <= uniform; j++)
- push_constant_loc[j] = (*num_push_constants)++;
- } else {
- for (unsigned j = *chunk_start; j <= uniform; j++)
- pull_constant_loc[j] = (*num_pull_constants)++;
- }
-
- *max_chunk_bitsize = 0;
- *chunk_start = -1;
- }
-}
-
-/**
- * Assign UNIFORM file registers to either push constants or pull constants.
- *
- * We allow a fragment shader to have more than the specified minimum
- * maximum number of fragment shader uniform components (64). If
- * there are too many of these, they'd fill up all of register space.
- * So, this will push some of them out to the pull constant buffer and
- * update the program to load them.
- */
-void
-fs_visitor::assign_constant_locations()
-{
- /* Only the first compile gets to decide on locations. */
- if (dispatch_width != min_dispatch_width)
- return;
-
- bool is_live[uniforms];
- memset(is_live, 0, sizeof(is_live));
- unsigned bitsize_access[uniforms];
- memset(bitsize_access, 0, sizeof(bitsize_access));
-
- /* For each uniform slot, a value of true indicates that the given slot and
- * the next slot must remain contiguous. This is used to keep us from
- * splitting arrays apart.
- */
- bool contiguous[uniforms];
- memset(contiguous, 0, sizeof(contiguous));
-
- int thread_local_id_index =
- (stage == MESA_SHADER_COMPUTE) ?
- brw_cs_prog_data(stage_prog_data)->thread_local_id_index : -1;
-
- /* First, we walk through the instructions and do two things:
- *
- * 1) Figure out which uniforms are live.
- *
- * 2) Mark any indirectly used ranges of registers as contiguous.
- *
- * Note that we don't move constant-indexed accesses to arrays. No
- * testing has been done of the performance impact of this choice.
- */
- foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
- for (int i = 0 ; i < inst->sources; i++) {
- if (inst->src[i].file != UNIFORM)
- continue;
-
- int constant_nr = inst->src[i].nr + inst->src[i].offset / 4;
-
- if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0) {
- assert(inst->src[2].ud % 4 == 0);
- unsigned last = constant_nr + (inst->src[2].ud / 4) - 1;
- assert(last < uniforms);
-
- for (unsigned j = constant_nr; j < last; j++) {
- is_live[j] = true;
- contiguous[j] = true;
- bitsize_access[j] = MAX2(bitsize_access[j], type_sz(inst->src[i].type));
- }
- is_live[last] = true;
- bitsize_access[last] = MAX2(bitsize_access[last], type_sz(inst->src[i].type));
- } else {
- if (constant_nr >= 0 && constant_nr < (int) uniforms) {
- int regs_read = inst->components_read(i) *
- type_sz(inst->src[i].type) / 4;
- for (int j = 0; j < regs_read; j++) {
- is_live[constant_nr + j] = true;
- bitsize_access[constant_nr + j] =
- MAX2(bitsize_access[constant_nr + j], type_sz(inst->src[i].type));
- }
- }
- }
- }
- }
-
- if (thread_local_id_index >= 0 && !is_live[thread_local_id_index])
- thread_local_id_index = -1;
-
- /* Only allow 16 registers (128 uniform components) as push constants.
- *
- * Just demote the end of the list. We could probably do better
- * here, demoting things that are rarely used in the program first.
- *
- * If changing this value, note the limitation about total_regs in
- * brw_curbe.c.
- */
- unsigned int max_push_components = 16 * 8;
- if (thread_local_id_index >= 0)
- max_push_components--; /* Save a slot for the thread ID */
-
- /* We push small arrays, but no bigger than 16 floats. This is big enough
- * for a vec4 but hopefully not large enough to push out other stuff. We
- * should probably use a better heuristic at some point.
- */
- const unsigned int max_chunk_size = 16;
-
- unsigned int num_push_constants = 0;
- unsigned int num_pull_constants = 0;
-
- push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
- pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
-
- /* Default to -1 meaning no location */
- memset(push_constant_loc, -1, uniforms * sizeof(*push_constant_loc));
- memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
-
- int chunk_start = -1;
- unsigned max_chunk_bitsize = 0;
-
- /* First push 64-bit uniforms to ensure they are properly aligned */
- const unsigned uniform_64_bit_size = type_sz(BRW_REGISTER_TYPE_DF);
- for (unsigned u = 0; u < uniforms; u++) {
- if (!is_live[u])
- continue;
-
- set_push_pull_constant_loc(u, &chunk_start, &max_chunk_bitsize,
- contiguous[u], bitsize_access[u],
- uniform_64_bit_size,
- push_constant_loc, pull_constant_loc,
- &num_push_constants, &num_pull_constants,
- max_push_components, max_chunk_size,
- stage_prog_data);
-
- }
-
- /* Then push the rest of uniforms */
- const unsigned uniform_32_bit_size = type_sz(BRW_REGISTER_TYPE_F);
- for (unsigned u = 0; u < uniforms; u++) {
- if (!is_live[u])
- continue;
-
- /* Skip thread_local_id_index to put it in the last push register. */
- if (thread_local_id_index == (int)u)
- continue;
-
- set_push_pull_constant_loc(u, &chunk_start, &max_chunk_bitsize,
- contiguous[u], bitsize_access[u],
- uniform_32_bit_size,
- push_constant_loc, pull_constant_loc,
- &num_push_constants, &num_pull_constants,
- max_push_components, max_chunk_size,
- stage_prog_data);
- }
-
- /* Add the CS local thread ID uniform at the end of the push constants */
- if (thread_local_id_index >= 0)
- push_constant_loc[thread_local_id_index] = num_push_constants++;
-
- /* As the uniforms are going to be reordered, take the data from a temporary
- * copy of the original param[].
- */
- gl_constant_value **param = ralloc_array(NULL, gl_constant_value*,
- stage_prog_data->nr_params);
- memcpy(param, stage_prog_data->param,
- sizeof(gl_constant_value*) * stage_prog_data->nr_params);
- stage_prog_data->nr_params = num_push_constants;
- stage_prog_data->nr_pull_params = num_pull_constants;
-
- /* Up until now, the param[] array has been indexed by reg + offset
- * of UNIFORM registers. Move pull constants into pull_param[] and
- * condense param[] to only contain the uniforms we chose to push.
- *
- * NOTE: Because we are condensing the params[] array, we know that
- * push_constant_loc[i] <= i and we can do it in one smooth loop without
- * having to make a copy.
- */
- int new_thread_local_id_index = -1;
- for (unsigned int i = 0; i < uniforms; i++) {
- const gl_constant_value *value = param[i];
-
- if (pull_constant_loc[i] != -1) {
- stage_prog_data->pull_param[pull_constant_loc[i]] = value;
- } else if (push_constant_loc[i] != -1) {
- stage_prog_data->param[push_constant_loc[i]] = value;
- if (thread_local_id_index == (int)i)
- new_thread_local_id_index = push_constant_loc[i];
- }
- }
- ralloc_free(param);
-
- if (stage == MESA_SHADER_COMPUTE)
- brw_cs_prog_data(stage_prog_data)->thread_local_id_index =
- new_thread_local_id_index;
-}
-
-/**
- * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
- * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
- */
-void
-fs_visitor::lower_constant_loads()
-{
- const unsigned index = stage_prog_data->binding_table.pull_constants_start;
-
- foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
- /* Set up the annotation tracking for new generated instructions. */
- const fs_builder ibld(this, block, inst);
-
- for (int i = 0; i < inst->sources; i++) {
- if (inst->src[i].file != UNIFORM)
- continue;
-
- /* We'll handle this case later */
- if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0)
- continue;
-
- unsigned location = inst->src[i].nr + inst->src[i].offset / 4;
- if (location >= uniforms)
- continue; /* Out of bounds access */
-
- int pull_index = pull_constant_loc[location];
-
- if (pull_index == -1)
- continue;
-
- assert(inst->src[i].stride == 0);
-
- const unsigned index = stage_prog_data->binding_table.pull_constants_start;
- const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
- const fs_builder ubld = ibld.exec_all().group(block_sz / 4, 0);
- const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
- const unsigned base = pull_index * 4;
-
- ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
- dst, brw_imm_ud(index), brw_imm_ud(base & ~(block_sz - 1)));
-
- /* Rewrite the instruction to use the temporary VGRF. */
- inst->src[i].file = VGRF;
- inst->src[i].nr = dst.nr;
- inst->src[i].offset = (base & (block_sz - 1)) +
- inst->src[i].offset % 4;
-
- brw_mark_surface_used(prog_data, index);
- }
-
- if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
- inst->src[0].file == UNIFORM) {
-
- unsigned location = inst->src[0].nr + inst->src[0].offset / 4;
- if (location >= uniforms)
- continue; /* Out of bounds access */
-
- int pull_index = pull_constant_loc[location];
-
- if (pull_index == -1)
- continue;
-
- VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst,
- brw_imm_ud(index),
- inst->src[1],
- pull_index * 4);
- inst->remove(block);
-
- brw_mark_surface_used(prog_data, index);
- }
- }
- invalidate_live_intervals();
-}
-
-bool
-fs_visitor::opt_algebraic()
-{
- bool progress = false;
-
- foreach_block_and_inst(block, fs_inst, inst, cfg) {
- switch (inst->opcode) {
- case BRW_OPCODE_MOV:
- if (inst->src[0].file != IMM)
- break;
-
- if (inst->saturate) {
- if (inst->dst.type != inst->src[0].type)
- assert(!"unimplemented: saturate mixed types");
-
- if (brw_saturate_immediate(inst->dst.type,
- &inst->src[0].as_brw_reg())) {
- inst->saturate = false;
- progress = true;
- }
- }
- break;
-
- case BRW_OPCODE_MUL:
- if (inst->src[1].file != IMM)
- continue;
-
- /* a * 1.0 = a */
- if (inst->src[1].is_one()) {
- inst->opcode = BRW_OPCODE_MOV;
- inst->src[1] = reg_undef;
- progress = true;
- break;
- }
-
- /* a * -1.0 = -a */
- if (inst->src[1].is_negative_one()) {
- inst->opcode = BRW_OPCODE_MOV;
- inst->src[0].negate = !inst->src[0].negate;
- inst->src[1] = reg_undef;
- progress = true;
- break;
- }
-
- /* a * 0.0 = 0.0 */
- if (inst->src[1].is_zero()) {
- inst->opcode = BRW_OPCODE_MOV;
- inst->src[0] = inst->src[1];
- inst->src[1] = reg_undef;
- progress = true;
- break;
- }
-
- if (inst->src[0].file == IMM) {
- assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
- inst->opcode = BRW_OPCODE_MOV;
- inst->src[0].f *= inst->src[1].f;
- inst->src[1] = reg_undef;
- progress = true;
- break;
- }
- break;
- case BRW_OPCODE_ADD:
- if (inst->src[1].file != IMM)
- continue;
-
- /* a + 0.0 = a */
- if (inst->src[1].is_zero()) {
- inst->opcode = BRW_OPCODE_MOV;
- inst->src[1] = reg_undef;
- progress = true;
- break;
- }
-
- if (inst->src[0].file == IMM) {
- assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
- inst->opcode = BRW_OPCODE_MOV;
- inst->src[0].f += inst->src[1].f;
- inst->src[1] = reg_undef;
- progress = true;
- break;
- }
- break;
- case BRW_OPCODE_OR:
- if (inst->src[0].equals(inst->src[1])) {
- inst->opcode = BRW_OPCODE_MOV;
- inst->src[1] = reg_undef;
- progress = true;
- break;
- }
- break;
- case BRW_OPCODE_LRP:
- if (inst->src[1].equals(inst->src[2])) {
- inst->opcode = BRW_OPCODE_MOV;
- inst->src[0] = inst->src[1];
- inst->src[1] = reg_undef;
- inst->src[2] = reg_undef;
- progress = true;
- break;
- }
- break;
- case BRW_OPCODE_CMP:
- if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
- inst->src[0].abs &&
- inst->src[0].negate &&
- inst->src[1].is_zero()) {
- inst->src[0].abs = false;
- inst->src[0].negate = false;
- inst->conditional_mod = BRW_CONDITIONAL_Z;
- progress = true;
- break;
- }
- break;
- case BRW_OPCODE_SEL:
- if (inst->src[0].equals(inst->src[1])) {
- inst->opcode = BRW_OPCODE_MOV;
- inst->src[1] = reg_undef;
- inst->predicate = BRW_PREDICATE_NONE;
- inst->predicate_inverse = false;
- progress = true;
- } else if (inst->saturate && inst->src[1].file == IMM) {
- switch (inst->conditional_mod) {
- case BRW_CONDITIONAL_LE:
- case BRW_CONDITIONAL_L:
- switch (inst->src[1].type) {
- case BRW_REGISTER_TYPE_F:
- if (inst->src[1].f >= 1.0f) {
- inst->opcode = BRW_OPCODE_MOV;
- inst->src[1] = reg_undef;
- inst->conditional_mod = BRW_CONDITIONAL_NONE;
- progress = true;
- }
- break;
- default:
- break;
- }
- break;
- case BRW_CONDITIONAL_GE:
- case BRW_CONDITIONAL_G:
- switch (inst->src[1].type) {
- case BRW_REGISTER_TYPE_F:
- if (inst->src[1].f <= 0.0f) {
- inst->opcode = BRW_OPCODE_MOV;
- inst->src[1] = reg_undef;
- inst->conditional_mod = BRW_CONDITIONAL_NONE;
- progress = true;
- }
- break;
- default:
- break;
- }
- default:
- break;
- }
- }
- break;
- case BRW_OPCODE_MAD:
- if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
- inst->opcode = BRW_OPCODE_MOV;
- inst->src[1] = reg_undef;
- inst->src[2] = reg_undef;
- progress = true;
- } else if (inst->src[0].is_zero()) {
- inst->opcode = BRW_OPCODE_MUL;
- inst->src[0] = inst->src[2];
- inst->src[2] = reg_undef;
- progress = true;
- } else if (inst->src[1].is_one()) {
- inst->opcode = BRW_OPCODE_ADD;
- inst->src[1] = inst->src[2];
- inst->src[2] = reg_undef;
- progress = true;
- } else if (inst->src[2].is_one()) {
- inst->opcode = BRW_OPCODE_ADD;
- inst->src[2] = reg_undef;
- progress = true;
- } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
- inst->opcode = BRW_OPCODE_ADD;
- inst->src[1].f *= inst->src[2].f;
- inst->src[2] = reg_undef;
- progress = true;
- }
- break;
- case SHADER_OPCODE_BROADCAST:
- if (is_uniform(inst->src[0])) {
- inst->opcode = BRW_OPCODE_MOV;
- inst->sources = 1;
- inst->force_writemask_all = true;
- progress = true;
- } else if (inst->src[1].file == IMM) {
- inst->opcode = BRW_OPCODE_MOV;
- inst->src[0] = component(inst->src[0],
- inst->src[1].ud);
- inst->sources = 1;
- inst->force_writemask_all = true;
- progress = true;
- }
- break;
-
- default:
- break;
- }
-
- /* Swap if src[0] is immediate. */
- if (progress && inst->is_commutative()) {
- if (inst->src[0].file == IMM) {
- fs_reg tmp = inst->src[1];
- inst->src[1] = inst->src[0];
- inst->src[0] = tmp;
- }
- }
- }
- return progress;
-}
-
-/**
- * Optimize sample messages that have constant zero values for the trailing
- * texture coordinates. We can just reduce the message length for these
- * instructions instead of reserving a register for it. Trailing parameters
- * that aren't sent default to zero anyway. This will cause the dead code
- * eliminator to remove the MOV instruction that would otherwise be emitted to
- * set up the zero value.
- */
-bool
-fs_visitor::opt_zero_samples()
-{
- /* Gen4 infers the texturing opcode based on the message length so we can't
- * change it.
- */
- if (devinfo->gen < 5)
- return false;
-
- bool progress = false;
-
- foreach_block_and_inst(block, fs_inst, inst, cfg) {
- if (!inst->is_tex())
- continue;
-
- fs_inst *load_payload = (fs_inst *) inst->prev;
-
- if (load_payload->is_head_sentinel() ||
- load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
- continue;
-
- /* We don't want to remove the message header or the first parameter.
- * Removing the first parameter is not allowed, see the Haswell PRM
- * volume 7, page 149:
- *
- * "Parameter 0 is required except for the sampleinfo message, which
- * has no parameter 0"
- */
- while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
- load_payload->src[(inst->mlen - inst->header_size) /
- (inst->exec_size / 8) +
- inst->header_size - 1].is_zero()) {
- inst->mlen -= inst->exec_size / 8;
- progress = true;
- }
- }
-
- if (progress)
- invalidate_live_intervals();
-
- return progress;
-}
-
-/**
- * Optimize sample messages which are followed by the final RT write.
- *
- * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
- * results sent directly to the framebuffer, bypassing the EU. Recognize the
- * final texturing results copied to the framebuffer write payload and modify
- * them to write to the framebuffer directly.
- */
-bool
-fs_visitor::opt_sampler_eot()
-{
- brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
-
- if (stage != MESA_SHADER_FRAGMENT)
- return false;
-
- if (devinfo->gen < 9 && !devinfo->is_cherryview)
- return false;
-
- /* FINISHME: It should be possible to implement this optimization when there
- * are multiple drawbuffers.
- */
- if (key->nr_color_regions != 1)
- return false;
-
- /* Requires emitting a bunch of saturating MOV instructions during logical
- * send lowering to clamp the color payload, which the sampler unit isn't
- * going to do for us.
- */
- if (key->clamp_fragment_color)
- return false;
-
- /* Look for a texturing instruction immediately before the final FB_WRITE. */
- bblock_t *block = cfg->blocks[cfg->num_blocks - 1];
- fs_inst *fb_write = (fs_inst *)block->end();
- assert(fb_write->eot);
- assert(fb_write->opcode == FS_OPCODE_FB_WRITE_LOGICAL);
-
- /* There wasn't one; nothing to do. */
- if (unlikely(fb_write->prev->is_head_sentinel()))
- return false;
-
- fs_inst *tex_inst = (fs_inst *) fb_write->prev;
-
- /* 3D Sampler » Messages » Message Format
- *
- * “Response Length of zero is allowed on all SIMD8* and SIMD16* sampler
- * messages except sample+killpix, resinfo, sampleinfo, LOD, and gather4*”
- */
- if (tex_inst->opcode != SHADER_OPCODE_TEX_LOGICAL &&
- tex_inst->opcode != SHADER_OPCODE_TXD_LOGICAL &&
- tex_inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
- tex_inst->opcode != SHADER_OPCODE_TXL_LOGICAL &&
- tex_inst->opcode != FS_OPCODE_TXB_LOGICAL &&
- tex_inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL &&
- tex_inst->opcode != SHADER_OPCODE_TXF_CMS_W_LOGICAL &&
- tex_inst->opcode != SHADER_OPCODE_TXF_UMS_LOGICAL)
- return false;
-
- /* XXX - This shouldn't be necessary. */
- if (tex_inst->prev->is_head_sentinel())
- return false;
-
- /* Check that the FB write sources are fully initialized by the single
- * texturing instruction.
- */
- for (unsigned i = 0; i < FB_WRITE_LOGICAL_NUM_SRCS; i++) {
- if (i == FB_WRITE_LOGICAL_SRC_COLOR0) {
- if (!fb_write->src[i].equals(tex_inst->dst) ||
- fb_write->size_read(i) != tex_inst->size_written)
- return false;
- } else if (i != FB_WRITE_LOGICAL_SRC_COMPONENTS) {
- if (fb_write->src[i].file != BAD_FILE)
- return false;
- }
- }
-
- assert(!tex_inst->eot); /* We can't get here twice */
- assert((tex_inst->offset & (0xff << 24)) == 0);
-
- const fs_builder ibld(this, block, tex_inst);
-
- tex_inst->offset |= fb_write->target << 24;
- tex_inst->eot = true;
- tex_inst->dst = ibld.null_reg_ud();
- tex_inst->size_written = 0;
- fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
-
- /* Marking EOT is sufficient, lower_logical_sends() will notice the EOT
- * flag and submit a header together with the sampler message as required
- * by the hardware.
- */
- invalidate_live_intervals();
- return true;
-}
-
-bool
-fs_visitor::opt_register_renaming()
-{
- bool progress = false;
- int depth = 0;
-
- int remap[alloc.count];
- memset(remap, -1, sizeof(int) * alloc.count);
-
- foreach_block_and_inst(block, fs_inst, inst, cfg) {
- if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
- depth++;
- } else if (inst->opcode == BRW_OPCODE_ENDIF ||
- inst->opcode == BRW_OPCODE_WHILE) {
- depth--;
- }
-
- /* Rewrite instruction sources. */
- for (int i = 0; i < inst->sources; i++) {
- if (inst->src[i].file == VGRF &&
- remap[inst->src[i].nr] != -1 &&
- remap[inst->src[i].nr] != inst->src[i].nr) {
- inst->src[i].nr = remap[inst->src[i].nr];
- progress = true;
- }
- }
-
- const int dst = inst->dst.nr;
-
- if (depth == 0 &&
- inst->dst.file == VGRF &&
- alloc.sizes[inst->dst.nr] * REG_SIZE == inst->size_written &&
- !inst->is_partial_write()) {
- if (remap[dst] == -1) {
- remap[dst] = dst;
- } else {
- remap[dst] = alloc.allocate(regs_written(inst));
- inst->dst.nr = remap[dst];
- progress = true;
- }
- } else if (inst->dst.file == VGRF &&
- remap[dst] != -1 &&
- remap[dst] != dst) {
- inst->dst.nr = remap[dst];
- progress = true;
- }
- }
-
- if (progress) {
- invalidate_live_intervals();
-
- for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
- if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != -1) {
- delta_xy[i].nr = remap[delta_xy[i].nr];
- }
- }
- }
-
- return progress;
-}
-
-/**
- * Remove redundant or useless discard jumps.
- *
- * For example, we can eliminate jumps in the following sequence:
- *
- * discard-jump (redundant with the next jump)
- * discard-jump (useless; jumps to the next instruction)
- * placeholder-halt
- */
-bool
-fs_visitor::opt_redundant_discard_jumps()
-{
- bool progress = false;
-
- bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
-
- fs_inst *placeholder_halt = NULL;
- foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
- if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
- placeholder_halt = inst;
- break;
- }
- }
-
- if (!placeholder_halt)
- return false;
-
- /* Delete any HALTs immediately before the placeholder halt. */
- for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
- !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
- prev = (fs_inst *) placeholder_halt->prev) {
- prev->remove(last_bblock);
- progress = true;
- }
-
- if (progress)
- invalidate_live_intervals();
-
- return progress;
-}
-
-/**
- * Compute a bitmask with GRF granularity with a bit set for each GRF starting
- * from \p r.offset which overlaps the region starting at \p s.offset and
- * spanning \p ds bytes.
- */
-static inline unsigned
-mask_relative_to(const fs_reg &r, const fs_reg &s, unsigned ds)
-{
- const int rel_offset = reg_offset(s) - reg_offset(r);
- const int shift = rel_offset / REG_SIZE;
- const unsigned n = DIV_ROUND_UP(rel_offset % REG_SIZE + ds, REG_SIZE);
- assert(reg_space(r) == reg_space(s) &&
- shift >= 0 && shift < int(8 * sizeof(unsigned)));
- return ((1 << n) - 1) << shift;
-}
-
-bool
-fs_visitor::compute_to_mrf()
-{
- bool progress = false;
- int next_ip = 0;
-
- /* No MRFs on Gen >= 7. */
- if (devinfo->gen >= 7)
- return false;
-
- calculate_live_intervals();
-
- foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
- int ip = next_ip;
- next_ip++;
-
- if (inst->opcode != BRW_OPCODE_MOV ||
- inst->is_partial_write() ||
- inst->dst.file != MRF || inst->src[0].file != VGRF ||
- inst->dst.type != inst->src[0].type ||
- inst->src[0].abs || inst->src[0].negate ||
- !inst->src[0].is_contiguous() ||
- inst->src[0].offset % REG_SIZE != 0)
- continue;
-
- /* Can't compute-to-MRF this GRF if someone else was going to
- * read it later.
- */
- if (this->virtual_grf_end[inst->src[0].nr] > ip)
- continue;
-
- /* Found a move of a GRF to a MRF. Let's see if we can go rewrite the
- * things that computed the value of all GRFs of the source region. The
- * regs_left bitset keeps track of the registers we haven't yet found a
- * generating instruction for.
- */
- unsigned regs_left = (1 << regs_read(inst, 0)) - 1;
-
- foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
- if (regions_overlap(scan_inst->dst, scan_inst->size_written,
- inst->src[0], inst->size_read(0))) {
- /* Found the last thing to write our reg we want to turn
- * into a compute-to-MRF.
- */
-
- /* If this one instruction didn't populate all the
- * channels, bail. We might be able to rewrite everything
- * that writes that reg, but it would require smarter
- * tracking.
- */
- if (scan_inst->is_partial_write())
- break;
-
- /* Handling things not fully contained in the source of the copy
- * would need us to understand coalescing out more than one MOV at
- * a time.
- */
- if (!region_contained_in(scan_inst->dst, scan_inst->size_written,
- inst->src[0], inst->size_read(0)))
- break;
-
- /* SEND instructions can't have MRF as a destination. */
- if (scan_inst->mlen)
- break;
-
- if (devinfo->gen == 6) {
- /* gen6 math instructions must have the destination be
- * GRF, so no compute-to-MRF for them.
- */
- if (scan_inst->is_math()) {
- break;
- }
- }
-
- /* Clear the bits for any registers this instruction overwrites. */
- regs_left &= ~mask_relative_to(
- inst->src[0], scan_inst->dst, scan_inst->size_written);
- if (!regs_left)
- break;
- }
-
- /* We don't handle control flow here. Most computation of
- * values that end up in MRFs are shortly before the MRF
- * write anyway.
- */
- if (block->start() == scan_inst)
- break;
-
- /* You can't read from an MRF, so if someone else reads our
- * MRF's source GRF that we wanted to rewrite, that stops us.
- */
- bool interfered = false;
- for (int i = 0; i < scan_inst->sources; i++) {
- if (regions_overlap(scan_inst->src[i], scan_inst->size_read(i),
- inst->src[0], inst->size_read(0))) {
- interfered = true;
- }
- }
- if (interfered)
- break;
-
- if (regions_overlap(scan_inst->dst, scan_inst->size_written,
- inst->dst, inst->size_written)) {
- /* If somebody else writes our MRF here, we can't
- * compute-to-MRF before that.
- */
- break;
- }
-
- if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1 &&
- regions_overlap(fs_reg(MRF, scan_inst->base_mrf), scan_inst->mlen * REG_SIZE,
- inst->dst, inst->size_written)) {
- /* Found a SEND instruction, which means that there are
- * live values in MRFs from base_mrf to base_mrf +
- * scan_inst->mlen - 1. Don't go pushing our MRF write up
- * above it.
- */
- break;
- }
- }
-
- if (regs_left)
- continue;
-
- /* Found all generating instructions of our MRF's source value, so it
- * should be safe to rewrite them to point to the MRF directly.
- */
- regs_left = (1 << regs_read(inst, 0)) - 1;
-
- foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
- if (regions_overlap(scan_inst->dst, scan_inst->size_written,
- inst->src[0], inst->size_read(0))) {
- /* Clear the bits for any registers this instruction overwrites. */
- regs_left &= ~mask_relative_to(
- inst->src[0], scan_inst->dst, scan_inst->size_written);
-
- const unsigned rel_offset = reg_offset(scan_inst->dst) -
- reg_offset(inst->src[0]);
-
- if (inst->dst.nr & BRW_MRF_COMPR4) {
- /* Apply the same address transformation done by the hardware
- * for COMPR4 MRF writes.
- */
- assert(rel_offset < 2 * REG_SIZE);
- scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE * 4;
-
- /* Clear the COMPR4 bit if the generating instruction is not
- * compressed.
- */
- if (scan_inst->size_written < 2 * REG_SIZE)
- scan_inst->dst.nr &= ~BRW_MRF_COMPR4;
-
- } else {
- /* Calculate the MRF number the result of this instruction is
- * ultimately written to.
- */
- scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE;
- }
-
- scan_inst->dst.file = MRF;
- scan_inst->dst.offset = inst->dst.offset + rel_offset % REG_SIZE;
- scan_inst->saturate |= inst->saturate;
- if (!regs_left)
- break;
- }
- }
-
- assert(!regs_left);
- inst->remove(block);
- progress = true;
- }
-
- if (progress)
- invalidate_live_intervals();
-
- return progress;
-}
-
-/**
- * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
- * flow. We could probably do better here with some form of divergence
- * analysis.
- */
-bool
-fs_visitor::eliminate_find_live_channel()
-{
- bool progress = false;
- unsigned depth = 0;
-
- if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
- /* The optimization below assumes that channel zero is live on thread
- * dispatch, which may not be the case if the fixed function dispatches
- * threads sparsely.
- */
- return false;
- }
-
- foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
- switch (inst->opcode) {
- case BRW_OPCODE_IF:
- case BRW_OPCODE_DO:
- depth++;
- break;
-
- case BRW_OPCODE_ENDIF:
- case BRW_OPCODE_WHILE:
- depth--;
- break;
-
- case FS_OPCODE_DISCARD_JUMP:
- /* This can potentially make control flow non-uniform until the end
- * of the program.
- */
- return progress;
-
- case SHADER_OPCODE_FIND_LIVE_CHANNEL:
- if (depth == 0) {
- inst->opcode = BRW_OPCODE_MOV;
- inst->src[0] = brw_imm_ud(0u);
- inst->sources = 1;
- inst->force_writemask_all = true;
- progress = true;
- }
- break;
-
- default:
- break;
- }
- }
-
- return progress;
-}
-
-/**
- * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
- * instructions to FS_OPCODE_REP_FB_WRITE.
- */
-void
-fs_visitor::emit_repclear_shader()
-{
- brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
- int base_mrf = 0;
- int color_mrf = base_mrf + 2;
- fs_inst *mov;
-
- if (uniforms > 0) {
- mov = bld.exec_all().group(4, 0)
- .MOV(brw_message_reg(color_mrf),
- fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
- } else {
- struct brw_reg reg =
- brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_F,
- BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4,
- BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
-
- mov = bld.exec_all().group(4, 0)
- .MOV(vec4(brw_message_reg(color_mrf)), fs_reg(reg));
- }
-
- fs_inst *write;
- if (key->nr_color_regions == 1) {
- write = bld.emit(FS_OPCODE_REP_FB_WRITE);
- write->saturate = key->clamp_fragment_color;
- write->base_mrf = color_mrf;
- write->target = 0;
- write->header_size = 0;
- write->mlen = 1;
- } else {
- assume(key->nr_color_regions > 0);
- for (int i = 0; i < key->nr_color_regions; ++i) {
- write = bld.emit(FS_OPCODE_REP_FB_WRITE);
- write->saturate = key->clamp_fragment_color;
- write->base_mrf = base_mrf;
- write->target = i;
- write->header_size = 2;
- write->mlen = 3;
- }
- }
- write->eot = true;
-
- calculate_cfg();
-
- assign_constant_locations();
- assign_curb_setup();
-
- /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
- if (uniforms > 0) {
- assert(mov->src[0].file == FIXED_GRF);
- mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
- }
-}
-
-/**
- * Walks through basic blocks, looking for repeated MRF writes and
- * removing the later ones.
- */
-bool
-fs_visitor::remove_duplicate_mrf_writes()
-{
- fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
- bool progress = false;
-
- /* Need to update the MRF tracking for compressed instructions. */
- if (dispatch_width >= 16)
- return false;
-
- memset(last_mrf_move, 0, sizeof(last_mrf_move));
-
- foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
- if (inst->is_control_flow()) {
- memset(last_mrf_move, 0, sizeof(last_mrf_move));
- }
-
- if (inst->opcode == BRW_OPCODE_MOV &&
- inst->dst.file == MRF) {
- fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
- if (prev_inst && inst->equals(prev_inst)) {
- inst->remove(block);
- progress = true;
- continue;
- }
- }
-
- /* Clear out the last-write records for MRFs that were overwritten. */
- if (inst->dst.file == MRF) {
- last_mrf_move[inst->dst.nr] = NULL;
- }
-
- if (inst->mlen > 0 && inst->base_mrf != -1) {
- /* Found a SEND instruction, which will include two or fewer
- * implied MRF writes. We could do better here.
- */
- for (int i = 0; i < implied_mrf_writes(inst); i++) {
- last_mrf_move[inst->base_mrf + i] = NULL;
- }
- }
-
- /* Clear out any MRF move records whose sources got overwritten. */
- for (unsigned i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
- if (last_mrf_move[i] &&
- regions_overlap(inst->dst, inst->size_written,
- last_mrf_move[i]->src[0],
- last_mrf_move[i]->size_read(0))) {
- last_mrf_move[i] = NULL;
- }
- }
-
- if (inst->opcode == BRW_OPCODE_MOV &&
- inst->dst.file == MRF &&
- inst->src[0].file != ARF &&
- !inst->is_partial_write()) {
- last_mrf_move[inst->dst.nr] = inst;
- }
- }
-
- if (progress)
- invalidate_live_intervals();
-
- return progress;
-}
-
-static void
-clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
-{
- /* Clear the flag for registers that actually got read (as expected). */
- for (int i = 0; i < inst->sources; i++) {
- int grf;
- if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
- grf = inst->src[i].nr;
- } else {
- continue;
- }
-
- if (grf >= first_grf &&
- grf < first_grf + grf_len) {
- deps[grf - first_grf] = false;
- if (inst->exec_size == 16)
- deps[grf - first_grf + 1] = false;
- }
- }
-}
-
-/**
- * Implements this workaround for the original 965:
- *
- * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
- * check for post destination dependencies on this instruction, software
- * must ensure that there is no destination hazard for the case of ‘write
- * followed by a posted write’ shown in the following example.
- *
- * 1. mov r3 0
- * 2. send r3.xy <rest of send instruction>
- * 3. mov r2 r3
- *
- * Due to no post-destination dependency check on the ‘send’, the above
- * code sequence could have two instructions (1 and 2) in flight at the
- * same time that both consider ‘r3’ as the target of their final writes.
- */
-void
-fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
- fs_inst *inst)
-{
- int write_len = regs_written(inst);
- int first_write_grf = inst->dst.nr;
- bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
- assert(write_len < (int)sizeof(needs_dep) - 1);
-
- memset(needs_dep, false, sizeof(needs_dep));
- memset(needs_dep, true, write_len);
-
- clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
-
- /* Walk backwards looking for writes to registers we're writing which
- * aren't read since being written. If we hit the start of the program,
- * we assume that there are no outstanding dependencies on entry to the
- * program.
- */
- foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
- /* If we hit control flow, assume that there *are* outstanding
- * dependencies, and force their cleanup before our instruction.
- */
- if (block->start() == scan_inst && block->num != 0) {
- for (int i = 0; i < write_len; i++) {
- if (needs_dep[i])
- DEP_RESOLVE_MOV(fs_builder(this, block, inst),
- first_write_grf + i);
- }
- return;
- }
-
- /* We insert our reads as late as possible on the assumption that any
- * instruction but a MOV that might have left us an outstanding
- * dependency has more latency than a MOV.
- */
- if (scan_inst->dst.file == VGRF) {
- for (unsigned i = 0; i < regs_written(scan_inst); i++) {
- int reg = scan_inst->dst.nr + i;
-
- if (reg >= first_write_grf &&
- reg < first_write_grf + write_len &&
- needs_dep[reg - first_write_grf]) {
- DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
- needs_dep[reg - first_write_grf] = false;
- if (scan_inst->exec_size == 16)
- needs_dep[reg - first_write_grf + 1] = false;
- }
- }
- }
-
- /* Clear the flag for registers that actually got read (as expected). */
- clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
-
- /* Continue the loop only if we haven't resolved all the dependencies */
- int i;
- for (i = 0; i < write_len; i++) {
- if (needs_dep[i])
- break;
- }
- if (i == write_len)
- return;
- }
-}
-
-/**
- * Implements this workaround for the original 965:
- *
- * "[DevBW, DevCL] Errata: A destination register from a send can not be
- * used as a destination register until after it has been sourced by an
- * instruction with a different destination register.
- */
-void
-fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
-{
- int write_len = regs_written(inst);
- int first_write_grf = inst->dst.nr;
- bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
- assert(write_len < (int)sizeof(needs_dep) - 1);
-
- memset(needs_dep, false, sizeof(needs_dep));
- memset(needs_dep, true, write_len);
- /* Walk forwards looking for writes to registers we're writing which aren't
- * read before being written.
- */
- foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
- /* If we hit control flow, force resolve all remaining dependencies. */
- if (block->end() == scan_inst && block->num != cfg->num_blocks - 1) {
- for (int i = 0; i < write_len; i++) {
- if (needs_dep[i])
- DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
- first_write_grf + i);
- }
- return;
- }
-
- /* Clear the flag for registers that actually got read (as expected). */
- clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
-
- /* We insert our reads as late as possible since they're reading the
- * result of a SEND, which has massive latency.
- */
- if (scan_inst->dst.file == VGRF &&
- scan_inst->dst.nr >= first_write_grf &&
- scan_inst->dst.nr < first_write_grf + write_len &&
- needs_dep[scan_inst->dst.nr - first_write_grf]) {
- DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
- scan_inst->dst.nr);
- needs_dep[scan_inst->dst.nr - first_write_grf] = false;
- }
-
- /* Continue the loop only if we haven't resolved all the dependencies */
- int i;
- for (i = 0; i < write_len; i++) {
- if (needs_dep[i])
- break;
- }
- if (i == write_len)
- return;
- }
-}
-
-void
-fs_visitor::insert_gen4_send_dependency_workarounds()
-{
- if (devinfo->gen != 4 || devinfo->is_g4x)
- return;
-
- bool progress = false;
-
- foreach_block_and_inst(block, fs_inst, inst, cfg) {
- if (inst->mlen != 0 && inst->dst.file == VGRF) {
- insert_gen4_pre_send_dependency_workarounds(block, inst);
- insert_gen4_post_send_dependency_workarounds(block, inst);
- progress = true;
- }
- }
-
- if (progress)
- invalidate_live_intervals();
-}
-
-/**
- * Turns the generic expression-style uniform pull constant load instruction
- * into a hardware-specific series of instructions for loading a pull
- * constant.
- *
- * The expression style allows the CSE pass before this to optimize out
- * repeated loads from the same offset, and gives the pre-register-allocation
- * scheduling full flexibility, while the conversion to native instructions
- * allows the post-register-allocation scheduler the best information
- * possible.
- *
- * Note that execution masking for setting up pull constant loads is special:
- * the channels that need to be written are unrelated to the current execution
- * mask, since a later instruction will use one of the result channels as a
- * source operand for all 8 or 16 of its channels.
- */
-void
-fs_visitor::lower_uniform_pull_constant_loads()
-{
- foreach_block_and_inst (block, fs_inst, inst, cfg) {
- if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
- continue;
-
- if (devinfo->gen >= 7) {
- const fs_builder ubld = fs_builder(this, block, inst).exec_all();
- const fs_reg payload = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD);
-
- ubld.group(8, 0).MOV(payload,
- retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
- ubld.group(1, 0).MOV(component(payload, 2),
- brw_imm_ud(inst->src[1].ud / 16));
-
- inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
- inst->src[1] = payload;
- inst->header_size = 1;
- inst->mlen = 1;
-
- invalidate_live_intervals();
- } else {
- /* Before register allocation, we didn't tell the scheduler about the
- * MRF we use. We know it's safe to use this MRF because nothing
- * else does except for register spill/unspill, which generates and
- * uses its MRF within a single IR instruction.
- */
- inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
- inst->mlen = 1;
- }
- }
-}
-
-bool
-fs_visitor::lower_load_payload()
-{
- bool progress = false;
-
- foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
- if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
- continue;
-
- assert(inst->dst.file == MRF || inst->dst.file == VGRF);
- assert(inst->saturate == false);
- fs_reg dst = inst->dst;
-
- /* Get rid of COMPR4. We'll add it back in if we need it */
- if (dst.file == MRF)
- dst.nr = dst.nr & ~BRW_MRF_COMPR4;
-
- const fs_builder ibld(this, block, inst);
- const fs_builder hbld = ibld.exec_all().group(8, 0);
-
- for (uint8_t i = 0; i < inst->header_size; i++) {
- if (inst->src[i].file != BAD_FILE) {
- fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
- fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
- hbld.MOV(mov_dst, mov_src);
- }
- dst = offset(dst, hbld, 1);
- }
-
- if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
- inst->exec_size > 8) {
- /* In this case, the payload portion of the LOAD_PAYLOAD isn't
- * a straightforward copy. Instead, the result of the
- * LOAD_PAYLOAD is treated as interleaved and the first four
- * non-header sources are unpacked as:
- *
- * m + 0: r0
- * m + 1: g0
- * m + 2: b0
- * m + 3: a0
- * m + 4: r1
- * m + 5: g1
- * m + 6: b1
- * m + 7: a1
- *
- * This is used for gen <= 5 fb writes.
- */
- assert(inst->exec_size == 16);
- assert(inst->header_size + 4 <= inst->sources);
- for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
- if (inst->src[i].file != BAD_FILE) {
- if (devinfo->has_compr4) {
- fs_reg compr4_dst = retype(dst, inst->src[i].type);
- compr4_dst.nr |= BRW_MRF_COMPR4;
- ibld.MOV(compr4_dst, inst->src[i]);
- } else {
- /* Platform doesn't have COMPR4. We have to fake it */
- fs_reg mov_dst = retype(dst, inst->src[i].type);
- ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
- mov_dst.nr += 4;
- ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
- }
- }
-
- dst.nr++;
- }
-
- /* The loop above only ever incremented us through the first set
- * of 4 registers. However, thanks to the magic of COMPR4, we
- * actually wrote to the first 8 registers, so we need to take
- * that into account now.
- */
- dst.nr += 4;
-
- /* The COMPR4 code took care of the first 4 sources. We'll let
- * the regular path handle any remaining sources. Yes, we are
- * modifying the instruction but we're about to delete it so
- * this really doesn't hurt anything.
- */
- inst->header_size += 4;
- }
-
- for (uint8_t i = inst->header_size; i < inst->sources; i++) {
- if (inst->src[i].file != BAD_FILE)
- ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
- dst = offset(dst, ibld, 1);
- }
-
- inst->remove(block);
- progress = true;
- }
-
- if (progress)
- invalidate_live_intervals();
-
- return progress;
-}
-
-bool
-fs_visitor::lower_integer_multiplication()
-{
- bool progress = false;
-
- foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
- const fs_builder ibld(this, block, inst);
-
- if (inst->opcode == BRW_OPCODE_MUL) {
- if (inst->dst.is_accumulator() ||
- (inst->dst.type != BRW_REGISTER_TYPE_D &&
- inst->dst.type != BRW_REGISTER_TYPE_UD))
- continue;
-
- /* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit
- * operation directly, but CHV/BXT cannot.
- */
- if (devinfo->gen >= 8 &&
- !devinfo->is_cherryview && !devinfo->is_broxton)
- continue;
-
- if (inst->src[1].file == IMM &&
- inst->src[1].ud < (1 << 16)) {
- /* The MUL instruction isn't commutative. On Gen <= 6, only the low
- * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
- * src1 are used.
- *
- * If multiplying by an immediate value that fits in 16-bits, do a
- * single MUL instruction with that value in the proper location.
- */
- if (devinfo->gen < 7) {
- fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8),
- inst->dst.type);
- ibld.MOV(imm, inst->src[1]);
- ibld.MUL(inst->dst, imm, inst->src[0]);
- } else {
- const bool ud = (inst->src[1].type == BRW_REGISTER_TYPE_UD);
- ibld.MUL(inst->dst, inst->src[0],
- ud ? brw_imm_uw(inst->src[1].ud)
- : brw_imm_w(inst->src[1].d));
- }
- } else {
- /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
- * do 32-bit integer multiplication in one instruction, but instead
- * must do a sequence (which actually calculates a 64-bit result):
- *
- * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
- * mach(8) null g3<8,8,1>D g4<8,8,1>D
- * mov(8) g2<1>D acc0<8,8,1>D
- *
- * But on Gen > 6, the ability to use second accumulator register
- * (acc1) for non-float data types was removed, preventing a simple
- * implementation in SIMD16. A 16-channel result can be calculated by
- * executing the three instructions twice in SIMD8, once with quarter
- * control of 1Q for the first eight channels and again with 2Q for
- * the second eight channels.
- *
- * Which accumulator register is implicitly accessed (by AccWrEnable
- * for instance) is determined by the quarter control. Unfortunately
- * Ivybridge (and presumably Baytrail) has a hardware bug in which an
- * implicit accumulator access by an instruction with 2Q will access
- * acc1 regardless of whether the data type is usable in acc1.
- *
- * Specifically, the 2Q mach(8) writes acc1 which does not exist for
- * integer data types.
- *
- * Since we only want the low 32-bits of the result, we can do two
- * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
- * adjust the high result and add them (like the mach is doing):
- *
- * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
- * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
- * shl(8) g9<1>D g8<8,8,1>D 16D
- * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
- *
- * We avoid the shl instruction by realizing that we only want to add
- * the low 16-bits of the "high" result to the high 16-bits of the
- * "low" result and using proper regioning on the add:
- *
- * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
- * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
- * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
- *
- * Since it does not use the (single) accumulator register, we can
- * schedule multi-component multiplications much better.
- */
-
- fs_reg orig_dst = inst->dst;
- if (orig_dst.is_null() || orig_dst.file == MRF) {
- inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
- inst->dst.type);
- }
- fs_reg low = inst->dst;
- fs_reg high(VGRF, alloc.allocate(dispatch_width / 8),
- inst->dst.type);
-
- if (devinfo->gen >= 7) {
- if (inst->src[1].file == IMM) {
- ibld.MUL(low, inst->src[0],
- brw_imm_uw(inst->src[1].ud & 0xffff));
- ibld.MUL(high, inst->src[0],
- brw_imm_uw(inst->src[1].ud >> 16));
- } else {
- ibld.MUL(low, inst->src[0],
- subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
- ibld.MUL(high, inst->src[0],
- subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 1));
- }
- } else {
- ibld.MUL(low, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 0),
- inst->src[1]);
- ibld.MUL(high, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 1),
- inst->src[1]);
- }
-
- ibld.ADD(subscript(inst->dst, BRW_REGISTER_TYPE_UW, 1),
- subscript(low, BRW_REGISTER_TYPE_UW, 1),
- subscript(high, BRW_REGISTER_TYPE_UW, 0));
-
- if (inst->conditional_mod || orig_dst.file == MRF) {
- set_condmod(inst->conditional_mod,
- ibld.MOV(orig_dst, inst->dst));
- }
- }
-
- } else if (inst->opcode == SHADER_OPCODE_MULH) {
- /* Should have been lowered to 8-wide. */
- assert(inst->exec_size <= get_lowered_simd_width(devinfo, inst));
- const fs_reg acc = retype(brw_acc_reg(inst->exec_size),
- inst->dst.type);
- fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
- fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
-
- if (devinfo->gen >= 8) {
- /* Until Gen8, integer multiplies read 32-bits from one source,
- * and 16-bits from the other, and relying on the MACH instruction
- * to generate the high bits of the result.
- *
- * On Gen8, the multiply instruction does a full 32x32-bit
- * multiply, but in order to do a 64-bit multiply we can simulate
- * the previous behavior and then use a MACH instruction.
- *
- * FINISHME: Don't use source modifiers on src1.
- */
- assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
- mul->src[1].type == BRW_REGISTER_TYPE_UD);
- mul->src[1].type = BRW_REGISTER_TYPE_UW;
- mul->src[1].stride *= 2;
-
- } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
- inst->group > 0) {
- /* Among other things the quarter control bits influence which
- * accumulator register is used by the hardware for instructions
- * that access the accumulator implicitly (e.g. MACH). A
- * second-half instruction would normally map to acc1, which
- * doesn't exist on Gen7 and up (the hardware does emulate it for
- * floating-point instructions *only* by taking advantage of the
- * extra precision of acc0 not normally used for floating point
- * arithmetic).
- *
- * HSW and up are careful enough not to try to access an
- * accumulator register that doesn't exist, but on earlier Gen7
- * hardware we need to make sure that the quarter control bits are
- * zero to avoid non-deterministic behaviour and emit an extra MOV
- * to get the result masked correctly according to the current
- * channel enables.
- */
- mach->group = 0;
- mach->force_writemask_all = true;
- mach->dst = ibld.vgrf(inst->dst.type);
- ibld.MOV(inst->dst, mach->dst);
- }
- } else {
- continue;
- }
-
- inst->remove(block);
- progress = true;
- }
-
- if (progress)
- invalidate_live_intervals();
-
- return progress;
-}
-
-bool
-fs_visitor::lower_minmax()
-{
- assert(devinfo->gen < 6);
-
- bool progress = false;
-
- foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
- const fs_builder ibld(this, block, inst);
-
- if (inst->opcode == BRW_OPCODE_SEL &&
- inst->predicate == BRW_PREDICATE_NONE) {
- /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
- * the original SEL.L/GE instruction
- */
- ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
- inst->conditional_mod);
- inst->predicate = BRW_PREDICATE_NORMAL;
- inst->conditional_mod = BRW_CONDITIONAL_NONE;
-
- progress = true;
- }
- }
-
- if (progress)
- invalidate_live_intervals();
-
- return progress;
-}
-
-static void
-setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
- fs_reg *dst, fs_reg color, unsigned components)
-{
- if (key->clamp_fragment_color) {
- fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
- assert(color.type == BRW_REGISTER_TYPE_F);
-
- for (unsigned i = 0; i < components; i++)
- set_saturate(true,
- bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
-
- color = tmp;
- }
-
- for (unsigned i = 0; i < components; i++)
- dst[i] = offset(color, bld, i);
-}
-
-static void
-lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
- const struct brw_wm_prog_data *prog_data,
- const brw_wm_prog_key *key,
- const fs_visitor::thread_payload &payload)
-{
- assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
- const gen_device_info *devinfo = bld.shader->devinfo;
- const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
- const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
- const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
- const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
- const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
- const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
- fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
- const unsigned components =
- inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
-
- /* We can potentially have a message length of up to 15, so we have to set
- * base_mrf to either 0 or 1 in order to fit in m0..m15.
- */
- fs_reg sources[15];
- int header_size = 2, payload_header_size;
- unsigned length = 0;
-
- /* From the Sandy Bridge PRM, volume 4, page 198:
- *
- * "Dispatched Pixel Enables. One bit per pixel indicating
- * which pixels were originally enabled when the thread was
- * dispatched. This field is only required for the end-of-
- * thread message and on all dual-source messages."
- */
- if (devinfo->gen >= 6 &&
- (devinfo->is_haswell || devinfo->gen >= 8 || !prog_data->uses_kill) &&
- color1.file == BAD_FILE &&
- key->nr_color_regions == 1) {
- header_size = 0;
- }
-
- if (header_size != 0) {
- assert(header_size == 2);
- /* Allocate 2 registers for a header */
- length += 2;
- }
-
- if (payload.aa_dest_stencil_reg) {
- sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
- bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
- .MOV(sources[length],
- fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0)));
- length++;
- }
-
- if (sample_mask.file != BAD_FILE) {
- sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
- BRW_REGISTER_TYPE_UD);
-
- /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
- * relevant. Since it's unsigned single words one vgrf is always
- * 16-wide, but only the lower or higher 8 channels will be used by the
- * hardware when doing a SIMD8 write depending on whether we have
- * selected the subspans for the first or second half respectively.
- */
- assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
- sample_mask.type = BRW_REGISTER_TYPE_UW;
- sample_mask.stride *= 2;
-
- bld.exec_all().annotate("FB write oMask")
- .MOV(horiz_offset(retype(sources[length], BRW_REGISTER_TYPE_UW),
- inst->group),
- sample_mask);
- length++;
- }
-
- payload_header_size = length;
-
- if (src0_alpha.file != BAD_FILE) {
- /* FIXME: This is being passed at the wrong location in the payload and
- * doesn't work when gl_SampleMask and MRTs are used simultaneously.
- * It's supposed to be immediately before oMask but there seems to be no
- * reasonable way to pass them in the correct order because LOAD_PAYLOAD
- * requires header sources to form a contiguous segment at the beginning
- * of the message and src0_alpha has per-channel semantics.
- */
- setup_color_payload(bld, key, &sources[length], src0_alpha, 1);
- length++;
- } else if (key->replicate_alpha && inst->target != 0) {
- /* Handle the case when fragment shader doesn't write to draw buffer
- * zero. No need to call setup_color_payload() for src0_alpha because
- * alpha value will be undefined.
- */
- length++;
- }
-
- setup_color_payload(bld, key, &sources[length], color0, components);
- length += 4;
-
- if (color1.file != BAD_FILE) {
- setup_color_payload(bld, key, &sources[length], color1, components);
- length += 4;
- }
-
- if (src_depth.file != BAD_FILE) {
- sources[length] = src_depth;
- length++;
- }
-
- if (dst_depth.file != BAD_FILE) {
- sources[length] = dst_depth;
- length++;
- }
-
- if (src_stencil.file != BAD_FILE) {
- assert(devinfo->gen >= 9);
- assert(bld.dispatch_width() != 16);
-
- /* XXX: src_stencil is only available on gen9+. dst_depth is never
- * available on gen9+. As such it's impossible to have both enabled at the
- * same time and therefore length cannot overrun the array.
- */
- assert(length < 15);
-
- sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
- bld.exec_all().annotate("FB write OS")
- .MOV(retype(sources[length], BRW_REGISTER_TYPE_UB),
- subscript(src_stencil, BRW_REGISTER_TYPE_UB, 0));
- length++;
- }
-
- fs_inst *load;
- if (devinfo->gen >= 7) {
- /* Send from the GRF */
- fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
- load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
- payload.nr = bld.shader->alloc.allocate(regs_written(load));
- load->dst = payload;
-
- inst->src[0] = payload;
- inst->resize_sources(1);
- } else {
- /* Send from the MRF */
- load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
- sources, length, payload_header_size);
-
- /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
- * will do this for us if we just give it a COMPR4 destination.
- */
- if (devinfo->gen < 6 && bld.dispatch_width() == 16)
- load->dst.nr |= BRW_MRF_COMPR4;
-
- inst->resize_sources(0);
- inst->base_mrf = 1;
- }
-
- inst->opcode = FS_OPCODE_FB_WRITE;
- inst->mlen = regs_written(load);
- inst->header_size = header_size;
-}
-
-static void
-lower_fb_read_logical_send(const fs_builder &bld, fs_inst *inst)
-{
- const fs_builder &ubld = bld.exec_all();
- const unsigned length = 2;
- const fs_reg header = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD, length);
-
- ubld.group(16, 0)
- .MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
-
- inst->resize_sources(1);
- inst->src[0] = header;
- inst->opcode = FS_OPCODE_FB_READ;
- inst->mlen = length;
- inst->header_size = length;
-}
-
-static void
-lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
- const fs_reg &coordinate,
- const fs_reg &shadow_c,
- const fs_reg &lod, const fs_reg &lod2,
- const fs_reg &surface,
- const fs_reg &sampler,
- unsigned coord_components,
- unsigned grad_components)
-{
- const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
- op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
- fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
- fs_reg msg_end = msg_begin;
-
- /* g0 header. */
- msg_end = offset(msg_end, bld.group(8, 0), 1);
-
- for (unsigned i = 0; i < coord_components; i++)
- bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
- offset(coordinate, bld, i));
-
- msg_end = offset(msg_end, bld, coord_components);
-
- /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
- * require all three components to be present and zero if they are unused.
- */
- if (coord_components > 0 &&
- (has_lod || shadow_c.file != BAD_FILE ||
- (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
- for (unsigned i = coord_components; i < 3; i++)
- bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
-
- msg_end = offset(msg_end, bld, 3 - coord_components);
- }
-
- if (op == SHADER_OPCODE_TXD) {
- /* TXD unsupported in SIMD16 mode. */
- assert(bld.dispatch_width() == 8);
-
- /* the slots for u and v are always present, but r is optional */
- if (coord_components < 2)
- msg_end = offset(msg_end, bld, 2 - coord_components);
-
- /* P = u, v, r
- * dPdx = dudx, dvdx, drdx
- * dPdy = dudy, dvdy, drdy
- *
- * 1-arg: Does not exist.
- *
- * 2-arg: dudx dvdx dudy dvdy
- * dPdx.x dPdx.y dPdy.x dPdy.y
- * m4 m5 m6 m7
- *
- * 3-arg: dudx dvdx drdx dudy dvdy drdy
- * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
- * m5 m6 m7 m8 m9 m10
- */
- for (unsigned i = 0; i < grad_components; i++)
- bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
-
- msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
-
- for (unsigned i = 0; i < grad_components; i++)
- bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
-
- msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
- }
-
- if (has_lod) {
- /* Bias/LOD with shadow comparator is unsupported in SIMD16 -- *Without*
- * shadow comparator (including RESINFO) it's unsupported in SIMD8 mode.
- */
- assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
- bld.dispatch_width() == 16);
-
- const brw_reg_type type =
- (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
- BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
- bld.MOV(retype(msg_end, type), lod);
- msg_end = offset(msg_end, bld, 1);
- }
-
- if (shadow_c.file != BAD_FILE) {
- if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
- /* There's no plain shadow compare message, so we use shadow
- * compare with a bias of 0.0.
- */
- bld.MOV(msg_end, brw_imm_f(0.0f));
- msg_end = offset(msg_end, bld, 1);
- }
-
- bld.MOV(msg_end, shadow_c);
- msg_end = offset(msg_end, bld, 1);
- }
-
- inst->opcode = op;
- inst->src[0] = reg_undef;
- inst->src[1] = surface;
- inst->src[2] = sampler;
- inst->resize_sources(3);
- inst->base_mrf = msg_begin.nr;
- inst->mlen = msg_end.nr - msg_begin.nr;
- inst->header_size = 1;
-}
-
-static void
-lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
- const fs_reg &coordinate,
- const fs_reg &shadow_c,
- const fs_reg &lod, const fs_reg &lod2,
- const fs_reg &sample_index,
- const fs_reg &surface,
- const fs_reg &sampler,
- unsigned coord_components,
- unsigned grad_components)
-{
- fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
- fs_reg msg_coords = message;
- unsigned header_size = 0;
-
- if (inst->offset != 0) {
- /* The offsets set up by the visitor are in the m1 header, so we can't
- * go headerless.
- */
- header_size = 1;
- message.nr--;
- }
-
- for (unsigned i = 0; i < coord_components; i++)
- bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type),
- offset(coordinate, bld, i));
-
- fs_reg msg_end = offset(msg_coords, bld, coord_components);
- fs_reg msg_lod = offset(msg_coords, bld, 4);
-
- if (shadow_c.file != BAD_FILE) {
- fs_reg msg_shadow = msg_lod;
- bld.MOV(msg_shadow, shadow_c);
- msg_lod = offset(msg_shadow, bld, 1);
- msg_end = msg_lod;
- }
-
- switch (op) {
- case SHADER_OPCODE_TXL:
- case FS_OPCODE_TXB:
- bld.MOV(msg_lod, lod);
- msg_end = offset(msg_lod, bld, 1);
- break;
- case SHADER_OPCODE_TXD:
- /**
- * P = u, v, r
- * dPdx = dudx, dvdx, drdx
- * dPdy = dudy, dvdy, drdy
- *
- * Load up these values:
- * - dudx dudy dvdx dvdy drdx drdy
- * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
- */
- msg_end = msg_lod;
- for (unsigned i = 0; i < grad_components; i++) {
- bld.MOV(msg_end, offset(lod, bld, i));
- msg_end = offset(msg_end, bld, 1);
-
- bld.MOV(msg_end, offset(lod2, bld, i));
- msg_end = offset(msg_end, bld, 1);
- }
- break;
- case SHADER_OPCODE_TXS:
- msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
- bld.MOV(msg_lod, lod);
- msg_end = offset(msg_lod, bld, 1);
- break;
- case SHADER_OPCODE_TXF:
- msg_lod = offset(msg_coords, bld, 3);
- bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
- msg_end = offset(msg_lod, bld, 1);
- break;
- case SHADER_OPCODE_TXF_CMS:
- msg_lod = offset(msg_coords, bld, 3);
- /* lod */
- bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
- /* sample index */
- bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
- msg_end = offset(msg_lod, bld, 2);
- break;
- default:
- break;
- }
-
- inst->opcode = op;
- inst->src[0] = reg_undef;
- inst->src[1] = surface;
- inst->src[2] = sampler;
- inst->resize_sources(3);
- inst->base_mrf = message.nr;
- inst->mlen = msg_end.nr - message.nr;
- inst->header_size = header_size;
-
- /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
- assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
-}
-
-static bool
-is_high_sampler(const struct gen_device_info *devinfo, const fs_reg &sampler)
-{
- if (devinfo->gen < 8 && !devinfo->is_haswell)
- return false;
-
- return sampler.file != IMM || sampler.ud >= 16;
-}
-
-static void
-lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
- const fs_reg &coordinate,
- const fs_reg &shadow_c,
- fs_reg lod, const fs_reg &lod2,
- const fs_reg &sample_index,
- const fs_reg &mcs,
- const fs_reg &surface,
- const fs_reg &sampler,
- const fs_reg &tg4_offset,
- unsigned coord_components,
- unsigned grad_components)
-{
- const gen_device_info *devinfo = bld.shader->devinfo;
- unsigned reg_width = bld.dispatch_width() / 8;
- unsigned header_size = 0, length = 0;
- fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
- for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
- sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
-
- if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
- inst->offset != 0 || inst->eot ||
- op == SHADER_OPCODE_SAMPLEINFO ||
- is_high_sampler(devinfo, sampler)) {
- /* For general texture offsets (no txf workaround), we need a header to
- * put them in. Note that we're only reserving space for it in the
- * message payload as it will be initialized implicitly by the
- * generator.
- *
- * TG4 needs to place its channel select in the header, for interaction
- * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
- * larger sampler numbers we need to offset the Sampler State Pointer in
- * the header.
- */
- header_size = 1;
- sources[0] = fs_reg();
- length++;
-
- /* If we're requesting fewer than four channels worth of response,
- * and we have an explicit header, we need to set up the sampler
- * writemask. It's reversed from normal: 1 means "don't write".
- */
- if (!inst->eot && regs_written(inst) != 4 * reg_width) {
- assert(regs_written(inst) % reg_width == 0);
- unsigned mask = ~((1 << (regs_written(inst) / reg_width)) - 1) & 0xf;
- inst->offset |= mask << 12;
- }
- }
-
- if (shadow_c.file != BAD_FILE) {
- bld.MOV(sources[length], shadow_c);
- length++;
- }
-
- bool coordinate_done = false;
-
- /* Set up the LOD info */
- switch (op) {
- case FS_OPCODE_TXB:
- case SHADER_OPCODE_TXL:
- if (devinfo->gen >= 9 && op == SHADER_OPCODE_TXL && lod.is_zero()) {
- op = SHADER_OPCODE_TXL_LZ;
- break;
- }
- bld.MOV(sources[length], lod);
- length++;
- break;
- case SHADER_OPCODE_TXD:
- /* TXD should have been lowered in SIMD16 mode. */
- assert(bld.dispatch_width() == 8);
-
- /* Load dPdx and the coordinate together:
- * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
- */
- for (unsigned i = 0; i < coord_components; i++) {
- bld.MOV(sources[length++], offset(coordinate, bld, i));
-
- /* For cube map array, the coordinate is (u,v,r,ai) but there are
- * only derivatives for (u, v, r).
- */
- if (i < grad_components) {
- bld.MOV(sources[length++], offset(lod, bld, i));
- bld.MOV(sources[length++], offset(lod2, bld, i));
- }
- }
-
- coordinate_done = true;
- break;
- case SHADER_OPCODE_TXS:
- bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
- length++;
- break;
- case SHADER_OPCODE_TXF:
- /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
- * On Gen9 they are u, v, lod, r
- */
- bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D), coordinate);
-
- if (devinfo->gen >= 9) {
- if (coord_components >= 2) {
- bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D),
- offset(coordinate, bld, 1));
- } else {
- sources[length] = brw_imm_d(0);
- }
- length++;
- }
-
- if (devinfo->gen >= 9 && lod.is_zero()) {
- op = SHADER_OPCODE_TXF_LZ;
- } else {
- bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
- length++;
- }
-
- for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++)
- bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
- offset(coordinate, bld, i));
-
- coordinate_done = true;
- break;
-
- case SHADER_OPCODE_TXF_CMS:
- case SHADER_OPCODE_TXF_CMS_W:
- case SHADER_OPCODE_TXF_UMS:
- case SHADER_OPCODE_TXF_MCS:
- if (op == SHADER_OPCODE_TXF_UMS ||
- op == SHADER_OPCODE_TXF_CMS ||
- op == SHADER_OPCODE_TXF_CMS_W) {
- bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
- length++;
- }
-
- if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
- /* Data from the multisample control surface. */
- bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
- length++;
-
- /* On Gen9+ we'll use ld2dms_w instead which has two registers for
- * the MCS data.
- */
- if (op == SHADER_OPCODE_TXF_CMS_W) {
- bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
- mcs.file == IMM ?
- mcs :
- offset(mcs, bld, 1));
- length++;
- }
- }
-
- /* There is no offsetting for this message; just copy in the integer
- * texture coordinates.
- */
- for (unsigned i = 0; i < coord_components; i++)
- bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
- offset(coordinate, bld, i));
-
- coordinate_done = true;
- break;
- case SHADER_OPCODE_TG4_OFFSET:
- /* More crazy intermixing */
- for (unsigned i = 0; i < 2; i++) /* u, v */
- bld.MOV(sources[length++], offset(coordinate, bld, i));
-
- for (unsigned i = 0; i < 2; i++) /* offu, offv */
- bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
- offset(tg4_offset, bld, i));
-
- if (coord_components == 3) /* r if present */
- bld.MOV(sources[length++], offset(coordinate, bld, 2));
-
- coordinate_done = true;
- break;
- default:
- break;
- }
-
- /* Set up the coordinate (except for cases where it was done above) */
- if (!coordinate_done) {
- for (unsigned i = 0; i < coord_components; i++)
- bld.MOV(sources[length++], offset(coordinate, bld, i));
- }
-
- int mlen;
- if (reg_width == 2)
- mlen = length * reg_width - header_size;
- else
- mlen = length * reg_width;
-
- const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
- BRW_REGISTER_TYPE_F);
- bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
-
- /* Generate the SEND. */
- inst->opcode = op;
- inst->src[0] = src_payload;
- inst->src[1] = surface;
- inst->src[2] = sampler;
- inst->resize_sources(3);
- inst->mlen = mlen;
- inst->header_size = header_size;
-
- /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
- assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
-}
-
-static void
-lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
-{
- const gen_device_info *devinfo = bld.shader->devinfo;
- const fs_reg &coordinate = inst->src[TEX_LOGICAL_SRC_COORDINATE];
- const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
- const fs_reg &lod = inst->src[TEX_LOGICAL_SRC_LOD];
- const fs_reg &lod2 = inst->src[TEX_LOGICAL_SRC_LOD2];
- const fs_reg &sample_index = inst->src[TEX_LOGICAL_SRC_SAMPLE_INDEX];
- const fs_reg &mcs = inst->src[TEX_LOGICAL_SRC_MCS];
- const fs_reg &surface = inst->src[TEX_LOGICAL_SRC_SURFACE];
- const fs_reg &sampler = inst->src[TEX_LOGICAL_SRC_SAMPLER];
- const fs_reg &tg4_offset = inst->src[TEX_LOGICAL_SRC_TG4_OFFSET];
- assert(inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM);
- const unsigned coord_components = inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
- assert(inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
- const unsigned grad_components = inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
-
- if (devinfo->gen >= 7) {
- lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
- shadow_c, lod, lod2, sample_index,
- mcs, surface, sampler, tg4_offset,
- coord_components, grad_components);
- } else if (devinfo->gen >= 5) {
- lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
- shadow_c, lod, lod2, sample_index,
- surface, sampler,
- coord_components, grad_components);
- } else {
- lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
- shadow_c, lod, lod2,
- surface, sampler,
- coord_components, grad_components);
- }
-}
-
-/**
- * Initialize the header present in some typed and untyped surface
- * messages.
- */
-static fs_reg
-emit_surface_header(const fs_builder &bld, const fs_reg &sample_mask)
-{
- fs_builder ubld = bld.exec_all().group(8, 0);
- const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
- ubld.MOV(dst, brw_imm_d(0));
- ubld.MOV(component(dst, 7), sample_mask);
- return dst;
-}
-
-static void
-lower_surface_logical_send(const fs_builder &bld, fs_inst *inst, opcode op,
- const fs_reg &sample_mask)
-{
- /* Get the logical send arguments. */
- const fs_reg &addr = inst->src[0];
- const fs_reg &src = inst->src[1];
- const fs_reg &surface = inst->src[2];
- const UNUSED fs_reg &dims = inst->src[3];
- const fs_reg &arg = inst->src[4];
-
- /* Calculate the total number of components of the payload. */
- const unsigned addr_sz = inst->components_read(0);
- const unsigned src_sz = inst->components_read(1);
- const unsigned header_sz = (sample_mask.file == BAD_FILE ? 0 : 1);
- const unsigned sz = header_sz + addr_sz + src_sz;
-
- /* Allocate space for the payload. */
- fs_reg *const components = new fs_reg[sz];
- const fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
- unsigned n = 0;
-
- /* Construct the payload. */
- if (header_sz)
- components[n++] = emit_surface_header(bld, sample_mask);
-
- for (unsigned i = 0; i < addr_sz; i++)
- components[n++] = offset(addr, bld, i);
-
- for (unsigned i = 0; i < src_sz; i++)
- components[n++] = offset(src, bld, i);
-
- bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
-
- /* Update the original instruction. */
- inst->opcode = op;
- inst->mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
- inst->header_size = header_sz;
-
- inst->src[0] = payload;
- inst->src[1] = surface;
- inst->src[2] = arg;
- inst->resize_sources(3);
-
- delete[] components;
-}
-
-static void
-lower_varying_pull_constant_logical_send(const fs_builder &bld, fs_inst *inst)
-{
- const gen_device_info *devinfo = bld.shader->devinfo;
-
- if (devinfo->gen >= 7) {
- /* We are switching the instruction from an ALU-like instruction to a
- * send-from-grf instruction. Since sends can't handle strides or
- * source modifiers, we have to make a copy of the offset source.
- */
- fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
- bld.MOV(tmp, inst->src[1]);
- inst->src[1] = tmp;
-
- inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
-
- } else {
- const fs_reg payload(MRF, FIRST_PULL_LOAD_MRF(devinfo->gen),
- BRW_REGISTER_TYPE_UD);
-
- bld.MOV(byte_offset(payload, REG_SIZE), inst->src[1]);
-
- inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4;
- inst->resize_sources(1);
- inst->base_mrf = payload.nr;
- inst->header_size = 1;
- inst->mlen = 1 + inst->exec_size / 8;
- }
-}
-
-static void
-lower_math_logical_send(const fs_builder &bld, fs_inst *inst)
-{
- assert(bld.shader->devinfo->gen < 6);
-
- inst->base_mrf = 2;
- inst->mlen = inst->sources * inst->exec_size / 8;
-
- if (inst->sources > 1) {
- /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
- * "Message Payload":
- *
- * "Operand0[7]. For the INT DIV functions, this operand is the
- * denominator."
- * ...
- * "Operand1[7]. For the INT DIV functions, this operand is the
- * numerator."
- */
- const bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
- const fs_reg src0 = is_int_div ? inst->src[1] : inst->src[0];
- const fs_reg src1 = is_int_div ? inst->src[0] : inst->src[1];
-
- inst->resize_sources(1);
- inst->src[0] = src0;
-
- assert(inst->exec_size == 8);
- bld.MOV(fs_reg(MRF, inst->base_mrf + 1, src1.type), src1);
- }
-}
-
-bool
-fs_visitor::lower_logical_sends()
-{
- bool progress = false;
-
- foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
- const fs_builder ibld(this, block, inst);
-
- switch (inst->opcode) {
- case FS_OPCODE_FB_WRITE_LOGICAL:
- assert(stage == MESA_SHADER_FRAGMENT);
- lower_fb_write_logical_send(ibld, inst,
- brw_wm_prog_data(prog_data),
- (const brw_wm_prog_key *)key,
- payload);
- break;
-
- case FS_OPCODE_FB_READ_LOGICAL:
- lower_fb_read_logical_send(ibld, inst);
- break;
-
- case SHADER_OPCODE_TEX_LOGICAL:
- lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
- break;
-
- case SHADER_OPCODE_TXD_LOGICAL:
- lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
- break;
-
- case SHADER_OPCODE_TXF_LOGICAL:
- lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
- break;
-
- case SHADER_OPCODE_TXL_LOGICAL:
- lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
- break;
-
- case SHADER_OPCODE_TXS_LOGICAL:
- lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
- break;
-
- case FS_OPCODE_TXB_LOGICAL:
- lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
- break;
-
- case SHADER_OPCODE_TXF_CMS_LOGICAL:
- lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
- break;
-
- case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
- lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
- break;
-
- case SHADER_OPCODE_TXF_UMS_LOGICAL:
- lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
- break;
-
- case SHADER_OPCODE_TXF_MCS_LOGICAL:
- lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
- break;
-
- case SHADER_OPCODE_LOD_LOGICAL:
- lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
- break;
-
- case SHADER_OPCODE_TG4_LOGICAL:
- lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
- break;
-
- case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
- lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
- break;
-
- case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
- lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_SAMPLEINFO);
- break;
-
- case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
- lower_surface_logical_send(ibld, inst,
- SHADER_OPCODE_UNTYPED_SURFACE_READ,
- fs_reg());
- break;
-
- case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
- lower_surface_logical_send(ibld, inst,
- SHADER_OPCODE_UNTYPED_SURFACE_WRITE,
- ibld.sample_mask_reg());
- break;
-
- case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
- lower_surface_logical_send(ibld, inst,
- SHADER_OPCODE_UNTYPED_ATOMIC,
- ibld.sample_mask_reg());
- break;
-
- case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
- lower_surface_logical_send(ibld, inst,
- SHADER_OPCODE_TYPED_SURFACE_READ,
- brw_imm_d(0xffff));
- break;
-
- case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
- lower_surface_logical_send(ibld, inst,
- SHADER_OPCODE_TYPED_SURFACE_WRITE,
- ibld.sample_mask_reg());
- break;
-
- case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
- lower_surface_logical_send(ibld, inst,
- SHADER_OPCODE_TYPED_ATOMIC,
- ibld.sample_mask_reg());
- break;
-
- case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
- lower_varying_pull_constant_logical_send(ibld, inst);
- break;
-
- case SHADER_OPCODE_RCP:
- case SHADER_OPCODE_RSQ:
- case SHADER_OPCODE_SQRT:
- case SHADER_OPCODE_EXP2:
- case SHADER_OPCODE_LOG2:
- case SHADER_OPCODE_SIN:
- case SHADER_OPCODE_COS:
- case SHADER_OPCODE_POW:
- case SHADER_OPCODE_INT_QUOTIENT:
- case SHADER_OPCODE_INT_REMAINDER:
- /* The math opcodes are overloaded for the send-like and
- * expression-like instructions which seems kind of icky. Gen6+ has
- * a native (but rather quirky) MATH instruction so we don't need to
- * do anything here. On Gen4-5 we'll have to lower the Gen6-like
- * logical instructions (which we can easily recognize because they
- * have mlen = 0) into send-like virtual instructions.
- */
- if (devinfo->gen < 6 && inst->mlen == 0) {
- lower_math_logical_send(ibld, inst);
- break;
-
- } else {
- continue;
- }
-
- default:
- continue;
- }
-
- progress = true;
- }
-
- if (progress)
- invalidate_live_intervals();
-
- return progress;
-}
-
-/**
- * Get the closest allowed SIMD width for instruction \p inst accounting for
- * some common regioning and execution control restrictions that apply to FPU
- * instructions. These restrictions don't necessarily have any relevance to
- * instructions not executed by the FPU pipeline like extended math, control
- * flow or send message instructions.
- *
- * For virtual opcodes it's really up to the instruction -- In some cases
- * (e.g. where a virtual instruction unrolls into a simple sequence of FPU
- * instructions) it may simplify virtual instruction lowering if we can
- * enforce FPU-like regioning restrictions already on the virtual instruction,
- * in other cases (e.g. virtual send-like instructions) this may be
- * excessively restrictive.
- */
-static unsigned
-get_fpu_lowered_simd_width(const struct gen_device_info *devinfo,
- const fs_inst *inst)
-{
- /* Maximum execution size representable in the instruction controls. */
- unsigned max_width = MIN2(32, inst->exec_size);
-
- /* According to the PRMs:
- * "A. In Direct Addressing mode, a source cannot span more than 2
- * adjacent GRF registers.
- * B. A destination cannot span more than 2 adjacent GRF registers."
- *
- * Look for the source or destination with the largest register region
- * which is the one that is going to limit the overall execution size of
- * the instruction due to this rule.
- */
- unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
-
- for (unsigned i = 0; i < inst->sources; i++)
- reg_count = MAX2(reg_count, DIV_ROUND_UP(inst->size_read(i), REG_SIZE));
-
- /* Calculate the maximum execution size of the instruction based on the
- * factor by which it goes over the hardware limit of 2 GRFs.
- */
- if (reg_count > 2)
- max_width = MIN2(max_width, inst->exec_size / DIV_ROUND_UP(reg_count, 2));
-
- /* According to the IVB PRMs:
- * "When destination spans two registers, the source MUST span two
- * registers. The exception to the above rule:
- *
- * - When source is scalar, the source registers are not incremented.
- * - When source is packed integer Word and destination is packed
- * integer DWord, the source register is not incremented but the
- * source sub register is incremented."
- *
- * The hardware specs from Gen4 to Gen7.5 mention similar regioning
- * restrictions. The code below intentionally doesn't check whether the
- * destination type is integer because empirically the hardware doesn't
- * seem to care what the actual type is as long as it's dword-aligned.
- */
- if (devinfo->gen < 8) {
- for (unsigned i = 0; i < inst->sources; i++) {
- if (inst->size_written > REG_SIZE &&
- inst->size_read(i) != 0 && inst->size_read(i) <= REG_SIZE &&
- !is_uniform(inst->src[i]) &&
- !(type_sz(inst->dst.type) == 4 && inst->dst.stride == 1 &&
- type_sz(inst->src[i].type) == 2 && inst->src[i].stride == 1)) {
- const unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
- max_width = MIN2(max_width, inst->exec_size / reg_count);
- }
- }
- }
-
- /* From the IVB PRMs:
- * "When an instruction is SIMD32, the low 16 bits of the execution mask
- * are applied for both halves of the SIMD32 instruction. If different
- * execution mask channels are required, split the instruction into two
- * SIMD16 instructions."
- *
- * There is similar text in the HSW PRMs. Gen4-6 don't even implement
- * 32-wide control flow support in hardware and will behave similarly.
- */
- if (devinfo->gen < 8 && !inst->force_writemask_all)
- max_width = MIN2(max_width, 16);
-
- /* From the IVB PRMs (applies to HSW too):
- * "Instructions with condition modifiers must not use SIMD32."
- *
- * From the BDW PRMs (applies to later hardware too):
- * "Ternary instruction with condition modifiers must not use SIMD32."
- */
- if (inst->conditional_mod && (devinfo->gen < 8 || inst->is_3src(devinfo)))
- max_width = MIN2(max_width, 16);
-
- /* From the IVB PRMs (applies to other devices that don't have the
- * gen_device_info::supports_simd16_3src flag set):
- * "In Align16 access mode, SIMD16 is not allowed for DW operations and
- * SIMD8 is not allowed for DF operations."
- */
- if (inst->is_3src(devinfo) && !devinfo->supports_simd16_3src)
- max_width = MIN2(max_width, inst->exec_size / reg_count);
-
- /* Pre-Gen8 EUs are hardwired to use the QtrCtrl+1 (where QtrCtrl is
- * the 8-bit quarter of the execution mask signals specified in the
- * instruction control fields) for the second compressed half of any
- * single-precision instruction (for double-precision instructions
- * it's hardwired to use NibCtrl+1, at least on HSW), which means that
- * the EU will apply the wrong execution controls for the second
- * sequential GRF write if the number of channels per GRF is not exactly
- * eight in single-precision mode (or four in double-float mode).
- *
- * In this situation we calculate the maximum size of the split
- * instructions so they only ever write to a single register.
- */
- if (devinfo->gen < 8 && inst->size_written > REG_SIZE &&
- !inst->force_writemask_all) {
- const unsigned channels_per_grf = inst->exec_size /
- DIV_ROUND_UP(inst->size_written, REG_SIZE);
- unsigned exec_type_size = 0;
- for (int i = 0; i < inst->sources; i++) {
- if (inst->src[i].file != BAD_FILE)
- exec_type_size = MAX2(exec_type_size, type_sz(inst->src[i].type));
- }
- assert(exec_type_size);
-
- /* The hardware shifts exactly 8 channels per compressed half of the
- * instruction in single-precision mode and exactly 4 in double-precision.
- */
- if (channels_per_grf != (exec_type_size == 8 ? 4 : 8))
- max_width = MIN2(max_width, channels_per_grf);
- }
-
- /* Only power-of-two execution sizes are representable in the instruction
- * control fields.
- */
- return 1 << _mesa_logbase2(max_width);
-}
-
-/**
- * Get the maximum allowed SIMD width for instruction \p inst accounting for
- * various payload size restrictions that apply to sampler message
- * instructions.
- *
- * This is only intended to provide a maximum theoretical bound for the
- * execution size of the message based on the number of argument components
- * alone, which in most cases will determine whether the SIMD8 or SIMD16
- * variant of the message can be used, though some messages may have
- * additional restrictions not accounted for here (e.g. pre-ILK hardware uses
- * the message length to determine the exact SIMD width and argument count,
- * which makes a number of sampler message combinations impossible to
- * represent).
- */
-static unsigned
-get_sampler_lowered_simd_width(const struct gen_device_info *devinfo,
- const fs_inst *inst)
-{
- /* Calculate the number of coordinate components that have to be present
- * assuming that additional arguments follow the texel coordinates in the
- * message payload. On IVB+ there is no need for padding, on ILK-SNB we
- * need to pad to four or three components depending on the message,
- * pre-ILK we need to pad to at most three components.
- */
- const unsigned req_coord_components =
- (devinfo->gen >= 7 ||
- !inst->components_read(TEX_LOGICAL_SRC_COORDINATE)) ? 0 :
- (devinfo->gen >= 5 && inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
- inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL) ? 4 :
- 3;
-
- /* On Gen9+ the LOD argument is for free if we're able to use the LZ
- * variant of the TXL or TXF message.
- */
- const bool implicit_lod = devinfo->gen >= 9 &&
- (inst->opcode == SHADER_OPCODE_TXL ||
- inst->opcode == SHADER_OPCODE_TXF) &&
- inst->src[TEX_LOGICAL_SRC_LOD].is_zero();
-
- /* Calculate the total number of argument components that need to be passed
- * to the sampler unit.
- */
- const unsigned num_payload_components =
- MAX2(inst->components_read(TEX_LOGICAL_SRC_COORDINATE),
- req_coord_components) +
- inst->components_read(TEX_LOGICAL_SRC_SHADOW_C) +
- (implicit_lod ? 0 : inst->components_read(TEX_LOGICAL_SRC_LOD)) +
- inst->components_read(TEX_LOGICAL_SRC_LOD2) +
- inst->components_read(TEX_LOGICAL_SRC_SAMPLE_INDEX) +
- (inst->opcode == SHADER_OPCODE_TG4_OFFSET_LOGICAL ?
- inst->components_read(TEX_LOGICAL_SRC_TG4_OFFSET) : 0) +
- inst->components_read(TEX_LOGICAL_SRC_MCS);
-
- /* SIMD16 messages with more than five arguments exceed the maximum message
- * size supported by the sampler, regardless of whether a header is
- * provided or not.
- */
- return MIN2(inst->exec_size,
- num_payload_components > MAX_SAMPLER_MESSAGE_SIZE / 2 ? 8 : 16);
-}
-
-/**
- * Get the closest native SIMD width supported by the hardware for instruction
- * \p inst. The instruction will be left untouched by
- * fs_visitor::lower_simd_width() if the returned value is equal to the
- * original execution size.
- */
-static unsigned
-get_lowered_simd_width(const struct gen_device_info *devinfo,
- const fs_inst *inst)
-{
- switch (inst->opcode) {
- case BRW_OPCODE_MOV:
- case BRW_OPCODE_SEL:
- case BRW_OPCODE_NOT:
- case BRW_OPCODE_AND:
- case BRW_OPCODE_OR:
- case BRW_OPCODE_XOR:
- case BRW_OPCODE_SHR:
- case BRW_OPCODE_SHL:
- case BRW_OPCODE_ASR:
- case BRW_OPCODE_CMPN:
- case BRW_OPCODE_CSEL:
- case BRW_OPCODE_F32TO16:
- case BRW_OPCODE_F16TO32:
- case BRW_OPCODE_BFREV:
- case BRW_OPCODE_BFE:
- case BRW_OPCODE_ADD:
- case BRW_OPCODE_MUL:
- case BRW_OPCODE_AVG:
- case BRW_OPCODE_FRC:
- case BRW_OPCODE_RNDU:
- case BRW_OPCODE_RNDD:
- case BRW_OPCODE_RNDE:
- case BRW_OPCODE_RNDZ:
- case BRW_OPCODE_LZD:
- case BRW_OPCODE_FBH:
- case BRW_OPCODE_FBL:
- case BRW_OPCODE_CBIT:
- case BRW_OPCODE_SAD2:
- case BRW_OPCODE_MAD:
- case BRW_OPCODE_LRP:
- case FS_OPCODE_PACK:
- return get_fpu_lowered_simd_width(devinfo, inst);
-
- case BRW_OPCODE_CMP: {
- /* The Ivybridge/BayTrail WaCMPInstFlagDepClearedEarly workaround says that
- * when the destination is a GRF the dependency-clear bit on the flag
- * register is cleared early.
- *
- * Suggested workarounds are to disable coissuing CMP instructions
- * or to split CMP(16) instructions into two CMP(8) instructions.
- *
- * We choose to split into CMP(8) instructions since disabling
- * coissuing would affect CMP instructions not otherwise affected by
- * the errata.
- */
- const unsigned max_width = (devinfo->gen == 7 && !devinfo->is_haswell &&
- !inst->dst.is_null() ? 8 : ~0);
- return MIN2(max_width, get_fpu_lowered_simd_width(devinfo, inst));
- }
- case BRW_OPCODE_BFI1:
- case BRW_OPCODE_BFI2:
- /* The Haswell WaForceSIMD8ForBFIInstruction workaround says that we
- * should
- * "Force BFI instructions to be executed always in SIMD8."
- */
- return MIN2(devinfo->is_haswell ? 8 : ~0u,
- get_fpu_lowered_simd_width(devinfo, inst));
-
- case BRW_OPCODE_IF:
- assert(inst->src[0].file == BAD_FILE || inst->exec_size <= 16);
- return inst->exec_size;
-
- case SHADER_OPCODE_RCP:
- case SHADER_OPCODE_RSQ:
- case SHADER_OPCODE_SQRT:
- case SHADER_OPCODE_EXP2:
- case SHADER_OPCODE_LOG2:
- case SHADER_OPCODE_SIN:
- case SHADER_OPCODE_COS:
- /* Unary extended math instructions are limited to SIMD8 on Gen4 and
- * Gen6.
- */
- return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
- devinfo->gen == 5 || devinfo->is_g4x ? MIN2(16, inst->exec_size) :
- MIN2(8, inst->exec_size));
-
- case SHADER_OPCODE_POW:
- /* SIMD16 is only allowed on Gen7+. */
- return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
- MIN2(8, inst->exec_size));
-
- case SHADER_OPCODE_INT_QUOTIENT:
- case SHADER_OPCODE_INT_REMAINDER:
- /* Integer division is limited to SIMD8 on all generations. */
- return MIN2(8, inst->exec_size);
-
- case FS_OPCODE_LINTERP:
- case FS_OPCODE_GET_BUFFER_SIZE:
- case FS_OPCODE_DDX_COARSE:
- case FS_OPCODE_DDX_FINE:
- case FS_OPCODE_DDY_COARSE:
- case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
- case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
- case FS_OPCODE_PACK_HALF_2x16_SPLIT:
- case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
- case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
- case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
- case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
- case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
- return MIN2(16, inst->exec_size);
-
- case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
- /* Pre-ILK hardware doesn't have a SIMD8 variant of the texel fetch
- * message used to implement varying pull constant loads, so expand it
- * to SIMD16. An alternative with longer message payload length but
- * shorter return payload would be to use the SIMD8 sampler message that
- * takes (header, u, v, r) as parameters instead of (header, u).
- */
- return (devinfo->gen == 4 ? 16 : MIN2(16, inst->exec_size));
-
- case FS_OPCODE_DDY_FINE:
- /* The implementation of this virtual opcode may require emitting
- * compressed Align16 instructions, which are severely limited on some
- * generations.
- *
- * From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register
- * Region Restrictions):
- *
- * "In Align16 access mode, SIMD16 is not allowed for DW operations
- * and SIMD8 is not allowed for DF operations."
- *
- * In this context, "DW operations" means "operations acting on 32-bit
- * values", so it includes operations on floats.
- *
- * Gen4 has a similar restriction. From the i965 PRM, section 11.5.3
- * (Instruction Compression -> Rules and Restrictions):
- *
- * "A compressed instruction must be in Align1 access mode. Align16
- * mode instructions cannot be compressed."
- *
- * Similar text exists in the g45 PRM.
- *
- * Empirically, compressed align16 instructions using odd register
- * numbers don't appear to work on Sandybridge either.
- */
- return (devinfo->gen == 4 || devinfo->gen == 6 ||
- (devinfo->gen == 7 && !devinfo->is_haswell) ?
- MIN2(8, inst->exec_size) : MIN2(16, inst->exec_size));
-
- case SHADER_OPCODE_MULH:
- /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
- * is 8-wide on Gen7+.
- */
- return (devinfo->gen >= 7 ? 8 :
- get_fpu_lowered_simd_width(devinfo, inst));
-
- case FS_OPCODE_FB_WRITE_LOGICAL:
- /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
- * here.
- */
- assert(devinfo->gen != 6 ||
- inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
- inst->exec_size == 8);
- /* Dual-source FB writes are unsupported in SIMD16 mode. */
- return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
- 8 : MIN2(16, inst->exec_size));
-
- case FS_OPCODE_FB_READ_LOGICAL:
- return MIN2(16, inst->exec_size);
-
- case SHADER_OPCODE_TEX_LOGICAL:
- case SHADER_OPCODE_TXF_CMS_LOGICAL:
- case SHADER_OPCODE_TXF_UMS_LOGICAL:
- case SHADER_OPCODE_TXF_MCS_LOGICAL:
- case SHADER_OPCODE_LOD_LOGICAL:
- case SHADER_OPCODE_TG4_LOGICAL:
- case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
- case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
- case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
- return get_sampler_lowered_simd_width(devinfo, inst);
-
- case SHADER_OPCODE_TXD_LOGICAL:
- /* TXD is unsupported in SIMD16 mode. */
- return 8;
-
- case SHADER_OPCODE_TXL_LOGICAL:
- case FS_OPCODE_TXB_LOGICAL:
- /* Only one execution size is representable pre-ILK depending on whether
- * the shadow reference argument is present.
- */
- if (devinfo->gen == 4)
- return inst->src[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE ? 16 : 8;
- else
- return get_sampler_lowered_simd_width(devinfo, inst);
-
- case SHADER_OPCODE_TXF_LOGICAL:
- case SHADER_OPCODE_TXS_LOGICAL:
- /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
- * messages. Use SIMD16 instead.
- */
- if (devinfo->gen == 4)
- return 16;
- else
- return get_sampler_lowered_simd_width(devinfo, inst);
-
- case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
- case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
- case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
- return 8;
-
- case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
- case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
- case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
- return MIN2(16, inst->exec_size);
-
- case SHADER_OPCODE_URB_READ_SIMD8:
- case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
- case SHADER_OPCODE_URB_WRITE_SIMD8:
- case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
- case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
- case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
- return MIN2(8, inst->exec_size);
-
- case SHADER_OPCODE_MOV_INDIRECT:
- /* Prior to Broadwell, we only have 8 address subregisters */
- return MIN3(devinfo->gen >= 8 ? 16 : 8,
- 2 * REG_SIZE / (inst->dst.stride * type_sz(inst->dst.type)),
- inst->exec_size);
-
- case SHADER_OPCODE_LOAD_PAYLOAD: {
- const unsigned reg_count =
- DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE);
-
- if (reg_count > 2) {
- /* Only LOAD_PAYLOAD instructions with per-channel destination region
- * can be easily lowered (which excludes headers and heterogeneous
- * types).
- */
- assert(!inst->header_size);
- for (unsigned i = 0; i < inst->sources; i++)
- assert(type_sz(inst->dst.type) == type_sz(inst->src[i].type) ||
- inst->src[i].file == BAD_FILE);
-
- return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
- } else {
- return inst->exec_size;
- }
- }
- default:
- return inst->exec_size;
- }
-}
-
-/**
- * Return true if splitting out the group of channels of instruction \p inst
- * given by lbld.group() requires allocating a temporary for the i-th source
- * of the lowered instruction.
- */
-static inline bool
-needs_src_copy(const fs_builder &lbld, const fs_inst *inst, unsigned i)
-{
- return !(is_periodic(inst->src[i], lbld.dispatch_width()) ||
- (inst->components_read(i) == 1 &&
- lbld.dispatch_width() <= inst->exec_size));
-}
-
-/**
- * Extract the data that would be consumed by the channel group given by
- * lbld.group() from the i-th source region of instruction \p inst and return
- * it as result in packed form. If any copy instructions are required they
- * will be emitted before the given \p inst in \p block.
- */
-static fs_reg
-emit_unzip(const fs_builder &lbld, bblock_t *block, fs_inst *inst,
- unsigned i)
-{
- /* Specified channel group from the source region. */
- const fs_reg src = horiz_offset(inst->src[i], lbld.group());
-
- if (needs_src_copy(lbld, inst, i)) {
- /* Builder of the right width to perform the copy avoiding uninitialized
- * data if the lowered execution size is greater than the original
- * execution size of the instruction.
- */
- const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
- inst->exec_size), 0);
- const fs_reg tmp = lbld.vgrf(inst->src[i].type, inst->components_read(i));
-
- for (unsigned k = 0; k < inst->components_read(i); ++k)
- cbld.at(block, inst)
- .MOV(offset(tmp, lbld, k), offset(src, inst->exec_size, k));
-
- return tmp;
-
- } else if (is_periodic(inst->src[i], lbld.dispatch_width())) {
- /* The source is invariant for all dispatch_width-wide groups of the
- * original region.
- */
- return inst->src[i];
-
- } else {
- /* We can just point the lowered instruction at the right channel group
- * from the original region.
- */
- return src;
- }
-}
-
-/**
- * Return true if splitting out the group of channels of instruction \p inst
- * given by lbld.group() requires allocating a temporary for the destination
- * of the lowered instruction and copying the data back to the original
- * destination region.
- */
-static inline bool
-needs_dst_copy(const fs_builder &lbld, const fs_inst *inst)
-{
- /* If the instruction writes more than one component we'll have to shuffle
- * the results of multiple lowered instructions in order to make sure that
- * they end up arranged correctly in the original destination region.
- */
- if (inst->size_written > inst->dst.component_size(inst->exec_size))
- return true;
-
- /* If the lowered execution size is larger than the original the result of
- * the instruction won't fit in the original destination, so we'll have to
- * allocate a temporary in any case.
- */
- if (lbld.dispatch_width() > inst->exec_size)
- return true;
-
- for (unsigned i = 0; i < inst->sources; i++) {
- /* If we already made a copy of the source for other reasons there won't
- * be any overlap with the destination.
- */
- if (needs_src_copy(lbld, inst, i))
- continue;
-
- /* In order to keep the logic simple we emit a copy whenever the
- * destination region doesn't exactly match an overlapping source, which
- * may point at the source and destination not being aligned group by
- * group which could cause one of the lowered instructions to overwrite
- * the data read from the same source by other lowered instructions.
- */
- if (regions_overlap(inst->dst, inst->size_written,
- inst->src[i], inst->size_read(i)) &&
- !inst->dst.equals(inst->src[i]))
- return true;
- }
-
- return false;
-}
-
-/**
- * Insert data from a packed temporary into the channel group given by
- * lbld.group() of the destination region of instruction \p inst and return
- * the temporary as result. If any copy instructions are required they will
- * be emitted around the given \p inst in \p block.
- */
-static fs_reg
-emit_zip(const fs_builder &lbld, bblock_t *block, fs_inst *inst)
-{
- /* Builder of the right width to perform the copy avoiding uninitialized
- * data if the lowered execution size is greater than the original
- * execution size of the instruction.
- */
- const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
- inst->exec_size), 0);
-
- /* Specified channel group from the destination region. */
- const fs_reg dst = horiz_offset(inst->dst, lbld.group());
- const unsigned dst_size = inst->size_written /
- inst->dst.component_size(inst->exec_size);
-
- if (needs_dst_copy(lbld, inst)) {
- const fs_reg tmp = lbld.vgrf(inst->dst.type, dst_size);
-
- if (inst->predicate) {
- /* Handle predication by copying the original contents of
- * the destination into the temporary before emitting the
- * lowered instruction.
- */
- for (unsigned k = 0; k < dst_size; ++k)
- cbld.at(block, inst)
- .MOV(offset(tmp, lbld, k), offset(dst, inst->exec_size, k));
- }
-
- for (unsigned k = 0; k < dst_size; ++k)
- cbld.at(block, inst->next)
- .MOV(offset(dst, inst->exec_size, k), offset(tmp, lbld, k));
-
- return tmp;
-
- } else {
- /* No need to allocate a temporary for the lowered instruction, just
- * take the right group of channels from the original region.
- */
- return dst;
- }
-}
-
-bool
-fs_visitor::lower_simd_width()
-{
- bool progress = false;
-
- foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
- const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
-
- if (lower_width != inst->exec_size) {
- /* Builder matching the original instruction. We may also need to
- * emit an instruction of width larger than the original, set the
- * execution size of the builder to the highest of both for now so
- * we're sure that both cases can be handled.
- */
- const unsigned max_width = MAX2(inst->exec_size, lower_width);
- const fs_builder ibld = bld.at(block, inst)
- .exec_all(inst->force_writemask_all)
- .group(max_width, inst->group / max_width);
-
- /* Split the copies in chunks of the execution width of either the
- * original or the lowered instruction, whichever is lower.
- */
- const unsigned n = DIV_ROUND_UP(inst->exec_size, lower_width);
- const unsigned dst_size = inst->size_written /
- inst->dst.component_size(inst->exec_size);
-
- assert(!inst->writes_accumulator && !inst->mlen);
-
- for (unsigned i = 0; i < n; i++) {
- /* Emit a copy of the original instruction with the lowered width.
- * If the EOT flag was set throw it away except for the last
- * instruction to avoid killing the thread prematurely.
- */
- fs_inst split_inst = *inst;
- split_inst.exec_size = lower_width;
- split_inst.eot = inst->eot && i == n - 1;
-
- /* Select the correct channel enables for the i-th group, then
- * transform the sources and destination and emit the lowered
- * instruction.
- */
- const fs_builder lbld = ibld.group(lower_width, i);
-
- for (unsigned j = 0; j < inst->sources; j++)
- split_inst.src[j] = emit_unzip(lbld, block, inst, j);
-
- split_inst.dst = emit_zip(lbld, block, inst);
- split_inst.size_written =
- split_inst.dst.component_size(lower_width) * dst_size;
-
- lbld.emit(split_inst);
- }
-
- inst->remove(block);
- progress = true;
- }
- }
-
- if (progress)
- invalidate_live_intervals();
-
- return progress;
-}
-
-void
-fs_visitor::dump_instructions()
-{
- dump_instructions(NULL);
-}
-
-void
-fs_visitor::dump_instructions(const char *name)
-{
- FILE *file = stderr;
- if (name && geteuid() != 0) {
- file = fopen(name, "w");
- if (!file)
- file = stderr;
- }
-
- if (cfg) {
- calculate_register_pressure();
- int ip = 0, max_pressure = 0;
- foreach_block_and_inst(block, backend_instruction, inst, cfg) {
- max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
- fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
- dump_instruction(inst, file);
- ip++;
- }
- fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
- } else {
- int ip = 0;
- foreach_in_list(backend_instruction, inst, &instructions) {
- fprintf(file, "%4d: ", ip++);
- dump_instruction(inst, file);
- }
- }
-
- if (file != stderr) {
- fclose(file);
- }
-}
-
-void
-fs_visitor::dump_instruction(backend_instruction *be_inst)
-{
- dump_instruction(be_inst, stderr);
-}
-
-void
-fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
-{
- fs_inst *inst = (fs_inst *)be_inst;
-
- if (inst->predicate) {
- fprintf(file, "(%cf0.%d) ",
- inst->predicate_inverse ? '-' : '+',
- inst->flag_subreg);
- }
-
- fprintf(file, "%s", brw_instruction_name(devinfo, inst->opcode));
- if (inst->saturate)
- fprintf(file, ".sat");
- if (inst->conditional_mod) {
- fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
- if (!inst->predicate &&
- (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
- inst->opcode != BRW_OPCODE_IF &&
- inst->opcode != BRW_OPCODE_WHILE))) {
- fprintf(file, ".f0.%d", inst->flag_subreg);
- }
- }
- fprintf(file, "(%d) ", inst->exec_size);
-
- if (inst->mlen) {
- fprintf(file, "(mlen: %d) ", inst->mlen);
- }
-
- if (inst->eot) {
- fprintf(file, "(EOT) ");
- }
-
- switch (inst->dst.file) {
- case VGRF:
- fprintf(file, "vgrf%d", inst->dst.nr);
- break;
- case FIXED_GRF:
- fprintf(file, "g%d", inst->dst.nr);
- break;
- case MRF:
- fprintf(file, "m%d", inst->dst.nr);
- break;
- case BAD_FILE:
- fprintf(file, "(null)");
- break;
- case UNIFORM:
- fprintf(file, "***u%d***", inst->dst.nr);
- break;
- case ATTR:
- fprintf(file, "***attr%d***", inst->dst.nr);
- break;
- case ARF:
- switch (inst->dst.nr) {
- case BRW_ARF_NULL:
- fprintf(file, "null");
- break;
- case BRW_ARF_ADDRESS:
- fprintf(file, "a0.%d", inst->dst.subnr);
- break;
- case BRW_ARF_ACCUMULATOR:
- fprintf(file, "acc%d", inst->dst.subnr);
- break;
- case BRW_ARF_FLAG:
- fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
- break;
- default:
- fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
- break;
- }
- break;
- case IMM:
- unreachable("not reached");
- }
-
- if (inst->dst.offset ||
- (inst->dst.file == VGRF &&
- alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
- const unsigned reg_size = (inst->dst.file == UNIFORM ? 4 : REG_SIZE);
- fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
- inst->dst.offset % reg_size);
- }
-
- if (inst->dst.stride != 1)
- fprintf(file, "<%u>", inst->dst.stride);
- fprintf(file, ":%s, ", brw_reg_type_letters(inst->dst.type));
-
- for (int i = 0; i < inst->sources; i++) {
- if (inst->src[i].negate)
- fprintf(file, "-");
- if (inst->src[i].abs)
- fprintf(file, "|");
- switch (inst->src[i].file) {
- case VGRF:
- fprintf(file, "vgrf%d", inst->src[i].nr);
- break;
- case FIXED_GRF:
- fprintf(file, "g%d", inst->src[i].nr);
- break;
- case MRF:
- fprintf(file, "***m%d***", inst->src[i].nr);
- break;
- case ATTR:
- fprintf(file, "attr%d", inst->src[i].nr);
- break;
- case UNIFORM:
- fprintf(file, "u%d", inst->src[i].nr);
- break;
- case BAD_FILE:
- fprintf(file, "(null)");
- break;
- case IMM:
- switch (inst->src[i].type) {
- case BRW_REGISTER_TYPE_F:
- fprintf(file, "%-gf", inst->src[i].f);
- break;
- case BRW_REGISTER_TYPE_DF:
- fprintf(file, "%fdf", inst->src[i].df);
- break;
- case BRW_REGISTER_TYPE_W:
- case BRW_REGISTER_TYPE_D:
- fprintf(file, "%dd", inst->src[i].d);
- break;
- case BRW_REGISTER_TYPE_UW:
- case BRW_REGISTER_TYPE_UD:
- fprintf(file, "%uu", inst->src[i].ud);
- break;
- case BRW_REGISTER_TYPE_VF:
- fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
- brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
- brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
- brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
- brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
- break;
- default:
- fprintf(file, "???");
- break;
- }
- break;
- case ARF:
- switch (inst->src[i].nr) {
- case BRW_ARF_NULL:
- fprintf(file, "null");
- break;
- case BRW_ARF_ADDRESS:
- fprintf(file, "a0.%d", inst->src[i].subnr);
- break;
- case BRW_ARF_ACCUMULATOR:
- fprintf(file, "acc%d", inst->src[i].subnr);
- break;
- case BRW_ARF_FLAG:
- fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
- break;
- default:
- fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
- break;
- }
- break;
- }
-
- if (inst->src[i].offset ||
- (inst->src[i].file == VGRF &&
- alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
- const unsigned reg_size = (inst->src[i].file == UNIFORM ? 4 : REG_SIZE);
- fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
- inst->src[i].offset % reg_size);
- }
-
- if (inst->src[i].abs)
- fprintf(file, "|");
-
- if (inst->src[i].file != IMM) {
- unsigned stride;
- if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
- unsigned hstride = inst->src[i].hstride;
- stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
- } else {
- stride = inst->src[i].stride;
- }
- if (stride != 1)
- fprintf(file, "<%u>", stride);
-
- fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
- }
-
- if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
- fprintf(file, ", ");
- }
-
- fprintf(file, " ");
-
- if (inst->force_writemask_all)
- fprintf(file, "NoMask ");
-
- if (inst->exec_size != dispatch_width)
- fprintf(file, "group%d ", inst->group);
-
- fprintf(file, "\n");
-}
-
-/**
- * Possibly returns an instruction that set up @param reg.
- *
- * Sometimes we want to take the result of some expression/variable
- * dereference tree and rewrite the instruction generating the result
- * of the tree. When processing the tree, we know that the
- * instructions generated are all writing temporaries that are dead
- * outside of this tree. So, if we have some instructions that write
- * a temporary, we're free to point that temp write somewhere else.
- *
- * Note that this doesn't guarantee that the instruction generated
- * only reg -- it might be the size=4 destination of a texture instruction.
- */
-fs_inst *
-fs_visitor::get_instruction_generating_reg(fs_inst *start,
- fs_inst *end,
- const fs_reg &reg)
-{
- if (end == start ||
- end->is_partial_write() ||
- !reg.equals(end->dst)) {
- return NULL;
- } else {
- return end;
- }
-}
-
-void
-fs_visitor::setup_fs_payload_gen6()
-{
- assert(stage == MESA_SHADER_FRAGMENT);
- struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
-
- assert(devinfo->gen >= 6);
-
- /* R0-1: masks, pixel X/Y coordinates. */
- payload.num_regs = 2;
- /* R2: only for 32-pixel dispatch.*/
-
- /* R3-26: barycentric interpolation coordinates. These appear in the
- * same order that they appear in the brw_barycentric_mode
- * enum. Each set of coordinates occupies 2 registers if dispatch width
- * == 8 and 4 registers if dispatch width == 16. Coordinates only
- * appear if they were enabled using the "Barycentric Interpolation
- * Mode" bits in WM_STATE.
- */
- for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
- if (prog_data->barycentric_interp_modes & (1 << i)) {
- payload.barycentric_coord_reg[i] = payload.num_regs;
- payload.num_regs += 2;
- if (dispatch_width == 16) {
- payload.num_regs += 2;
- }
- }
- }
-
- /* R27: interpolated depth if uses source depth */
- prog_data->uses_src_depth =
- (nir->info->inputs_read & (1 << VARYING_SLOT_POS)) != 0;
- if (prog_data->uses_src_depth) {
- payload.source_depth_reg = payload.num_regs;
- payload.num_regs++;
- if (dispatch_width == 16) {
- /* R28: interpolated depth if not SIMD8. */
- payload.num_regs++;
- }
- }
-
- /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
- prog_data->uses_src_w =
- (nir->info->inputs_read & (1 << VARYING_SLOT_POS)) != 0;
- if (prog_data->uses_src_w) {
- payload.source_w_reg = payload.num_regs;
- payload.num_regs++;
- if (dispatch_width == 16) {
- /* R30: interpolated W if not SIMD8. */
- payload.num_regs++;
- }
- }
-
- /* R31: MSAA position offsets. */
- if (prog_data->persample_dispatch &&
- (nir->info->system_values_read & SYSTEM_BIT_SAMPLE_POS)) {
- /* From the Ivy Bridge PRM documentation for 3DSTATE_PS:
- *
- * "MSDISPMODE_PERSAMPLE is required in order to select
- * POSOFFSET_SAMPLE"
- *
- * So we can only really get sample positions if we are doing real
- * per-sample dispatch. If we need gl_SamplePosition and we don't have
- * persample dispatch, we hard-code it to 0.5.
- */
- prog_data->uses_pos_offset = true;
- payload.sample_pos_reg = payload.num_regs;
- payload.num_regs++;
- }
-
- /* R32: MSAA input coverage mask */
- prog_data->uses_sample_mask =
- (nir->info->system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) != 0;
- if (prog_data->uses_sample_mask) {
- assert(devinfo->gen >= 7);
- payload.sample_mask_in_reg = payload.num_regs;
- payload.num_regs++;
- if (dispatch_width == 16) {
- /* R33: input coverage mask if not SIMD8. */
- payload.num_regs++;
- }
- }
-
- /* R34-: bary for 32-pixel. */
- /* R58-59: interp W for 32-pixel. */
-
- if (nir->info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
- source_depth_to_render_target = true;
- }
-}
-
-void
-fs_visitor::setup_vs_payload()
-{
- /* R0: thread header, R1: urb handles */
- payload.num_regs = 2;
-}
-
-void
-fs_visitor::setup_gs_payload()
-{
- assert(stage == MESA_SHADER_GEOMETRY);
-
- struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
- struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
-
- /* R0: thread header, R1: output URB handles */
- payload.num_regs = 2;
-
- if (gs_prog_data->include_primitive_id) {
- /* R2: Primitive ID 0..7 */
- payload.num_regs++;
- }
-
- /* Use a maximum of 24 registers for push-model inputs. */
- const unsigned max_push_components = 24;
-
- /* If pushing our inputs would take too many registers, reduce the URB read
- * length (which is in HWords, or 8 registers), and resort to pulling.
- *
- * Note that the GS reads <URB Read Length> HWords for every vertex - so we
- * have to multiply by VerticesIn to obtain the total storage requirement.
- */
- if (8 * vue_prog_data->urb_read_length * nir->info->gs.vertices_in >
- max_push_components || gs_prog_data->invocations > 1) {
- gs_prog_data->base.include_vue_handles = true;
-
- /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
- payload.num_regs += nir->info->gs.vertices_in;
-
- vue_prog_data->urb_read_length =
- ROUND_DOWN_TO(max_push_components / nir->info->gs.vertices_in, 8) / 8;
- }
-}
-
-void
-fs_visitor::setup_cs_payload()
-{
- assert(devinfo->gen >= 7);
- payload.num_regs = 1;
-}
-
-void
-fs_visitor::calculate_register_pressure()
-{
- invalidate_live_intervals();
- calculate_live_intervals();
-
- unsigned num_instructions = 0;
- foreach_block(block, cfg)
- num_instructions += block->instructions.length();
-
- regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
-
- for (unsigned reg = 0; reg < alloc.count; reg++) {
- for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
- regs_live_at_ip[ip] += alloc.sizes[reg];
- }
-}
-
-/**
- * Look for repeated FS_OPCODE_MOV_DISPATCH_TO_FLAGS and drop the later ones.
- *
- * The needs_unlit_centroid_workaround ends up producing one of these per
- * channel of centroid input, so it's good to clean them up.
- *
- * An assumption here is that nothing ever modifies the dispatched pixels
- * value that FS_OPCODE_MOV_DISPATCH_TO_FLAGS reads from, but the hardware
- * dictates that anyway.
- */
-bool
-fs_visitor::opt_drop_redundant_mov_to_flags()
-{
- bool flag_mov_found[2] = {false};
- bool progress = false;
-
- /* Instructions removed by this pass can only be added if this were true */
- if (!devinfo->needs_unlit_centroid_workaround)
- return false;
-
- foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
- if (inst->is_control_flow()) {
- memset(flag_mov_found, 0, sizeof(flag_mov_found));
- } else if (inst->opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
- if (!flag_mov_found[inst->flag_subreg]) {
- flag_mov_found[inst->flag_subreg] = true;
- } else {
- inst->remove(block);
- progress = true;
- }
- } else if (inst->flags_written()) {
- flag_mov_found[inst->flag_subreg] = false;
- }
- }
-
- return progress;
-}
-
-void
-fs_visitor::optimize()
-{
- /* Start by validating the shader we currently have. */
- validate();
-
- /* bld is the common builder object pointing at the end of the program we
- * used to translate it into i965 IR. For the optimization and lowering
- * passes coming next, any code added after the end of the program without
- * having explicitly called fs_builder::at() clearly points at a mistake.
- * Ideally optimization passes wouldn't be part of the visitor so they
- * wouldn't have access to bld at all, but they do, so just in case some
- * pass forgets to ask for a location explicitly set it to NULL here to
- * make it trip. The dispatch width is initialized to a bogus value to
- * make sure that optimizations set the execution controls explicitly to
- * match the code they are manipulating instead of relying on the defaults.
- */
- bld = fs_builder(this, 64);
-
- assign_constant_locations();
- lower_constant_loads();
-
- validate();
-
- split_virtual_grfs();
- validate();
-
-#define OPT(pass, args...) ({ \
- pass_num++; \
- bool this_progress = pass(args); \
- \
- if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
- char filename[64]; \
- snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
- stage_abbrev, dispatch_width, nir->info->name, iteration, pass_num); \
- \
- backend_shader::dump_instructions(filename); \
- } \
- \
- validate(); \
- \
- progress = progress || this_progress; \
- this_progress; \
- })
-
- if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
- char filename[64];
- snprintf(filename, 64, "%s%d-%s-00-00-start",
- stage_abbrev, dispatch_width, nir->info->name);
-
- backend_shader::dump_instructions(filename);
- }
-
- bool progress = false;
- int iteration = 0;
- int pass_num = 0;
-
- OPT(opt_drop_redundant_mov_to_flags);
-
- do {
- progress = false;
- pass_num = 0;
- iteration++;
-
- OPT(remove_duplicate_mrf_writes);
-
- OPT(opt_algebraic);
- OPT(opt_cse);
- OPT(opt_copy_propagation);
- OPT(opt_predicated_break, this);
- OPT(opt_cmod_propagation);
- OPT(dead_code_eliminate);
- OPT(opt_peephole_sel);
- OPT(dead_control_flow_eliminate, this);
- OPT(opt_register_renaming);
- OPT(opt_saturate_propagation);
- OPT(register_coalesce);
- OPT(compute_to_mrf);
- OPT(eliminate_find_live_channel);
-
- OPT(compact_virtual_grfs);
- } while (progress);
-
- progress = false;
- pass_num = 0;
-
- if (OPT(lower_pack)) {
- OPT(register_coalesce);
- OPT(dead_code_eliminate);
- }
-
- if (OPT(lower_d2x)) {
- OPT(opt_copy_propagation);
- OPT(dead_code_eliminate);
- }
-
- OPT(lower_simd_width);
-
- /* After SIMD lowering just in case we had to unroll the EOT send. */
- OPT(opt_sampler_eot);
-
- OPT(lower_logical_sends);
-
- if (progress) {
- OPT(opt_copy_propagation);
- /* Only run after logical send lowering because it's easier to implement
- * in terms of physical sends.
- */
- if (OPT(opt_zero_samples))
- OPT(opt_copy_propagation);
- /* Run after logical send lowering to give it a chance to CSE the
- * LOAD_PAYLOAD instructions created to construct the payloads of
- * e.g. texturing messages in cases where it wasn't possible to CSE the
- * whole logical instruction.
- */
- OPT(opt_cse);
- OPT(register_coalesce);
- OPT(compute_to_mrf);
- OPT(dead_code_eliminate);
- OPT(remove_duplicate_mrf_writes);
- OPT(opt_peephole_sel);
- }
-
- OPT(opt_redundant_discard_jumps);
-
- if (OPT(lower_load_payload)) {
- split_virtual_grfs();
- OPT(register_coalesce);
- OPT(compute_to_mrf);
- OPT(dead_code_eliminate);
- }
-
- OPT(opt_combine_constants);
- OPT(lower_integer_multiplication);
-
- if (devinfo->gen <= 5 && OPT(lower_minmax)) {
- OPT(opt_cmod_propagation);
- OPT(opt_cse);
- OPT(opt_copy_propagation);
- OPT(dead_code_eliminate);
- }
-
- lower_uniform_pull_constant_loads();
-
- validate();
-}
-
-/**
- * Three source instruction must have a GRF/MRF destination register.
- * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
- */
-void
-fs_visitor::fixup_3src_null_dest()
-{
- bool progress = false;
-
- foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
- if (inst->is_3src(devinfo) && inst->dst.is_null()) {
- inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
- inst->dst.type);
- progress = true;
- }
- }
-
- if (progress)
- invalidate_live_intervals();
-}
-
-void
-fs_visitor::allocate_registers(bool allow_spilling)
-{
- bool allocated_without_spills;
-
- static const enum instruction_scheduler_mode pre_modes[] = {
- SCHEDULE_PRE,
- SCHEDULE_PRE_NON_LIFO,
- SCHEDULE_PRE_LIFO,
- };
-
- bool spill_all = allow_spilling && (INTEL_DEBUG & DEBUG_SPILL_FS);
-
- /* Try each scheduling heuristic to see if it can successfully register
- * allocate without spilling. They should be ordered by decreasing
- * performance but increasing likelihood of allocating.
- */
- for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
- schedule_instructions(pre_modes[i]);
-
- if (0) {
- assign_regs_trivial();
- allocated_without_spills = true;
- } else {
- allocated_without_spills = assign_regs(false, spill_all);
- }
- if (allocated_without_spills)
- break;
- }
-
- if (!allocated_without_spills) {
- if (!allow_spilling)
- fail("Failure to register allocate and spilling is not allowed.");
-
- /* We assume that any spilling is worse than just dropping back to
- * SIMD8. There's probably actually some intermediate point where
- * SIMD16 with a couple of spills is still better.
- */
- if (dispatch_width > min_dispatch_width) {
- fail("Failure to register allocate. Reduce number of "
- "live scalar values to avoid this.");
- } else {
- compiler->shader_perf_log(log_data,
- "%s shader triggered register spilling. "
- "Try reducing the number of live scalar "
- "values to improve performance.\n",
- stage_name);
- }
-
- /* Since we're out of heuristics, just go spill registers until we
- * get an allocation.
- */
- while (!assign_regs(true, spill_all)) {
- if (failed)
- break;
- }
- }
-
- /* This must come after all optimization and register allocation, since
- * it inserts dead code that happens to have side effects, and it does
- * so based on the actual physical registers in use.
- */
- insert_gen4_send_dependency_workarounds();
-
- if (failed)
- return;
-
- schedule_instructions(SCHEDULE_POST);
-
- if (last_scratch > 0) {
- MAYBE_UNUSED unsigned max_scratch_size = 2 * 1024 * 1024;
-
- prog_data->total_scratch = brw_get_scratch_size(last_scratch);
-
- if (stage == MESA_SHADER_COMPUTE) {
- if (devinfo->is_haswell) {
- /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
- * field documentation, Haswell supports a minimum of 2kB of
- * scratch space for compute shaders, unlike every other stage
- * and platform.
- */
- prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048);
- } else if (devinfo->gen <= 7) {
- /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
- * field documentation, platforms prior to Haswell measure scratch
- * size linearly with a range of [1kB, 12kB] and 1kB granularity.
- */
- prog_data->total_scratch = ALIGN(last_scratch, 1024);
- max_scratch_size = 12 * 1024;
- }
- }
-
- /* We currently only support up to 2MB of scratch space. If we
- * need to support more eventually, the documentation suggests
- * that we could allocate a larger buffer, and partition it out
- * ourselves. We'd just have to undo the hardware's address
- * calculation by subtracting (FFTID * Per Thread Scratch Space)
- * and then add FFTID * (Larger Per Thread Scratch Space).
- *
- * See 3D-Media-GPGPU Engine > Media GPGPU Pipeline >
- * Thread Group Tracking > Local Memory/Scratch Space.
- */
- assert(prog_data->total_scratch < max_scratch_size);
- }
-}
-
-bool
-fs_visitor::run_vs(gl_clip_plane *clip_planes)
-{
- assert(stage == MESA_SHADER_VERTEX);
-
- setup_vs_payload();
-
- if (shader_time_index >= 0)
- emit_shader_time_begin();
-
- emit_nir_code();
-
- if (failed)
- return false;
-
- compute_clip_distance(clip_planes);
-
- emit_urb_writes();
-
- if (shader_time_index >= 0)
- emit_shader_time_end();
-
- calculate_cfg();
-
- optimize();
-
- assign_curb_setup();
- assign_vs_urb_setup();
-
- fixup_3src_null_dest();
- allocate_registers(true);
-
- return !failed;
-}
-
-bool
-fs_visitor::run_tcs_single_patch()
-{
- assert(stage == MESA_SHADER_TESS_CTRL);
-
- struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
-
- /* r1-r4 contain the ICP handles. */
- payload.num_regs = 5;
-
- if (shader_time_index >= 0)
- emit_shader_time_begin();
-
- /* Initialize gl_InvocationID */
- fs_reg channels_uw = bld.vgrf(BRW_REGISTER_TYPE_UW);
- fs_reg channels_ud = bld.vgrf(BRW_REGISTER_TYPE_UD);
- bld.MOV(channels_uw, fs_reg(brw_imm_uv(0x76543210)));
- bld.MOV(channels_ud, channels_uw);
-
- if (tcs_prog_data->instances == 1) {
- invocation_id = channels_ud;
- } else {
- invocation_id = bld.vgrf(BRW_REGISTER_TYPE_UD);
-
- /* Get instance number from g0.2 bits 23:17, and multiply it by 8. */
- fs_reg t = bld.vgrf(BRW_REGISTER_TYPE_UD);
- fs_reg instance_times_8 = bld.vgrf(BRW_REGISTER_TYPE_UD);
- bld.AND(t, fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD)),
- brw_imm_ud(INTEL_MASK(23, 17)));
- bld.SHR(instance_times_8, t, brw_imm_ud(17 - 3));
-
- bld.ADD(invocation_id, instance_times_8, channels_ud);
- }
-
- /* Fix the disptach mask */
- if (nir->info->tess.tcs_vertices_out % 8) {
- bld.CMP(bld.null_reg_ud(), invocation_id,
- brw_imm_ud(nir->info->tess.tcs_vertices_out), BRW_CONDITIONAL_L);
- bld.IF(BRW_PREDICATE_NORMAL);
- }
-
- emit_nir_code();
-
- if (nir->info->tess.tcs_vertices_out % 8) {
- bld.emit(BRW_OPCODE_ENDIF);
- }
-
- /* Emit EOT write; set TR DS Cache bit */
- fs_reg srcs[3] = {
- fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
- fs_reg(brw_imm_ud(WRITEMASK_X << 16)),
- fs_reg(brw_imm_ud(0)),
- };
- fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
- bld.LOAD_PAYLOAD(payload, srcs, 3, 2);
-
- fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8_MASKED,
- bld.null_reg_ud(), payload);
- inst->mlen = 3;
- inst->eot = true;
-
- if (shader_time_index >= 0)
- emit_shader_time_end();
-
- if (failed)
- return false;
-
- calculate_cfg();
-
- optimize();
-
- assign_curb_setup();
- assign_tcs_single_patch_urb_setup();
-
- fixup_3src_null_dest();
- allocate_registers(true);
-
- return !failed;
-}
-
-bool
-fs_visitor::run_tes()
-{
- assert(stage == MESA_SHADER_TESS_EVAL);
-
- /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
- payload.num_regs = 5;
-
- if (shader_time_index >= 0)
- emit_shader_time_begin();
-
- emit_nir_code();
-
- if (failed)
- return false;
-
- emit_urb_writes();
-
- if (shader_time_index >= 0)
- emit_shader_time_end();
-
- calculate_cfg();
-
- optimize();
-
- assign_curb_setup();
- assign_tes_urb_setup();
-
- fixup_3src_null_dest();
- allocate_registers(true);
-
- return !failed;
-}
-
-bool
-fs_visitor::run_gs()
-{
- assert(stage == MESA_SHADER_GEOMETRY);
-
- setup_gs_payload();
-
- this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
-
- if (gs_compile->control_data_header_size_bits > 0) {
- /* Create a VGRF to store accumulated control data bits. */
- this->control_data_bits = vgrf(glsl_type::uint_type);
-
- /* If we're outputting more than 32 control data bits, then EmitVertex()
- * will set control_data_bits to 0 after emitting the first vertex.
- * Otherwise, we need to initialize it to 0 here.
- */
- if (gs_compile->control_data_header_size_bits <= 32) {
- const fs_builder abld = bld.annotate("initialize control data bits");
- abld.MOV(this->control_data_bits, brw_imm_ud(0u));
- }
- }
-
- if (shader_time_index >= 0)
- emit_shader_time_begin();
-
- emit_nir_code();
-
- emit_gs_thread_end();
-
- if (shader_time_index >= 0)
- emit_shader_time_end();
-
- if (failed)
- return false;
-
- calculate_cfg();
-
- optimize();
-
- assign_curb_setup();
- assign_gs_urb_setup();
-
- fixup_3src_null_dest();
- allocate_registers(true);
-
- return !failed;
-}
-
-bool
-fs_visitor::run_fs(bool allow_spilling, bool do_rep_send)
-{
- struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
- brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
-
- assert(stage == MESA_SHADER_FRAGMENT);
-
- if (devinfo->gen >= 6)
- setup_fs_payload_gen6();
- else
- setup_fs_payload_gen4();
-
- if (0) {
- emit_dummy_fs();
- } else if (do_rep_send) {
- assert(dispatch_width == 16);
- emit_repclear_shader();
- } else {
- if (shader_time_index >= 0)
- emit_shader_time_begin();
-
- calculate_urb_setup();
- if (nir->info->inputs_read > 0 ||
- (nir->info->outputs_read > 0 && !wm_key->coherent_fb_fetch)) {
- if (devinfo->gen < 6)
- emit_interpolation_setup_gen4();
- else
- emit_interpolation_setup_gen6();
- }
-
- /* We handle discards by keeping track of the still-live pixels in f0.1.
- * Initialize it with the dispatched pixels.
- */
- if (wm_prog_data->uses_kill) {
- fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
- discard_init->flag_subreg = 1;
- }
-
- /* Generate FS IR for main(). (the visitor only descends into
- * functions called "main").
- */
- emit_nir_code();
-
- if (failed)
- return false;
-
- if (wm_prog_data->uses_kill)
- bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
-
- if (wm_key->alpha_test_func)
- emit_alpha_test();
-
- emit_fb_writes();
-
- if (shader_time_index >= 0)
- emit_shader_time_end();
-
- calculate_cfg();
-
- optimize();
-
- assign_curb_setup();
- assign_urb_setup();
-
- fixup_3src_null_dest();
- allocate_registers(allow_spilling);
-
- if (failed)
- return false;
- }
-
- return !failed;
-}
-
-bool
-fs_visitor::run_cs()
-{
- assert(stage == MESA_SHADER_COMPUTE);
-
- setup_cs_payload();
-
- if (shader_time_index >= 0)
- emit_shader_time_begin();
-
- if (devinfo->is_haswell && prog_data->total_shared > 0) {
- /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
- const fs_builder abld = bld.exec_all().group(1, 0);
- abld.MOV(retype(brw_sr0_reg(1), BRW_REGISTER_TYPE_UW),
- suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1));
- }
-
- emit_nir_code();
-
- if (failed)
- return false;
-
- emit_cs_terminate();
-
- if (shader_time_index >= 0)
- emit_shader_time_end();
-
- calculate_cfg();
-
- optimize();
-
- assign_curb_setup();
-
- fixup_3src_null_dest();
- allocate_registers(true);
-
- if (failed)
- return false;
-
- return !failed;
-}
-
-/**
- * Return a bitfield where bit n is set if barycentric interpolation mode n
- * (see enum brw_barycentric_mode) is needed by the fragment shader.
- *
- * We examine the load_barycentric intrinsics rather than looking at input
- * variables so that we catch interpolateAtCentroid() messages too, which
- * also need the BRW_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up.
- */
-static unsigned
-brw_compute_barycentric_interp_modes(const struct gen_device_info *devinfo,
- const nir_shader *shader)
-{
- unsigned barycentric_interp_modes = 0;
-
- nir_foreach_function(f, shader) {
- if (!f->impl)
- continue;
-
- nir_foreach_block(block, f->impl) {
- nir_foreach_instr(instr, block) {
- if (instr->type != nir_instr_type_intrinsic)
- continue;
-
- nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
- if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
- continue;
-
- /* Ignore WPOS; it doesn't require interpolation. */
- if (nir_intrinsic_base(intrin) == VARYING_SLOT_POS)
- continue;
-
- intrin = nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
- enum glsl_interp_mode interp = (enum glsl_interp_mode)
- nir_intrinsic_interp_mode(intrin);
- nir_intrinsic_op bary_op = intrin->intrinsic;
- enum brw_barycentric_mode bary =
- brw_barycentric_mode(interp, bary_op);
-
- barycentric_interp_modes |= 1 << bary;
-
- if (devinfo->needs_unlit_centroid_workaround &&
- bary_op == nir_intrinsic_load_barycentric_centroid)
- barycentric_interp_modes |= 1 << centroid_to_pixel(bary);
- }
- }
- }
-
- return barycentric_interp_modes;
-}
-
-static void
-brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data,
- const nir_shader *shader)
-{
- prog_data->flat_inputs = 0;
-
- nir_foreach_variable(var, &shader->inputs) {
- int input_index = prog_data->urb_setup[var->data.location];
-
- if (input_index < 0)
- continue;
-
- /* flat shading */
- if (var->data.interpolation == INTERP_MODE_FLAT)
- prog_data->flat_inputs |= (1 << input_index);
- }
-}
-
-static uint8_t
-computed_depth_mode(const nir_shader *shader)
-{
- if (shader->info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
- switch (shader->info->fs.depth_layout) {
- case FRAG_DEPTH_LAYOUT_NONE:
- case FRAG_DEPTH_LAYOUT_ANY:
- return BRW_PSCDEPTH_ON;
- case FRAG_DEPTH_LAYOUT_GREATER:
- return BRW_PSCDEPTH_ON_GE;
- case FRAG_DEPTH_LAYOUT_LESS:
- return BRW_PSCDEPTH_ON_LE;
- case FRAG_DEPTH_LAYOUT_UNCHANGED:
- return BRW_PSCDEPTH_OFF;
- }
- }
- return BRW_PSCDEPTH_OFF;
-}
-
-/**
- * Move load_interpolated_input with simple (payload-based) barycentric modes
- * to the top of the program so we don't emit multiple PLNs for the same input.
- *
- * This works around CSE not being able to handle non-dominating cases
- * such as:
- *
- * if (...) {
- * interpolate input
- * } else {
- * interpolate the same exact input
- * }
- *
- * This should be replaced by global value numbering someday.
- */
-void
-move_interpolation_to_top(nir_shader *nir)
-{
- nir_foreach_function(f, nir) {
- if (!f->impl)
- continue;
-
- nir_block *top = nir_start_block(f->impl);
- exec_node *cursor_node = NULL;
-
- nir_foreach_block(block, f->impl) {
- if (block == top)
- continue;
-
- nir_foreach_instr_safe(instr, block) {
- if (instr->type != nir_instr_type_intrinsic)
- continue;
-
- nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
- if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
- continue;
- nir_intrinsic_instr *bary_intrinsic =
- nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
- nir_intrinsic_op op = bary_intrinsic->intrinsic;
-
- /* Leave interpolateAtSample/Offset() where they are. */
- if (op == nir_intrinsic_load_barycentric_at_sample ||
- op == nir_intrinsic_load_barycentric_at_offset)
- continue;
-
- nir_instr *move[3] = {
- &bary_intrinsic->instr,
- intrin->src[1].ssa->parent_instr,
- instr
- };
-
- for (unsigned i = 0; i < ARRAY_SIZE(move); i++) {
- if (move[i]->block != top) {
- move[i]->block = top;
- exec_node_remove(&move[i]->node);
- if (cursor_node) {
- exec_node_insert_after(cursor_node, &move[i]->node);
- } else {
- exec_list_push_head(&top->instr_list, &move[i]->node);
- }
- cursor_node = &move[i]->node;
- }
- }
- }
- }
- nir_metadata_preserve(f->impl, (nir_metadata)
- ((unsigned) nir_metadata_block_index |
- (unsigned) nir_metadata_dominance));
- }
-}
-
-/**
- * Demote per-sample barycentric intrinsics to centroid.
- *
- * Useful when rendering to a non-multisampled buffer.
- */
-static void
-demote_sample_qualifiers(nir_shader *nir)
-{
- nir_foreach_function(f, nir) {
- if (!f->impl)
- continue;
-
- nir_builder b;
- nir_builder_init(&b, f->impl);
-
- nir_foreach_block(block, f->impl) {
- nir_foreach_instr_safe(instr, block) {
- if (instr->type != nir_instr_type_intrinsic)
- continue;
-
- nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
- if (intrin->intrinsic != nir_intrinsic_load_barycentric_sample &&
- intrin->intrinsic != nir_intrinsic_load_barycentric_at_sample)
- continue;
-
- b.cursor = nir_before_instr(instr);
- nir_ssa_def *centroid =
- nir_load_barycentric(&b, nir_intrinsic_load_barycentric_centroid,
- nir_intrinsic_interp_mode(intrin));
- nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
- nir_src_for_ssa(centroid));
- nir_instr_remove(instr);
- }
- }
-
- nir_metadata_preserve(f->impl, (nir_metadata)
- ((unsigned) nir_metadata_block_index |
- (unsigned) nir_metadata_dominance));
- }
-}
-
-/**
- * Pre-gen6, the register file of the EUs was shared between threads,
- * and each thread used some subset allocated on a 16-register block
- * granularity. The unit states wanted these block counts.
- */
-static inline int
-brw_register_blocks(int reg_count)
-{
- return ALIGN(reg_count, 16) / 16 - 1;
-}
-
-const unsigned *
-brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
- void *mem_ctx,
- const struct brw_wm_prog_key *key,
- struct brw_wm_prog_data *prog_data,
- const nir_shader *src_shader,
- struct gl_program *prog,
- int shader_time_index8, int shader_time_index16,
- bool allow_spilling,
- bool use_rep_send, struct brw_vue_map *vue_map,
- unsigned *final_assembly_size,
- char **error_str)
-{
- const struct gen_device_info *devinfo = compiler->devinfo;
-
- nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
- shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, true);
- brw_nir_lower_fs_inputs(shader, devinfo, key);
- brw_nir_lower_fs_outputs(shader);
-
- if (devinfo->gen < 6) {
- brw_setup_vue_interpolation(vue_map, shader, prog_data, devinfo);
- }
-
- if (!key->multisample_fbo)
- NIR_PASS_V(shader, demote_sample_qualifiers);
- NIR_PASS_V(shader, move_interpolation_to_top);
- shader = brw_postprocess_nir(shader, compiler, true);
-
- /* key->alpha_test_func means simulating alpha testing via discards,
- * so the shader definitely kills pixels.
- */
- prog_data->uses_kill = shader->info->fs.uses_discard ||
- key->alpha_test_func;
- prog_data->uses_omask = key->multisample_fbo &&
- shader->info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
- prog_data->computed_depth_mode = computed_depth_mode(shader);
- prog_data->computed_stencil =
- shader->info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
-
- prog_data->persample_dispatch =
- key->multisample_fbo &&
- (key->persample_interp ||
- (shader->info->system_values_read & (SYSTEM_BIT_SAMPLE_ID |
- SYSTEM_BIT_SAMPLE_POS)) ||
- shader->info->fs.uses_sample_qualifier ||
- shader->info->outputs_read);
-
- prog_data->early_fragment_tests = shader->info->fs.early_fragment_tests;
- prog_data->post_depth_coverage = shader->info->fs.post_depth_coverage;
- prog_data->inner_coverage = shader->info->fs.inner_coverage;
-
- prog_data->barycentric_interp_modes =
- brw_compute_barycentric_interp_modes(compiler->devinfo, shader);
-
- cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL;
- uint8_t simd8_grf_start = 0, simd16_grf_start = 0;
- unsigned simd8_grf_used = 0, simd16_grf_used = 0;
-
- fs_visitor v8(compiler, log_data, mem_ctx, key,
- &prog_data->base, prog, shader, 8,
- shader_time_index8);
- if (!v8.run_fs(allow_spilling, false /* do_rep_send */)) {
- if (error_str)
- *error_str = ralloc_strdup(mem_ctx, v8.fail_msg);
-
- return NULL;
- } else if (likely(!(INTEL_DEBUG & DEBUG_NO8))) {
- simd8_cfg = v8.cfg;
- simd8_grf_start = v8.payload.num_regs;
- simd8_grf_used = v8.grf_used;
- }
-
- if (v8.max_dispatch_width >= 16 &&
- likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
- /* Try a SIMD16 compile */
- fs_visitor v16(compiler, log_data, mem_ctx, key,
- &prog_data->base, prog, shader, 16,
- shader_time_index16);
- v16.import_uniforms(&v8);
- if (!v16.run_fs(allow_spilling, use_rep_send)) {
- compiler->shader_perf_log(log_data,
- "SIMD16 shader failed to compile: %s",
- v16.fail_msg);
- } else {
- simd16_cfg = v16.cfg;
- simd16_grf_start = v16.payload.num_regs;
- simd16_grf_used = v16.grf_used;
- }
- }
-
- /* When the caller requests a repclear shader, they want SIMD16-only */
- if (use_rep_send)
- simd8_cfg = NULL;
-
- /* Prior to Iron Lake, the PS had a single shader offset with a jump table
- * at the top to select the shader. We've never implemented that.
- * Instead, we just give them exactly one shader and we pick the widest one
- * available.
- */
- if (compiler->devinfo->gen < 5 && simd16_cfg)
- simd8_cfg = NULL;
-
- if (prog_data->persample_dispatch) {
- /* Starting with SandyBridge (where we first get MSAA), the different
- * pixel dispatch combinations are grouped into classifications A
- * through F (SNB PRM Vol. 2 Part 1 Section 7.7.1). On all hardware
- * generations, the only configurations supporting persample dispatch
- * are are this in which only one dispatch width is enabled.
- *
- * If computed depth is enabled, SNB only allows SIMD8 while IVB+
- * allow SIMD8 or SIMD16 so we choose SIMD16 if available.
- */
- if (compiler->devinfo->gen == 6 &&
- prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF) {
- simd16_cfg = NULL;
- } else if (simd16_cfg) {
- simd8_cfg = NULL;
- }
- }
-
- /* We have to compute the flat inputs after the visitor is finished running
- * because it relies on prog_data->urb_setup which is computed in
- * fs_visitor::calculate_urb_setup().
- */
- brw_compute_flat_inputs(prog_data, shader);
-
- fs_generator g(compiler, log_data, mem_ctx, (void *) key, &prog_data->base,
- v8.promoted_constants, v8.runtime_check_aads_emit,
- MESA_SHADER_FRAGMENT);
-
- if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
- g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
- shader->info->label ?
- shader->info->label : "unnamed",
- shader->info->name));
- }
-
- if (simd8_cfg) {
- prog_data->dispatch_8 = true;
- g.generate_code(simd8_cfg, 8);
- prog_data->base.dispatch_grf_start_reg = simd8_grf_start;
- prog_data->reg_blocks_0 = brw_register_blocks(simd8_grf_used);
-
- if (simd16_cfg) {
- prog_data->dispatch_16 = true;
- prog_data->prog_offset_2 = g.generate_code(simd16_cfg, 16);
- prog_data->dispatch_grf_start_reg_2 = simd16_grf_start;
- prog_data->reg_blocks_2 = brw_register_blocks(simd16_grf_used);
- }
- } else if (simd16_cfg) {
- prog_data->dispatch_16 = true;
- g.generate_code(simd16_cfg, 16);
- prog_data->base.dispatch_grf_start_reg = simd16_grf_start;
- prog_data->reg_blocks_0 = brw_register_blocks(simd16_grf_used);
- }
-
- return g.get_assembly(final_assembly_size);
-}
-
-fs_reg *
-fs_visitor::emit_cs_work_group_id_setup()
-{
- assert(stage == MESA_SHADER_COMPUTE);
-
- fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
-
- struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
- struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
- struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
-
- bld.MOV(*reg, r0_1);
- bld.MOV(offset(*reg, bld, 1), r0_6);
- bld.MOV(offset(*reg, bld, 2), r0_7);
-
- return reg;
-}
-
-static void
-fill_push_const_block_info(struct brw_push_const_block *block, unsigned dwords)
-{
- block->dwords = dwords;
- block->regs = DIV_ROUND_UP(dwords, 8);
- block->size = block->regs * 32;
-}
-
-static void
-cs_fill_push_const_info(const struct gen_device_info *devinfo,
- struct brw_cs_prog_data *cs_prog_data)
-{
- const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
- bool fill_thread_id =
- cs_prog_data->thread_local_id_index >= 0 &&
- cs_prog_data->thread_local_id_index < (int)prog_data->nr_params;
- bool cross_thread_supported = devinfo->gen > 7 || devinfo->is_haswell;
-
- /* The thread ID should be stored in the last param dword */
- assert(prog_data->nr_params > 0 || !fill_thread_id);
- assert(!fill_thread_id ||
- cs_prog_data->thread_local_id_index ==
- (int)prog_data->nr_params - 1);
-
- unsigned cross_thread_dwords, per_thread_dwords;
- if (!cross_thread_supported) {
- cross_thread_dwords = 0u;
- per_thread_dwords = prog_data->nr_params;
- } else if (fill_thread_id) {
- /* Fill all but the last register with cross-thread payload */
- cross_thread_dwords = 8 * (cs_prog_data->thread_local_id_index / 8);
- per_thread_dwords = prog_data->nr_params - cross_thread_dwords;
- assert(per_thread_dwords > 0 && per_thread_dwords <= 8);
- } else {
- /* Fill all data using cross-thread payload */
- cross_thread_dwords = prog_data->nr_params;
- per_thread_dwords = 0u;
- }
-
- fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords);
- fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords);
-
- unsigned total_dwords =
- (cs_prog_data->push.per_thread.size * cs_prog_data->threads +
- cs_prog_data->push.cross_thread.size) / 4;
- fill_push_const_block_info(&cs_prog_data->push.total, total_dwords);
-
- assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 ||
- cs_prog_data->push.per_thread.size == 0);
- assert(cs_prog_data->push.cross_thread.dwords +
- cs_prog_data->push.per_thread.dwords ==
- prog_data->nr_params);
-}
-
-static void
-cs_set_simd_size(struct brw_cs_prog_data *cs_prog_data, unsigned size)
-{
- cs_prog_data->simd_size = size;
- unsigned group_size = cs_prog_data->local_size[0] *
- cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
- cs_prog_data->threads = (group_size + size - 1) / size;
-}
-
-const unsigned *
-brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
- void *mem_ctx,
- const struct brw_cs_prog_key *key,
- struct brw_cs_prog_data *prog_data,
- const nir_shader *src_shader,
- int shader_time_index,
- unsigned *final_assembly_size,
- char **error_str)
-{
- nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
- shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, true);
- brw_nir_lower_cs_shared(shader);
- prog_data->base.total_shared += shader->num_shared;
-
- /* Now that we cloned the nir_shader, we can update num_uniforms based on
- * the thread_local_id_index.
- */
- assert(prog_data->thread_local_id_index >= 0);
- shader->num_uniforms =
- MAX2(shader->num_uniforms,
- (unsigned)4 * (prog_data->thread_local_id_index + 1));
-
- brw_nir_lower_intrinsics(shader, &prog_data->base);
- shader = brw_postprocess_nir(shader, compiler, true);
-
- prog_data->local_size[0] = shader->info->cs.local_size[0];
- prog_data->local_size[1] = shader->info->cs.local_size[1];
- prog_data->local_size[2] = shader->info->cs.local_size[2];
- unsigned local_workgroup_size =
- shader->info->cs.local_size[0] * shader->info->cs.local_size[1] *
- shader->info->cs.local_size[2];
-
- unsigned max_cs_threads = compiler->devinfo->max_cs_threads;
- unsigned simd_required = DIV_ROUND_UP(local_workgroup_size, max_cs_threads);
-
- cfg_t *cfg = NULL;
- const char *fail_msg = NULL;
-
- /* Now the main event: Visit the shader IR and generate our CS IR for it.
- */
- fs_visitor v8(compiler, log_data, mem_ctx, key, &prog_data->base,
- NULL, /* Never used in core profile */
- shader, 8, shader_time_index);
- if (simd_required <= 8) {
- if (!v8.run_cs()) {
- fail_msg = v8.fail_msg;
- } else {
- cfg = v8.cfg;
- cs_set_simd_size(prog_data, 8);
- cs_fill_push_const_info(compiler->devinfo, prog_data);
- prog_data->base.dispatch_grf_start_reg = v8.payload.num_regs;
- }
- }
-
- fs_visitor v16(compiler, log_data, mem_ctx, key, &prog_data->base,
- NULL, /* Never used in core profile */
- shader, 16, shader_time_index);
- if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
- !fail_msg && v8.max_dispatch_width >= 16 &&
- simd_required <= 16) {
- /* Try a SIMD16 compile */
- if (simd_required <= 8)
- v16.import_uniforms(&v8);
- if (!v16.run_cs()) {
- compiler->shader_perf_log(log_data,
- "SIMD16 shader failed to compile: %s",
- v16.fail_msg);
- if (!cfg) {
- fail_msg =
- "Couldn't generate SIMD16 program and not "
- "enough threads for SIMD8";
- }
- } else {
- cfg = v16.cfg;
- cs_set_simd_size(prog_data, 16);
- cs_fill_push_const_info(compiler->devinfo, prog_data);
- prog_data->dispatch_grf_start_reg_16 = v16.payload.num_regs;
- }
- }
-
- fs_visitor v32(compiler, log_data, mem_ctx, key, &prog_data->base,
- NULL, /* Never used in core profile */
- shader, 32, shader_time_index);
- if (!fail_msg && v8.max_dispatch_width >= 32 &&
- (simd_required > 16 || (INTEL_DEBUG & DEBUG_DO32))) {
- /* Try a SIMD32 compile */
- if (simd_required <= 8)
- v32.import_uniforms(&v8);
- else if (simd_required <= 16)
- v32.import_uniforms(&v16);
-
- if (!v32.run_cs()) {
- compiler->shader_perf_log(log_data,
- "SIMD32 shader failed to compile: %s",
- v16.fail_msg);
- if (!cfg) {
- fail_msg =
- "Couldn't generate SIMD32 program and not "
- "enough threads for SIMD16";
- }
- } else {
- cfg = v32.cfg;
- cs_set_simd_size(prog_data, 32);
- cs_fill_push_const_info(compiler->devinfo, prog_data);
- }
- }
-
- if (unlikely(cfg == NULL)) {
- assert(fail_msg);
- if (error_str)
- *error_str = ralloc_strdup(mem_ctx, fail_msg);
-
- return NULL;
- }
-
- fs_generator g(compiler, log_data, mem_ctx, (void*) key, &prog_data->base,
- v8.promoted_constants, v8.runtime_check_aads_emit,
- MESA_SHADER_COMPUTE);
- if (INTEL_DEBUG & DEBUG_CS) {
- char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
- shader->info->label ? shader->info->label :
- "unnamed",
- shader->info->name);
- g.enable_debug(name);
- }
-
- g.generate_code(cfg, prog_data->simd_size);
-
- return g.get_assembly(final_assembly_size);
-}
-
-/**
- * Test the dispatch mask packing assumptions of
- * brw_stage_has_packed_dispatch(). Call this from e.g. the top of
- * fs_visitor::emit_nir_code() to cause a GPU hang if any shader invocation is
- * executed with an unexpected dispatch mask.
- */
-static UNUSED void
-brw_fs_test_dispatch_packing(const fs_builder &bld)
-{
- const gl_shader_stage stage = bld.shader->stage;
-
- if (brw_stage_has_packed_dispatch(bld.shader->devinfo, stage,
- bld.shader->stage_prog_data)) {
- const fs_builder ubld = bld.exec_all().group(1, 0);
- const fs_reg tmp = component(bld.vgrf(BRW_REGISTER_TYPE_UD), 0);
- const fs_reg mask = (stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
- brw_dmask_reg());
-
- ubld.ADD(tmp, mask, brw_imm_ud(1));
- ubld.AND(tmp, mask, tmp);
-
- /* This will loop forever if the dispatch mask doesn't have the expected
- * form '2^n-1', in which case tmp will be non-zero.
- */
- bld.emit(BRW_OPCODE_DO);
- bld.CMP(bld.null_reg_ud(), tmp, brw_imm_ud(0), BRW_CONDITIONAL_NZ);
- set_predicate(BRW_PREDICATE_NORMAL, bld.emit(BRW_OPCODE_WHILE));
- }
-}