summaryrefslogtreecommitdiff
path: root/oox/source/crypto/Standard2007Engine.cxx
blob: 311fea7f930eb59b559a624305fb1577df024602 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
 * This file is part of the LibreOffice project.
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 *
 */

#include "oox/crypto/Standard2007Engine.hxx"

#include <osl/time.h>
#include <rtl/random.h>

namespace oox {
namespace core {

using namespace std;

/* =========================================================================== */
/*  Kudos to Caolan McNamara who provided the core decryption implementations. */
/* =========================================================================== */
namespace
{

void lclRandomGenerateValues(sal_uInt8* aArray, sal_uInt32 aSize)
{
    TimeValue aTime;
    osl_getSystemTime( &aTime );
    rtlRandomPool aRandomPool = rtl_random_createPool ();
    rtl_random_addBytes ( aRandomPool, &aTime, 8 );
    rtl_random_getBytes ( aRandomPool, aArray, aSize );
    rtl_random_destroyPool ( aRandomPool );
}

static const OUString lclCspName = "Microsoft Enhanced RSA and AES Cryptographic Provider";

} // namespace

EncryptionStandardHeader::EncryptionStandardHeader()
{
    flags        = 0;
    sizeExtra    = 0;
    algId        = 0;
    algIdHash    = 0;
    keyBits      = 0;
    providedType = 0;
    reserved1    = 0;
    reserved2    = 0;
}

EncryptionVerifierAES::EncryptionVerifierAES() :
    saltSize(SALT_LENGTH),
    encryptedVerifierHashSize(Digest::DIGEST_LENGTH_SHA1)
{
    memset(salt, 0, sizeof(salt));
    memset(encryptedVerifier, 0, sizeof(encryptedVerifier));
    memset(encryptedVerifierHash, 0, sizeof(encryptedVerifierHash));
}

Standard2007Engine::Standard2007Engine() :
    CryptoEngine()
{}

Standard2007Engine::~Standard2007Engine()
{}

bool Standard2007Engine::generateVerifier()
{
    // only support key of size 128 bit (16 byte)
    if (mKey.size() != 16)
        return false;

    sal_uInt32 outputLength;
    vector<sal_uInt8> verifier(ENCRYPTED_VERIFIER_LENGTH);
    vector<sal_uInt8> encryptedVerifier(ENCRYPTED_VERIFIER_LENGTH);

    lclRandomGenerateValues(&verifier[0], verifier.size());

    vector<sal_uInt8> iv;
    Encrypt aEncryptorVerifier(mKey, iv, Crypto::AES_128_ECB);
    outputLength = aEncryptorVerifier.update(encryptedVerifier, verifier);
    if (outputLength != ENCRYPTED_VERIFIER_LENGTH)
        return false;
    std::copy(encryptedVerifier.begin(), encryptedVerifier.end(), mInfo.verifier.encryptedVerifier);

    vector<sal_uInt8> hash(RTL_DIGEST_LENGTH_SHA1, 0);
    mInfo.verifier.encryptedVerifierHashSize = RTL_DIGEST_LENGTH_SHA1;
    Digest::sha1(hash, verifier);
    hash.resize(ENCRYPTED_VERIFIER_HASH_LENGTH, 0);

    vector<sal_uInt8> encryptedHash(ENCRYPTED_VERIFIER_HASH_LENGTH, 0);

    Encrypt aEncryptorHash(mKey, iv, Crypto::AES_128_ECB);
    outputLength = aEncryptorHash.update(encryptedHash, hash, hash.size());
    std::copy(encryptedHash.begin(), encryptedHash.end(), mInfo.verifier.encryptedVerifierHash);

    return true;
}

bool Standard2007Engine::calculateEncryptionKey(const OUString& rPassword)
{
    sal_uInt32 saltSize = mInfo.verifier.saltSize;
    sal_uInt32 passwordByteLength = rPassword.getLength() * 2;
    const sal_uInt8* saltArray = mInfo.verifier.salt;

    // Prepare initial data -> salt + password (in 16-bit chars)
    vector<sal_uInt8> initialData(saltSize + passwordByteLength);
    std::copy(saltArray, saltArray + saltSize, initialData.begin());

    const sal_uInt8* passwordByteArray = reinterpret_cast<const sal_uInt8*>(rPassword.getStr());

    std::copy(
        passwordByteArray,
        passwordByteArray + passwordByteLength,
        initialData.begin() + saltSize);

    // use "hash" vector for result of sha1 hashing
    vector<sal_uInt8> hash(Digest::DIGEST_LENGTH_SHA1, 0);

    // calculate SHA1 hash of initialData
    Digest::sha1(hash, initialData);

    // data = iterator (4bytes) + hash
    vector<sal_uInt8> data(Digest::DIGEST_LENGTH_SHA1 + 4, 0);

    for (sal_Int32 i = 0; i < 50000; ++i)
    {
        ByteOrderConverter::writeLittleEndian( &data[0], i );
        std::copy(hash.begin(), hash.end(), data.begin() + 4);
        Digest::sha1(hash, data);
    }
    std::copy(hash.begin(), hash.end(), data.begin() );
    std::fill(data.begin() + Digest::DIGEST_LENGTH_SHA1, data.end(), 0 );

    Digest::sha1(hash, data);

    // derive key
    vector<sal_uInt8> buffer(64, 0x36);
    for( sal_uInt32 i = 0; i < hash.size(); ++i )
        buffer[i] ^= hash[i];

    Digest::sha1(hash, buffer);
    std::copy(hash.begin(), hash.begin() + mKey.size(), mKey.begin());

    return true;
}

bool Standard2007Engine::generateEncryptionKey(const OUString& password)
{
    mKey.clear();
    mKey.resize(mInfo.header.keyBits / 8, 0);

    calculateEncryptionKey(password);

    vector<sal_uInt8> encryptedVerifier(ENCRYPTED_VERIFIER_LENGTH);
    std::copy(
        mInfo.verifier.encryptedVerifier,
        mInfo.verifier.encryptedVerifier + ENCRYPTED_VERIFIER_LENGTH,
        encryptedVerifier.begin());

    vector<sal_uInt8> encryptedHash(ENCRYPTED_VERIFIER_HASH_LENGTH);
    std::copy(
        mInfo.verifier.encryptedVerifierHash,
        mInfo.verifier.encryptedVerifierHash + ENCRYPTED_VERIFIER_HASH_LENGTH,
        encryptedHash.begin());

    vector<sal_uInt8> verifier(encryptedVerifier.size(), 0);
    Decrypt::aes128ecb(verifier, encryptedVerifier, mKey);

    vector<sal_uInt8> verifierHash(encryptedHash.size(), 0);
    Decrypt::aes128ecb(verifierHash, encryptedHash, mKey);

    vector<sal_uInt8> hash(RTL_DIGEST_LENGTH_SHA1, 0);
    Digest::sha1(hash, verifier);

    return std::equal( hash.begin(), hash.end(), verifierHash.begin() );
}

bool Standard2007Engine::decrypt(
                            BinaryXInputStream& aInputStream,
                            BinaryXOutputStream& aOutputStream)
{
    sal_uInt32 totalSize;
    aInputStream >> totalSize; // Document unencrypted size - 4 bytes
    aInputStream.skip( 4 );    // Reserved 4 Bytes

    vector<sal_uInt8> iv;
    Decrypt aDecryptor(mKey, iv, Crypto::AES_128_ECB);
    vector<sal_uInt8> inputBuffer (4096);
    vector<sal_uInt8> outputBuffer(4096);
    sal_uInt32 inputLength;
    sal_uInt32 outputLength;

    while( (inputLength = aInputStream.readMemory( &inputBuffer[0], inputBuffer.size() )) > 0 )
    {
        outputLength = aDecryptor.update(outputBuffer, inputBuffer, inputLength);
        aOutputStream.writeMemory( &outputBuffer[0], outputLength );
    }
    return true;
}

bool Standard2007Engine::writeEncryptionInfo(const OUString& password, BinaryXOutputStream& rStream)
{
    mInfo.header.flags        = ENCRYPTINFO_AES | ENCRYPTINFO_CRYPTOAPI;
    mInfo.header.algId        = ENCRYPT_ALGO_AES128;
    mInfo.header.algIdHash    = ENCRYPT_HASH_SHA1;
    mInfo.header.keyBits      = ENCRYPT_KEY_SIZE_AES_128;
    mInfo.header.providedType = ENCRYPT_PROVIDER_TYPE_AES;

    lclRandomGenerateValues(mInfo.verifier.salt, mInfo.verifier.saltSize);
    const sal_Int32 keyLength = mInfo.header.keyBits / 8;

    mKey.clear();
    mKey.resize(keyLength, 0);

    if (!calculateEncryptionKey(password))
        return false;

    if (!generateVerifier())
        return false;

    rStream.WriteUInt32(VERSION_INFO_2007_FORMAT);

    sal_uInt32 cspNameSize = (lclCspName.getLength() * 2) + 2;

    sal_uInt32 encryptionHeaderSize = static_cast<sal_uInt32>(sizeof(EncryptionStandardHeader));

    rStream << mInfo.header.flags;
    sal_uInt32 headerSize = encryptionHeaderSize + cspNameSize;
    rStream << headerSize;

    rStream.writeMemory(&mInfo.header, encryptionHeaderSize);
    rStream.writeUnicodeArray(lclCspName);
    rStream.WriteUInt16(0);

    sal_uInt32 encryptionVerifierSize = static_cast<sal_uInt32>(sizeof(EncryptionVerifierAES));
    rStream.writeMemory(&mInfo.verifier, encryptionVerifierSize);

    return true;
}

bool Standard2007Engine::encrypt(
                            BinaryXInputStream& aInputStream,
                            BinaryXOutputStream& aOutputStream)
{
    vector<sal_uInt8> inputBuffer(1024);
    vector<sal_uInt8> outputBuffer(1024);

    sal_uInt32 inputLength;
    sal_uInt32 outputLength;

    vector<sal_uInt8> iv;
    Encrypt aEncryptor(mKey, iv, Crypto::AES_128_ECB);

    while( (inputLength = aInputStream.readMemory( &inputBuffer[0], inputBuffer.size() )) > 0 )
    {
        inputLength = inputLength % 16 == 0 ? inputLength : ((inputLength / 16) * 16) + 16;
        outputLength = aEncryptor.update(outputBuffer, inputBuffer, inputLength);
        aOutputStream.writeMemory( &outputBuffer[0], outputLength );
    }
    return true;
}

} // namespace core
} // namespace oox

/* vim:set shiftwidth=4 softtabstop=4 expandtab: */