summaryrefslogtreecommitdiff
path: root/basegfx/source/workbench/bezierclip.cxx
blob: 7fb95c4977b1c78f11dccfe6a55e7d7cc77cb188 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
/*************************************************************************
 *
 *  $RCSfile: bezierclip.cxx,v $
 *
 *  $Revision: 1.2 $
 *
 *  last change: $Author: aw $ $Date: 2003-11-05 12:25:57 $
 *
 *  The Contents of this file are made available subject to the terms of
 *  either of the following licenses
 *
 *         - GNU Lesser General Public License Version 2.1
 *         - Sun Industry Standards Source License Version 1.1
 *
 *  Sun Microsystems Inc., October, 2000
 *
 *  GNU Lesser General Public License Version 2.1
 *  =============================================
 *  Copyright 2000 by Sun Microsystems, Inc.
 *  901 San Antonio Road, Palo Alto, CA 94303, USA
 *
 *  This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Lesser General Public
 *  License version 2.1, as published by the Free Software Foundation.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  License along with this library; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 *  MA  02111-1307  USA
 *
 *
 *  Sun Industry Standards Source License Version 1.1
 *  =================================================
 *  The contents of this file are subject to the Sun Industry Standards
 *  Source License Version 1.1 (the "License"); You may not use this file
 *  except in compliance with the License. You may obtain a copy of the
 *  License at http://www.openoffice.org/license.html.
 *
 *  Software provided under this License is provided on an "AS IS" basis,
 *  WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
 *  WITHOUT LIMITATION, WARRANTIES THAT THE SOFTWARE IS FREE OF DEFECTS,
 *  MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE, OR NON-INFRINGING.
 *  See the License for the specific provisions governing your rights and
 *  obligations concerning the Software.
 *
 *  The Initial Developer of the Original Code is: Sun Microsystems, Inc.
 *
 *  Copyright: 2000 by Sun Microsystems, Inc.
 *
 *  All Rights Reserved.
 *
 *  Contributor(s): Thorsten Behrens (thorsten.behrens@sun.com)
 *
 *
 ************************************************************************/

#include <algorithm>
#include <iterator>
#include <vector>
#include <utility>

#include <math.h>

#include "bezierclip.hxx"
#include "gauss.hxx"



// what to test
#define WITH_ASSERTIONS
//#define WITH_CONVEXHULL_TEST
//#define WITH_MULTISUBDIVIDE_TEST
//#define WITH_FATLINE_TEST
//#define WITH_CALCFOCUS_TEST
//#define WITH_SAFEPARAMBASE_TEST
//#define WITH_SAFEPARAMS_TEST
//#define WITH_SAFEPARAM_DETAILED_TEST
//#define WITH_SAFEFOCUSPARAM_CALCFOCUS
//#define WITH_SAFEFOCUSPARAM_TEST
//#define WITH_SAFEFOCUSPARAM_DETAILED_TEST
#define WITH_BEZIERCLIP_TEST



// -----------------------------------------------------------------------------

/* Implementation of the so-called 'Fat-Line Bezier Clipping Algorithm' by Sederberg et al.
 *
 * Actual reference is: T. W. Sederberg and T Nishita: Curve
 * intersection using Bezier clipping. In Computer Aided Design, 22
 * (9), 1990, pp. 538--549
 */

// -----------------------------------------------------------------------------

/* Misc helper
 * ===========
 */
int fallFac( int n, int k )
{
#ifdef WITH_ASSERTIONS
    assert(n>=k); // "For factorials, n must be greater or equal k"
    assert(n>=0); // "For factorials, n must be positive"
    assert(k>=0); // "For factorials, k must be positive"
#endif

    int res( 1 );

    while( k-- && n ) res *= n--;

    return res;
}

// -----------------------------------------------------------------------------

int fac( int n )
{
    return fallFac(n, n);
}

// -----------------------------------------------------------------------------

/* Bezier fat line clipping part
 * =============================
 */

// -----------------------------------------------------------------------------

void Impl_calcFatLine( FatLine& line, const Bezier& c )
{
    // Prepare normalized implicit line
    // ================================

    // calculate vector orthogonal to p1-p4:
    line.a = -(c.p0.y - c.p3.y);
    line.b = (c.p0.x - c.p3.x);

    // normalize
    const double len( sqrt( line.a*line.a + line.b*line.b ) );
    if( !tolZero(len) )
    {
        line.a /= len;
        line.b /= len;
    }

    line.c = -(line.a*c.p0.x + line.b*c.p0.y);


    // Determine bounding fat line from it
    // ===================================

    // calc control point distances
    const double dP2( calcLineDistance(line.a, line.b, line.c, c.p1.x, c.p1.y ) );
    const double dP3( calcLineDistance(line.a, line.b, line.c, c.p2.x, c.p2.y ) );

    // calc approximate bounding lines to curve (tight bounds are
    // possible here, but more expensive to calculate and thus not
    // worth the overhead)
    if( dP2 * dP3 > 0.0 )
    {
        line.dMin = 3.0/4.0 * ::std::min(0.0, ::std::min(dP2, dP3));
        line.dMax = 3.0/4.0 * ::std::max(0.0, ::std::max(dP2, dP3));
    }
    else
    {
        line.dMin = 4.0/9.0 * ::std::min(0.0, ::std::min(dP2, dP3));
        line.dMax = 4.0/9.0 * ::std::max(0.0, ::std::max(dP2, dP3));
    }
}

void Impl_calcBounds( Point2D&          leftTop,
                      Point2D&          rightBottom,
                      const Bezier&     c1          )
{
    leftTop.x = ::std::min( c1.p0.x, ::std::min( c1.p1.x, ::std::min( c1.p2.x, c1.p3.x ) ) );
    leftTop.y = ::std::min( c1.p0.y, ::std::min( c1.p1.y, ::std::min( c1.p2.y, c1.p3.y ) ) );
    rightBottom.x = ::std::max( c1.p0.x, ::std::max( c1.p1.x, ::std::max( c1.p2.x, c1.p3.x ) ) );
    rightBottom.y = ::std::max( c1.p0.y, ::std::max( c1.p1.y, ::std::max( c1.p2.y, c1.p3.y ) ) );
}

sal_Bool Impl_doBBoxIntersect( const Bezier& c1,
                           const Bezier& c2 )
{
    // calc rectangular boxes from c1 and c2
    Point2D lt1;
    Point2D rb1;
    Point2D lt2;
    Point2D rb2;

    Impl_calcBounds( lt1, rb1, c1 );
    Impl_calcBounds( lt2, rb2, c2 );

    if( ::std::min(rb1.x, rb2.x) < ::std::max(lt1.x, lt2.x) ||
        ::std::min(rb1.y, rb2.y) < ::std::max(lt1.y, lt2.y) )
    {
        return sal_False;
    }
    else
    {
        return sal_True;
    }
}

/* calculates two t's for the given bernstein control polygon: the first is
 * the intersection of the min value line with the convex hull from
 * the left, the second is the intersection of the max value line with
 * the convex hull from the right.
 */
sal_Bool Impl_calcSafeParams( double&           t1,
                          double&           t2,
                          const Polygon2D&  rPoly,
                          double            lowerYBound,
                          double            upperYBound )
{
    // need the convex hull of the control polygon, as this is
    // guaranteed to completely bound the curve
    Polygon2D convHull( convexHull(rPoly) );

    // init min and max buffers
    t1 = 0.0 ;
    double currLowerT( 1.0 );

    t2 = 1.0;
    double currHigherT( 0.0 );

    if( convHull.size() <= 1 )
        return sal_False; // only one point? Then we're done with clipping

    /* now, clip against lower and higher bounds */
    Point2D p0;
    Point2D p1;

    sal_Bool bIntersection( sal_False );

    for( Polygon2D::size_type i=0; i<convHull.size(); ++i )
    {
        // have to check against convHull.size() segments, as the
        // convex hull is, by definition, closed. Thus, for the
        // last point, we take the first point as partner.
        if( i+1 == convHull.size() )
        {
            // close the polygon
            p0 = convHull[i];
            p1 = convHull[0];
        }
        else
        {
            p0 = convHull[i];
            p1 = convHull[i+1];
        }

        // is the segment in question within or crossing the
        // horizontal band spanned by lowerYBound and upperYBound? If
        // not, we've got no intersection. If yes, we maybe don't have
        // an intersection, but we've got to update the permissible
        // range, nevertheless. This is because inside lying segments
        // leads to full range forbidden.
        if( (tolLessEqual(p0.y, upperYBound) || tolLessEqual(p1.y, upperYBound)) &&
            (tolGreaterEqual(p0.y, lowerYBound) || tolGreaterEqual(p1.y, lowerYBound)) )
        {
            // calc intersection of convex hull segment with
            // one of the horizontal bounds lines
            const double r_x( p1.x - p0.x );
            const double r_y( p1.y - p0.y );

            if( tolZero(r_y) )
            {
                // r_y is virtually zero, thus we've got a horizontal
                // line. Now check whether we maybe coincide with lower or
                // upper horizonal bound line.
                if( tolEqual(p0.y, lowerYBound) ||
                    tolEqual(p0.y, upperYBound) )
                {
                    // yes, simulate intersection then
                    currLowerT = ::std::min(currLowerT, ::std::min(p0.x, p1.x));
                    currHigherT = ::std::max(currHigherT, ::std::max(p0.x, p1.x));
                }
            }
            else
            {
                // check against lower and higher bounds
                // =====================================

                // calc intersection with horizontal dMin line
                const double currTLow( (lowerYBound - p0.y) * r_x / r_y + p0.x );

                // calc intersection with horizontal dMax line
                const double currTHigh( (upperYBound - p0.y) * r_x / r_y + p0.x );

                currLowerT = ::std::min(currLowerT, ::std::min(currTLow, currTHigh));
                currHigherT = ::std::max(currHigherT, ::std::max(currTLow, currTHigh));
            }

            // set flag that at least one segment is contained or
            // intersects given horizontal band.
            bIntersection = sal_True;
        }
    }

#ifndef WITH_SAFEPARAMBASE_TEST
    // limit intersections found to permissible t parameter range
    t1 = ::std::max(0.0, currLowerT);
    t2 = ::std::min(1.0, currHigherT);
#endif

    return bIntersection;
}


/* calculates two t's for the given bernstein polynomial: the first is
 * the intersection of the min value line with the convex hull from
 * the left, the second is the intersection of the max value line with
 * the convex hull from the right.
 *
 * The polynomial coefficients c0 to c3 given to this method
 * must correspond to t values of 0, 1/3, 2/3 and 1, respectively.
 */
sal_Bool Impl_calcSafeParams_clip( double&          t1,
                               double&          t2,
                               const FatLine&   bounds,
                               double           c0,
                               double           c1,
                               double           c2,
                               double           c3 )
{
    /* first of all, determine convex hull of c0-c3 */
    Polygon2D poly(4);
    poly[0] = Point2D(0,        c0);
    poly[1] = Point2D(1.0/3.0,  c1);
    poly[2] = Point2D(2.0/3.0,  c2);
    poly[3] = Point2D(1,        c3);

#ifndef WITH_SAFEPARAM_DETAILED_TEST

    return Impl_calcSafeParams( t1, t2, poly, bounds.dMin, bounds.dMax );

#else
    sal_Bool bRet( Impl_calcSafeParams( t1, t2, poly, bounds.dMin, bounds.dMax ) );

    Polygon2D convHull( convexHull( poly ) );

    cout << "# convex hull testing" << endl
         << "plot [t=0:1] ";
    cout << " bez("
         << poly[0].x << ","
         << poly[1].x << ","
         << poly[2].x << ","
         << poly[3].x << ",t),bez("
         << poly[0].y << ","
         << poly[1].y << ","
         << poly[2].y << ","
         << poly[3].y << ",t), "
         << "t, " << bounds.dMin << ", "
         << "t, " << bounds.dMax << ", "
         << t1 << ", t, "
         << t2 << ", t, "
         << "'-' using ($1):($2) title \"control polygon\" with lp, "
         << "'-' using ($1):($2) title \"convex hull\" with lp" << endl;

    unsigned int k;
    for( k=0; k<poly.size(); ++k )
    {
        cout << poly[k].x << " " << poly[k].y << endl;
    }
    cout << poly[0].x << " " << poly[0].y << endl;
    cout << "e" << endl;

    for( k=0; k<convHull.size(); ++k )
    {
        cout << convHull[k].x << " " << convHull[k].y << endl;
    }
    cout << convHull[0].x << " " << convHull[0].y << endl;
    cout << "e" << endl;

    return bRet;
#endif
}

// -----------------------------------------------------------------------------

void Impl_deCasteljauAt( Bezier&        part1,
                         Bezier&        part2,
                         const Bezier&  input,
                         double         t        )
{
    // deCasteljau bezier arc, scheme is:
    //
    // First row is    C_0^n,C_1^n,...,C_n^n
    // Second row is         P_1^n,...,P_n^n
    // etc.
    // with P_k^r = (1 - x_s)P_{k-1}^{r-1} + x_s P_k{r-1}
    //
    // this results in:
    //
    // P1  P2  P3  P4
    // L1  P2  P3  R4
    //     L2  H   R3
    //         L3  R2
    //             L4/R1
    if( tolZero(t) )
    {
        // t is zero -> part2 is input curve, part1 is empty (input.p0, that is)
        part1.p0.x = part1.p1.x = part1.p2.x = part1.p3.x = input.p0.x;
        part1.p0.y = part1.p1.y = part1.p2.y = part1.p3.y = input.p0.y;
        part2 = input;
    }
    else if( tolEqual(t, 1.0) )
    {
        // t is one -> part1 is input curve, part2 is empty (input.p3, that is)
        part1 = input;
        part2.p0.x = part2.p1.x = part2.p2.x = part2.p3.x = input.p3.x;
        part2.p0.y = part2.p1.y = part2.p2.y = part2.p3.y = input.p3.y;
    }
    else
    {
        part1.p0.x = input.p0.x;                                    part1.p0.y = input.p0.y;
        part1.p1.x = (1.0 - t)*part1.p0.x + t*input.p1.x;           part1.p1.y = (1.0 - t)*part1.p0.y + t*input.p1.y;
        const double Hx ( (1.0 - t)*input.p1.x + t*input.p2.x ),    Hy ( (1.0 - t)*input.p1.y + t*input.p2.y );
        part1.p2.x = (1.0 - t)*part1.p1.x + t*Hx;                   part1.p2.y = (1.0 - t)*part1.p1.y + t*Hy;
        part2.p3.x = input.p3.x;                                    part2.p3.y = input.p3.y;
        part2.p2.x = (1.0 - t)*input.p2.x + t*input.p3.x;           part2.p2.y = (1.0 - t)*input.p2.y + t*input.p3.y;
        part2.p1.x = (1.0 - t)*Hx + t*part2.p2.x;                   part2.p1.y = (1.0 - t)*Hy + t*part2.p2.y;
        part2.p0.x = (1.0 - t)*part1.p2.x + t*part2.p1.x;           part2.p0.y = (1.0 - t)*part1.p2.y + t*part2.p1.y;
        part1.p3.x = part2.p0.x;                                    part1.p3.y = part2.p0.y;
    }
}

// -----------------------------------------------------------------------------

void printCurvesWithSafeRange( const Bezier& c1, const Bezier& c2, double t1_c1, double t2_c1,
                               const Bezier& c2_part, const FatLine& bounds_c2 )
{
    static int offset = 0;

    cout << "# safe param range testing" << endl
         << "plot [t=0.0:1.0] ";

    // clip safe ranges off c1
    Bezier c1_part1;
    Bezier c1_part2;
    Bezier c1_part3;

    // subdivide at t1_c1
    Impl_deCasteljauAt( c1_part1, c1_part2, c1, t1_c1 );
    // subdivide at t2_c1
    Impl_deCasteljauAt( c1_part1, c1_part3, c1_part2, t2_c1 );

    // output remaining segment (c1_part1)

    cout << "bez("
         << c1.p0.x+offset << ","
         << c1.p1.x+offset << ","
         << c1.p2.x+offset << ","
         << c1.p3.x+offset << ",t),bez("
         << c1.p0.y << ","
         << c1.p1.y << ","
         << c1.p2.y << ","
         << c1.p3.y << ",t), bez("
         << c2.p0.x+offset << ","
         << c2.p1.x+offset << ","
         << c2.p2.x+offset << ","
         << c2.p3.x+offset << ",t),bez("
         << c2.p0.y << ","
         << c2.p1.y << ","
         << c2.p2.y << ","
         << c2.p3.y << ",t), "
#if 1
         << "bez("
         << c1_part1.p0.x+offset << ","
         << c1_part1.p1.x+offset << ","
         << c1_part1.p2.x+offset << ","
         << c1_part1.p3.x+offset << ",t),bez("
         << c1_part1.p0.y << ","
         << c1_part1.p1.y << ","
         << c1_part1.p2.y << ","
         << c1_part1.p3.y << ",t), "
#endif
#if 1
         << "bez("
         << c2_part.p0.x+offset << ","
         << c2_part.p1.x+offset << ","
         << c2_part.p2.x+offset << ","
         << c2_part.p3.x+offset << ",t),bez("
         << c2_part.p0.y << ","
         << c2_part.p1.y << ","
         << c2_part.p2.y << ","
         << c2_part.p3.y << ",t), "
#endif
         << "linex("
         << bounds_c2.a << ","
         << bounds_c2.b << ","
         << bounds_c2.c << ",t)+" << offset << ", liney("
         << bounds_c2.a << ","
         << bounds_c2.b << ","
         << bounds_c2.c << ",t) title \"fat line (center)\", linex("
         << bounds_c2.a << ","
         << bounds_c2.b << ","
         << bounds_c2.c-bounds_c2.dMin << ",t)+" << offset << ", liney("
         << bounds_c2.a << ","
         << bounds_c2.b << ","
         << bounds_c2.c-bounds_c2.dMin << ",t) title \"fat line (min) \", linex("
         << bounds_c2.a << ","
         << bounds_c2.b << ","
         << bounds_c2.c-bounds_c2.dMax << ",t)+" << offset << ", liney("
         << bounds_c2.a << ","
         << bounds_c2.b << ","
         << bounds_c2.c-bounds_c2.dMax << ",t) title \"fat line (max) \"" << endl;

    offset += 1;
}

// -----------------------------------------------------------------------------

void printResultWithFinalCurves( const Bezier& c1, const Bezier& c1_part,
                                 const Bezier& c2, const Bezier& c2_part,
                                 double t1_c1, double t2_c1 )
{
    static int offset = 0;

    cout << "# final result" << endl
         << "plot [t=0.0:1.0] ";

    cout << "bez("
         << c1.p0.x+offset << ","
         << c1.p1.x+offset << ","
         << c1.p2.x+offset << ","
         << c1.p3.x+offset << ",t),bez("
         << c1.p0.y << ","
         << c1.p1.y << ","
         << c1.p2.y << ","
         << c1.p3.y << ",t), bez("
         << c1_part.p0.x+offset << ","
         << c1_part.p1.x+offset << ","
         << c1_part.p2.x+offset << ","
         << c1_part.p3.x+offset << ",t),bez("
         << c1_part.p0.y << ","
         << c1_part.p1.y << ","
         << c1_part.p2.y << ","
         << c1_part.p3.y << ",t), "
         << " pointmarkx(bez("
         << c1.p0.x+offset << ","
         << c1.p1.x+offset << ","
         << c1.p2.x+offset << ","
         << c1.p3.x+offset << ","
         << t1_c1 << "),t), "
         << " pointmarky(bez("
         << c1.p0.y << ","
         << c1.p1.y << ","
         << c1.p2.y << ","
         << c1.p3.y << ","
         << t1_c1 << "),t), "
         << " pointmarkx(bez("
         << c1.p0.x+offset << ","
         << c1.p1.x+offset << ","
         << c1.p2.x+offset << ","
         << c1.p3.x+offset << ","
         << t2_c1 << "),t), "
         << " pointmarky(bez("
         << c1.p0.y << ","
         << c1.p1.y << ","
         << c1.p2.y << ","
         << c1.p3.y << ","
         << t2_c1 << "),t), "

         << "bez("
         << c2.p0.x+offset << ","
         << c2.p1.x+offset << ","
         << c2.p2.x+offset << ","
         << c2.p3.x+offset << ",t),bez("
         << c2.p0.y << ","
         << c2.p1.y << ","
         << c2.p2.y << ","
         << c2.p3.y << ",t), "
         << "bez("
         << c2_part.p0.x+offset << ","
         << c2_part.p1.x+offset << ","
         << c2_part.p2.x+offset << ","
         << c2_part.p3.x+offset << ",t),bez("
         << c2_part.p0.y << ","
         << c2_part.p1.y << ","
         << c2_part.p2.y << ","
         << c2_part.p3.y << ",t)" << endl;

    offset += 1;
}

// -----------------------------------------------------------------------------

/** determine parameter ranges [0,t1) and (t2,1] on c1, where c1 is guaranteed to lie outside c2.
      Returns sal_False, if the two curves don't even intersect.

    @param t1
    Range [0,t1) on c1 is guaranteed to lie outside c2

    @param t2
    Range (t2,1] on c1 is guaranteed to lie outside c2

    @param c1_orig
    Original curve c1

    @param c1_part
    Subdivided current part of c1

    @param c2_orig
    Original curve c2

    @param c2_part
    Subdivided current part of c2
 */
sal_Bool Impl_calcClipRange( double&        t1,
                         double&        t2,
                         const Bezier&  c1_orig,
                         const Bezier&  c1_part,
                         const Bezier&  c2_orig,
                         const Bezier&  c2_part )
{
    // TODO: Maybe also check fat line orthogonal to P0P3, having P0
    //       and P3 as the extremal points

    if( Impl_doBBoxIntersect(c1_part, c2_part) )
    {
        // Calculate fat lines around c1
        FatLine bounds_c2;

        // must use the subdivided version of c2, since the fat line
        // algorithm works implicitely with the convex hull bounding
        // box.
        Impl_calcFatLine(bounds_c2, c2_part);

        // determine clip positions on c2. Can use original c1 (which
        // is necessary anyway, to get the t's on the original curve),
        // since the distance calculations work directly in the
        // Bernstein polynom parameter domain.
        if( Impl_calcSafeParams_clip( t1, t2, bounds_c2,
                                      calcLineDistance( bounds_c2.a,
                                                        bounds_c2.b,
                                                        bounds_c2.c,
                                                        c1_orig.p0.x,
                                                        c1_orig.p0.y    ),
                                      calcLineDistance( bounds_c2.a,
                                                        bounds_c2.b,
                                                        bounds_c2.c,
                                                        c1_orig.p1.x,
                                                        c1_orig.p1.y    ),
                                      calcLineDistance( bounds_c2.a,
                                                        bounds_c2.b,
                                                        bounds_c2.c,
                                                        c1_orig.p2.x,
                                                        c1_orig.p2.y    ),
                                      calcLineDistance( bounds_c2.a,
                                                        bounds_c2.b,
                                                        bounds_c2.c,
                                                        c1_orig.p3.x,
                                                        c1_orig.p3.y    ) ) )
        {
            //printCurvesWithSafeRange(c1_orig, c2_orig, t1, t2, c2_part, bounds_c2);

            // they do intersect
            return sal_True;
        }
    }

    // they don't intersect: nothing to do
    return sal_False;
}

// -----------------------------------------------------------------------------

/* Tangent intersection part
 * =========================
 */

// -----------------------------------------------------------------------------

void Impl_calcFocus( Bezier& res, const Bezier& c )
{
    // arbitrary small value, for now
    // TODO: find meaningful value
    const double minPivotValue( 1.0e-20 );

    Point2D::value_type fMatrix[6];
    Point2D::value_type fRes[2];

    // calc new curve from hodograph, c and linear blend

    // Coefficients for derivative of c are (C_i=n(C_{i+1} - C_i)):
    //
    // 3(P1 - P0), 3(P2 - P1), 3(P3 - P2) (bezier curve of degree 2)
    //
    // The hodograph is then (bezier curve of 2nd degree is P0(1-t)^2 + 2P1(1-t)t + P2t^2):
    //
    // 3(P1 - P0)(1-t)^2 + 6(P2 - P1)(1-t)t + 3(P3 - P2)t^2
    //
    // rotate by 90 degrees: x=-y, y=x and you get the normal vector function N(t):
    //
    // x(t) = -(3(P1.y - P0.y)(1-t)^2 + 6(P2.y - P1.y)(1-t)t + 3(P3.y - P2.y)t^2)
    // y(t) =   3(P1.x - P0.x)(1-t)^2 + 6(P2.x - P1.x)(1-t)t + 3(P3.x - P2.x)t^2
    //
    // Now, the focus curve is defined to be F(t)=P(t) + c(t)N(t),
    // where P(t) is the original curve, and c(t)=c0(1-t) + c1 t
    //
    // This results in the following expression for F(t):
    //
    // x(t) =  P0.x (1-t)^3 + 3 P1.x (1-t)^2t + 3 P2.x (1.t)t^2 + P3.x t^3 -
    //          (c0(1-t) + c1 t)(3(P1.y - P0.y)(1-t)^2 + 6(P2.y - P1.y)(1-t)t + 3(P3.y - P2.y)t^2)
    //
    // y(t) =  P0.y (1-t)^3 + 3 P1.y (1-t)^2t + 3 P2.y (1.t)t^2 + P3.y t^3 +
    //          (c0(1-t) + c1 t)(3(P1.x - P0.x)(1-t)^2 + 6(P2.x - P1.x)(1-t)t + 3(P3.x - P2.x)t^2)
    //
    // As a heuristic, we set F(0)=F(1) (thus, the curve is closed and _tends_ to be small):
    //
    // For F(0), the following results:
    //
    // x(0) = P0.x - c0 3(P1.y - P0.y)
    // y(0) = P0.y + c0 3(P1.x - P0.x)
    //
    // For F(1), the following results:
    //
    // x(1) = P3.x - c1 3(P3.y - P2.y)
    // y(1) = P3.y + c1 3(P3.x - P2.x)
    //
    // Reorder, collect and substitute into F(0)=F(1):
    //
    // P0.x - c0 3(P1.y - P0.y) = P3.x - c1 3(P3.y - P2.y)
    // P0.y + c0 3(P1.x - P0.x) = P3.y + c1 3(P3.x - P2.x)
    //
    // which yields
    //
    // (P0.y - P1.y)c0 + (P3.y - P2.y)c1 = (P3.x - P0.x)/3
    // (P1.x - P0.x)c0 + (P2.x - P3.x)c1 = (P3.y - P0.y)/3
    //

    // so, this is what we calculate here (determine c0 and c1):
    fMatrix[0] = c.p1.x - c.p0.x;
    fMatrix[1] = c.p2.x - c.p3.x;
    fMatrix[2] = (c.p3.y - c.p0.y)/3.0;
    fMatrix[3] = c.p0.y - c.p1.y;
    fMatrix[4] = c.p3.y - c.p2.y;
    fMatrix[5] = (c.p3.x - c.p0.x)/3.0;

    // TODO: determine meaningful value for
    if( !solve(fMatrix, 2, 3, fRes, minPivotValue) )
    {
        // TODO: generate meaningful values here
        // singular or nearly singular system -- use arbitrary
        // values for res
        fRes[0] = 0.0;
        fRes[1] = 1.0;

        cerr << "Matrix singular!" << endl;
    }

    // now, the reordered and per-coefficient collected focus curve is
    // the following third degree bezier curve F(t):
    //
    // x(t) =  P0.x (1-t)^3 + 3 P1.x (1-t)^2t + 3 P2.x (1.t)t^2 + P3.x t^3 -
    //          (c0(1-t) + c1 t)(3(P1.y - P0.y)(1-t)^2 + 6(P2.y - P1.y)(1-t)t + 3(P3.y - P2.y)t^2)
    //      =  P0.x (1-t)^3 + 3 P1.x (1-t)^2t + 3 P2.x (1.t)t^2 + P3.x t^3 -
    //         (3c0P1.y(1-t)^3 - 3c0P0.y(1-t)^3 + 6c0P2.y(1-t)^2t - 6c0P1.y(1-t)^2t +
    //          3c0P3.y(1-t)t^2 - 3c0P2.y(1-t)t^2 +
    //          3c1P1.y(1-t)^2t - 3c1P0.y(1-t)^2t + 6c1P2.y(1-t)t^2 - 6c1P1.y(1-t)t^2 +
    //          3c1P3.yt^3 - 3c1P2.yt^3)
    //      =  (P0.x - 3 c0 P1.y + 3 c0 P0.y)(1-t)^3 +
    //         3(P1.x - c1 P1.y + c1 P0.y - 2 c0 P2.y + 2 c0 P1.y)(1-t)^2t +
    //         3(P2.x - 2 c1 P2.y + 2 c1 P1.y - c0 P3.y + c0 P2.y)(1-t)t^2 +
    //         (P3.x - 3 c1 P3.y + 3 c1 P2.y)t^3
    //      =  (P0.x - 3 c0(P1.y - P0.y))(1-t)^3 +
    //         3(P1.x - c1(P1.y - P0.y) - 2c0(P2.y - P1.y))(1-t)^2t +
    //         3(P2.x - 2 c1(P2.y - P1.y) - c0(P3.y - P2.y))(1-t)t^2 +
    //         (P3.x - 3 c1(P3.y - P2.y))t^3
    //
    // y(t) =  P0.y (1-t)^3 + 3 P1.y (1-t)^2t + 3 P2.y (1-t)t^2 + P3.y t^3 +
    //          (c0(1-t) + c1 t)(3(P1.x - P0.x)(1-t)^2 + 6(P2.x - P1.x)(1-t)t + 3(P3.x - P2.x)t^2)
    //      =  P0.y (1-t)^3 + 3 P1.y (1-t)^2t + 3 P2.y (1-t)t^2 + P3.y t^3 +
    //         3c0(P1.x - P0.x)(1-t)^3 + 6c0(P2.x - P1.x)(1-t)^2t + 3c0(P3.x - P2.x)(1-t)t^2 +
    //         3c1(P1.x - P0.x)(1-t)^2t + 6c1(P2.x - P1.x)(1-t)t^2 + 3c1(P3.x - P2.x)t^3
    //      =  (P0.y + 3 c0 (P1.x - P0.x))(1-t)^3 +
    //         3(P1.y + 2 c0 (P2.x - P1.x) + c1 (P1.x - P0.x))(1-t)^2t +
    //         3(P2.y + c0 (P3.x - P2.x) + 2 c1 (P2.x - P1.x))(1-t)t^2 +
    //         (P3.y + 3 c1 (P3.x - P2.x))t^3
    //
    // Therefore, the coefficients F0 to F3 of the focus curve are:
    //
    // F0.x = (P0.x - 3 c0(P1.y - P0.y))                    F0.y = (P0.y + 3 c0 (P1.x - P0.x))
    // F1.x = (P1.x - c1(P1.y - P0.y) - 2c0(P2.y - P1.y))   F1.y = (P1.y + 2 c0 (P2.x - P1.x) + c1 (P1.x - P0.x))
    // F2.x = (P2.x - 2 c1(P2.y - P1.y) - c0(P3.y - P2.y))  F2.y = (P2.y + c0 (P3.x - P2.x) + 2 c1 (P2.x - P1.x))
    // F3.x = (P3.x - 3 c1(P3.y - P2.y))                    F3.y = (P3.y + 3 c1 (P3.x - P2.x))
    //
    res.p0.x = c.p0.x - 3*fRes[0]*(c.p1.y - c.p0.y);
    res.p1.x = c.p1.x - fRes[1]*(c.p1.y - c.p0.y) - 2*fRes[0]*(c.p2.y - c.p1.y);
    res.p2.x = c.p2.x - 2*fRes[1]*(c.p2.y - c.p1.y) - fRes[0]*(c.p3.y - c.p2.y);
    res.p3.x = c.p3.x - 3*fRes[1]*(c.p3.y - c.p2.y);

    res.p0.y = c.p0.y + 3*fRes[0]*(c.p1.x - c.p0.x);
    res.p1.y = c.p1.y + 2*fRes[0]*(c.p2.x - c.p1.x) + fRes[1]*(c.p1.x - c.p0.x);
    res.p2.y = c.p2.y + fRes[0]*(c.p3.x - c.p2.x) + 2*fRes[1]*(c.p2.x - c.p1.x);
    res.p3.y = c.p3.y + 3*fRes[1]*(c.p3.x - c.p2.x);
}

// -----------------------------------------------------------------------------

sal_Bool Impl_calcSafeParams_focus( double&         t1,
                                double&         t2,
                                const Bezier&   curve,
                                const Bezier&   focus )
{
    // now, we want to determine which normals of the original curve
    // P(t) intersect with the focus curve F(t). The condition for
    // this statement is P'(t)(P(t) - F) = 0, i.e. hodograph P'(t) and
    // line through P(t) and F are perpendicular.
    // If you expand this equation, you end up with something like
    //
    // (\sum_{i=0}^n (P_i - F)B_i^n(t))^T (\sum_{j=0}^{n-1} n(P_{j+1} - P_j)B_j^{n-1}(t))
    //
    // Multiplying that out (as the scalar product is linear, we can
    // extract some terms) yields:
    //
    // (P_i - F)^T n(P_{j+1} - P_j) B_i^n(t)B_j^{n-1}(t) + ...
    //
    // If we combine the B_i^n(t)B_j^{n-1}(t) product, we arrive at a
    // Bernstein polynomial of degree 2n-1, as
    //
    // \binom{n}{i}(1-t)^{n-i}t^i) \binom{n-1}{j}(1-t)^{n-1-j}t^j) =
    // \binom{n}{i}\binom{n-1}{j}(1-t)^{2n-1-i-j}t^{i+j}
    //
    // Thus, with the defining equation for a 2n-1 degree Bernstein
    // polynomial
    //
    // \sum_{i=0}^{2n-1} d_i B_i^{2n-1}(t)
    //
    // the d_i are calculated as follows:
    //
    // d_i = \sum_{j+k=i, j\in\{0,...,n\}, k\in\{0,...,n-1\}} \frac{\binom{n}{j}\binom{n-1}{k}}{\binom{2n-1}{i}} n (P_{k+1} - P_k)^T(P_j - F)
    //
    //
    // Okay, but F is now not a single point, but itself a curve
    // F(u). Thus, for every value of u, we get a different 2n-1
    // bezier curve from the above equation. Therefore, we have a
    // tensor product bezier patch, with the following defining
    // equation:
    //
    // d(t,u) = \sum_{i=0}^{2n-1} \sum_{j=0}^m B_i^{2n-1}(t) B_j^{m}(u) d_{ij}, where
    // d_{ij} = \sum_{k+l=i, l\in\{0,...,n\}, k\in\{0,...,n-1\}} \frac{\binom{n}{l}\binom{n-1}{k}}{\binom{2n-1}{i}} n (P_{k+1} - P_k)^T(P_l - F_j)
    //
    // as above, only that now F is one of the focus' control points.
    //
    // Note the difference in the binomial coefficients to the
    // reference paper, these formulas most probably contained a typo.
    //
    // To determine, where D(t,u) is _not_ zero (these are the parts
    // of the curve that don't share normals with the focus and can
    // thus be safely clipped away), we project D(u,t) onto the
    // (d(t,u), t) plane, determine the convex hull there and proceed
    // as for the curve intersection part (projection is orthogonal to
    // u axis, thus simply throw away u coordinate).
    //
    // \fallfac are so-called falling factorials (see Concrete
    // Mathematics, p. 47 for a definition).
    //

    // now, for tensor product bezier curves, the convex hull property
    // holds, too. Thus, we simply project the control points (t_{ij},
    // u_{ij}, d_{ij}) onto the (t,d) plane and calculate the
    // intersections of the convex hull with the t axis, as for the
    // bezier clipping case.

    //
    // calc polygon of control points (t_{ij}, d_{ij}):
    //
    const int n( 3 ); // cubic bezier curves, as a matter of fact
    const int i_card( 2*n );
    const int j_card( n + 1 );
    const int k_max( n-1 );
    Polygon2D controlPolygon( i_card*j_card ); // vector of (t_{ij}, d_{ij}) in row-major order

    int i, j, k, l; // variable notation from formulas above and Sederberg article
    Point2D::value_type d;
    for( i=0; i<i_card; ++i )
    {
        for( j=0; j<j_card; ++j )
        {
            // calc single d_{ij} sum:
            for( d=0.0, k=::std::max(0,i-n); k<=k_max && k<=i; ++k )
            {
                l = i - k; // invariant: k + l = i
                assert(k>=0 && k<=n-1); // k \in {0,...,n-1}
                assert(l>=0 && l<=n);   // l \in {0,...,n}

                // TODO: find, document and assert proper limits for n and int's max_val.
                // This becomes important should anybody wants to use
                // this code for higher-than-cubic beziers
                d += static_cast<double>(fallFac(n,l)*fallFac(n-1,k)*fac(i)) /
                    static_cast<double>(fac(l)*fac(k) * fallFac(2*n-1,i)) * n *
                    ( (curve[k+1].x - curve[k].x)*(curve[l].x - focus[j].x) +   // dot product here
                      (curve[k+1].y - curve[k].y)*(curve[l].y - focus[j].y) );
            }

            // Note that the t_{ij} values are evenly spaced on the
            // [0,1] interval, thus t_{ij}=i/(2n-1)
            controlPolygon[ i*j_card + j ] = Point2D( i/(2.0*n-1.0), d );
        }
    }

#ifndef WITH_SAFEFOCUSPARAM_DETAILED_TEST

    // calc safe parameter range, to determine [0,t1] and [t2,1] where
    // no zero crossing is guaranteed.
    return Impl_calcSafeParams( t1, t2, controlPolygon, 0.0, 0.0 );

#else
    sal_Bool bRet( Impl_calcSafeParams( t1, t2, controlPolygon, 0.0, 0.0 ) );

    Polygon2D convHull( convexHull( controlPolygon ) );

    cout << "# convex hull testing (focus)" << endl
         << "plot [t=0:1] ";
    cout << "'-' using ($1):($2) title \"control polygon\" with lp, "
         << "'-' using ($1):($2) title \"convex hull\" with lp" << endl;

    unsigned int count;
    for( count=0; count<controlPolygon.size(); ++count )
    {
        cout << controlPolygon[count].x << " " << controlPolygon[count].y << endl;
    }
    cout << controlPolygon[0].x << " " << controlPolygon[0].y << endl;
    cout << "e" << endl;

    for( count=0; count<convHull.size(); ++count )
    {
        cout << convHull[count].x << " " << convHull[count].y << endl;
    }
    cout << convHull[0].x << " " << convHull[0].y << endl;
    cout << "e" << endl;

    return bRet;
#endif
}

// -----------------------------------------------------------------------------

/** Calc all values t_i on c1, for which safeRanges functor does not
    give a safe range on c1 and c2.

    This method is the workhorse of the bezier clipping. Because c1
    and c2 must be alternatingly tested against each other (first
    determine safe parameter interval on c1 with regard to c2, then
    the other way around), we call this method recursively with c1 and
    c2 swapped.

    @param result
    Output iterator where the final t values are added to. If curves
    don't intersect, nothing is added.

    @param delta
    Maximal allowed distance to sal_True critical point (measured in the
    original curve's coordinate system)

    @param safeRangeFunctor
    Functor object, that must provide the following operator():
    sal_Bool safeRangeFunctor( double& t1,
                           double& t2,
                           const Bezier& c1_orig,
                           const Bezier& c1_part,
                           const Bezier& c2_orig,
                           const Bezier& c2_part );
    This functor must calculate the safe ranges [0,t1] and [t2,1] on
    c1_orig, where c1_orig is 'safe' from c2_part. If the whole
    c1_orig is safe, sal_False must be returned, sal_True otherwise.
 */
template <class Functor> void Impl_applySafeRanges_rec( ::std::back_insert_iterator< ::std::vector< ::std::pair<double, double> > >&    result,
                                                        double                                                                          delta,
                                                        const Functor&                                                                  safeRangeFunctor,
                                                        int                                                                             recursionLevel,
                                                        const Bezier&                                                                   c1_orig,
                                                        const Bezier&                                                                   c1_part,
                                                        double                                                                          last_t1_c1,
                                                        double                                                                          last_t2_c1,
                                                        const Bezier&                                                                   c2_orig,
                                                        const Bezier&                                                                   c2_part,
                                                        double                                                                          last_t1_c2,
                                                        double                                                                          last_t2_c2  )
{
    // check end condition
    // ===================

    // TODO: tidy up recursion handling. maybe put everything in a
    // struct and swap that here at method entry

    // TODO: Implement limit on recursion depth. Should that limit be
    // reached, chances are that we're on a higher-order tangency. For
    // this case, AW proposed to take the middle of the current
    // interval, and to correct both curve's tangents at that new
    // endpoint to be equal. That virtually generates a first-order
    // tangency, and justifies to return a single intersection
    // point. Otherwise, inside/outside test might fail here.

    for( int i=0; i<recursionLevel; ++i ) cerr << " ";
    if( recursionLevel % 2 )
    {
        cerr << "level: " << recursionLevel
             << " t: "
             << last_t1_c2 + (last_t2_c2 - last_t1_c2)/2.0
             << ", c1: " << last_t1_c2 << " " << last_t2_c2
             << ", c2: " << last_t1_c1 << " " << last_t2_c1
             << endl;
    }
    else
    {
        cerr << "level: " << recursionLevel
             << " t: "
             << last_t1_c1 + (last_t2_c1 - last_t1_c1)/2.0
             << ", c1: " << last_t1_c1 << " " << last_t2_c1
             << ", c2: " << last_t1_c2 << " " << last_t2_c2
             << endl;
    }

    // refine solution
    // ===============

    double t1_c1, t2_c1;

    // Note: we first perform the clipping and only test for precision
    // sufficiency afterwards, since we want to exploit the fact that
    // Impl_calcClipRange returns sal_False if the curves don't
    // intersect. We would have to check that separately for the end
    // condition, otherwise.

    // determine safe range on c1_orig
    if( safeRangeFunctor( t1_c1, t2_c1, c1_orig, c1_part, c2_orig, c2_part ) )
    {
        // now, t1 and t2 are calculated on the original curve
        // (but against a fat line calculated from the subdivided
        // c2, namely c2_part). If the [t1,t2] range is outside
        // our current [last_t1,last_t2] range, we're done in this
        // branch - the curves no longer intersect.
        if( tolLessEqual(t1_c1, last_t2_c1) && tolGreaterEqual(t2_c1, last_t1_c1) )
        {
            // As noted above, t1 and t2 are calculated on the
            // original curve, but against a fat line
            // calculated from the subdivided c2, namely
            // c2_part. Our domain to work on is
            // [last_t1,last_t2], on the other hand, so values
            // of [t1,t2] outside that range are irrelevant
            // here. Clip range appropriately.
            t1_c1 = ::std::max(t1_c1, last_t1_c1);
            t2_c1 = ::std::min(t2_c1, last_t2_c1);

            // TODO: respect delta
            // for now, end condition is just a fixed threshold on the t's

            // check end condition
            // ===================

#if 1
            if( fabs(last_t2_c1 - last_t1_c1) < 0.0001 &&
                fabs(last_t2_c2 - last_t1_c2) < 0.0001  )
#else
            if( fabs(last_t2_c1 - last_t1_c1) < 0.01 &&
                fabs(last_t2_c2 - last_t1_c2) < 0.01    )
#endif
            {
                // done. Add to result
                if( recursionLevel % 2 )
                {
                    // uneven level: have to swap the t's, since curves are swapped, too
                    *result++ = ::std::make_pair( last_t1_c2 + (last_t2_c2 - last_t1_c2)/2.0,
                                                  last_t1_c1 + (last_t2_c1 - last_t1_c1)/2.0 );
                }
                else
                {
                    *result++ = ::std::make_pair( last_t1_c1 + (last_t2_c1 - last_t1_c1)/2.0,
                                                  last_t1_c2 + (last_t2_c2 - last_t1_c2)/2.0 );
                }

#if 0
                //printResultWithFinalCurves( c1_orig, c1_part, c2_orig, c2_part, last_t1_c1, last_t2_c1 );
                printResultWithFinalCurves( c1_orig, c1_part, c2_orig, c2_part, t1_c1, t2_c1 );
#else
                // calc focus curve of c2
                Bezier focus;
                Impl_calcFocus(focus, c2_part); // need to use subdivided c2

                safeRangeFunctor( t1_c1, t2_c1, c1_orig, c1_part, c2_orig, c2_part );

                //printResultWithFinalCurves( c1_orig, c1_part, c2_orig, focus, t1_c1, t2_c1 );
                printResultWithFinalCurves( c1_orig, c1_part, c2_orig, focus, last_t1_c1, last_t2_c1 );
#endif
            }
            else
            {
                // heuristic: if parameter range is not reduced by at least
                // 20%, subdivide longest curve, and clip shortest against
                // both parts of longest
//                if( (last_t2_c1 - last_t1_c1 - t2_c1 + t1_c1) / (last_t2_c1 - last_t1_c1) < 0.2 )
                if( sal_False )
                {
                    // subdivide and descend
                    // =====================

                    Bezier part1;
                    Bezier part2;

                    double intervalMiddle;

                    if( last_t2_c1 - last_t1_c1 > last_t2_c2 - last_t1_c2 )
                    {
                        // subdivide c1
                        // ============

                        intervalMiddle = last_t1_c1 + (last_t2_c1 - last_t1_c1)/2.0;

                        // subdivide at the middle of the interval (as
                        // we're not subdividing on the original
                        // curve, this simply amounts to subdivision
                        // at 0.5)
                        Impl_deCasteljauAt( part1, part2, c1_part, 0.5 );

                        // and descend recursively with swapped curves
                        Impl_applySafeRanges_rec( result, delta, safeRangeFunctor, recursionLevel+1,
                                                  c2_orig, c2_part, last_t1_c2, last_t2_c2,
                                                  c1_orig, part1, last_t1_c1, intervalMiddle );

                        Impl_applySafeRanges_rec( result, delta, safeRangeFunctor, recursionLevel+1,
                                                  c2_orig, c2_part, last_t1_c2, last_t2_c2,
                                                  c1_orig, part2, intervalMiddle, last_t2_c1 );
                    }
                    else
                    {
                        // subdivide c2
                        // ============

                        intervalMiddle = last_t1_c2 + (last_t2_c2 - last_t1_c2)/2.0;

                        // subdivide at the middle of the interval (as
                        // we're not subdividing on the original
                        // curve, this simply amounts to subdivision
                        // at 0.5)
                        Impl_deCasteljauAt( part1, part2, c2_part, 0.5 );

                        // and descend recursively with swapped curves
                        Impl_applySafeRanges_rec( result, delta, safeRangeFunctor, recursionLevel+1,
                                                  c2_orig, part1, last_t1_c2, intervalMiddle,
                                                  c1_orig, c1_part, last_t1_c1, last_t2_c1 );

                        Impl_applySafeRanges_rec( result, delta, safeRangeFunctor, recursionLevel+1,
                                                  c2_orig, part2, intervalMiddle, last_t2_c2,
                                                  c1_orig, c1_part, last_t1_c1, last_t2_c1 );
                    }
                }
                else
                {
                    // apply calculated clip
                    // =====================

                    // clip safe ranges off c1_orig
                    Bezier c1_part1;
                    Bezier c1_part2;
                    Bezier c1_part3;

                    // subdivide at t1_c1
                    Impl_deCasteljauAt( c1_part1, c1_part2, c1_orig, t1_c1 );

                    // subdivide at t2_c1. As we're working on
                    // c1_part2 now, we have to adapt t2_c1 since
                    // we're no longer in the original parameter
                    // interval. This is based on the following
                    // assumption: t2_new = (t2-t1)/(1-t1), which
                    // relates the t2 value into the new parameter
                    // range [0,1] of c1_part2.
                    Impl_deCasteljauAt( c1_part1, c1_part3, c1_part2, (t2_c1-t1_c1)/(1.0-t1_c1) );

                    // descend with swapped curves and c1_part1 as the
                    // remaining (middle) segment
                    Impl_applySafeRanges_rec( result, delta, safeRangeFunctor, recursionLevel+1,
                                              c2_orig, c2_part, last_t1_c2, last_t2_c2,
                                              c1_orig, c1_part1, t1_c1, t2_c1 );
                }
            }
        }
    }
}

// -----------------------------------------------------------------------------

struct ClipBezierFunctor
{
    sal_Bool operator()( double& t1_c1,
                     double& t2_c1,
                     const Bezier& c1_orig,
                     const Bezier& c1_part,
                     const Bezier& c2_orig,
                     const Bezier& c2_part ) const
    {
        return Impl_calcClipRange( t1_c1, t2_c1, c1_orig, c1_part, c2_orig, c2_part );
    }
};

// -----------------------------------------------------------------------------

struct BezierTangencyFunctor
{
    sal_Bool operator()( double& t1_c1,
                     double& t2_c1,
                     const Bezier& c1_orig,
                     const Bezier& c1_part,
                     const Bezier& c2_orig,
                     const Bezier& c2_part ) const
    {
        // calc focus curve of c2
        Bezier focus;
        Impl_calcFocus(focus, c2_part); // need to use subdivided c2
                                        // here, as the whole curve is
                                        // used for focus calculation

        // determine safe range on c1_orig
        sal_Bool bRet( Impl_calcSafeParams_focus( t1_c1, t2_c1,
                                              c1_orig, // use orig curve here, need t's on original curve
                                              focus ) );

        cerr << "range: " << t2_c1 - t1_c1 << ", ret: " << bRet << endl;

        return bRet;
    }
};

// -----------------------------------------------------------------------------

/** Perform a bezier clip (curve against curve)

    @param result
    Output iterator where the final t values are added to. This
    iterator will remain empty, if there are no intersections.

    @param delta
    Maximal allowed distance to sal_True intersection (measured in the
    original curve's coordinate system)
 */
void clipBezier( ::std::back_insert_iterator< ::std::vector< ::std::pair<double, double> > >&   result,
                 double                                                                         delta,
                 const Bezier&                                                                  c1,
                 const Bezier&                                                                  c2        )
{
#if 0
    // first of all, determine list of collinear normals. Collinear
    // normals typically separate two intersections, thus, subdivide
    // at all collinear normal's t values beforehand. This will cater
    // for tangent intersections, where two or more intersections are
    // infinitesimally close together.

    // TODO: evaluate effects of higher-than-second-order
    // tangencies. Sederberg et al. state that collinear normal
    // algorithm then degrades quickly.

    ::std::vector< ::std::pair<double,double> > results;
    ::std::back_insert_iterator< ::std::vector< ::std::pair<double, double> > > ii(results);

    Impl_calcCollinearNormals( ii, delta, 0, c1, c1, 0.0, 1.0, c2, c2, 0.0, 1.0 );

    // As Sederberg's collinear normal theorem is only sufficient, not
    // necessary for two intersections left and right, we've to test
    // all segments generated by the collinear normal algorithm
    // against each other. In other words, if the two curves are both
    // divided in a left and a right part, the collinear normal
    // theorem does _not_ state that the left part of curve 1 does not
    // e.g. intersect with the right part of curve 2.

    // divide c1 and c2 at collinear normal intersection points
    ::std::vector< Bezier > c1_segments( results.size()+1 );
    ::std::vector< Bezier > c2_segments( results.size()+1 );
    Bezier c1_remainder( c1 );
    Bezier c2_remainder( c2 );
    unsigned int i;
    for( i=0; i<results.size(); ++i )
    {
        Bezier c1_part2;
        Impl_deCasteljauAt( c1_segments[i], c1_part2, c1_remainder, results[i].first );
        c1_remainder = c1_part2;

        Bezier c2_part2;
        Impl_deCasteljauAt( c2_segments[i], c2_part2, c2_remainder, results[i].second );
        c2_remainder = c2_part2;
    }
    c1_segments[i] = c1_remainder;
    c2_segments[i] = c2_remainder;

    // now, c1/c2_segments contain all segments, then
    // clip every resulting segment against every other
    unsigned int c1_curr, c2_curr;
    for( c1_curr=0; c1_curr<c1_segments.size(); ++c1_curr )
    {
        for( c2_curr=0; c2_curr<c2_segments.size(); ++c2_curr )
        {
            if( c1_curr != c2_curr )
            {
                Impl_clipBezier_rec(result, delta, 0,
                                    c1_segments[c1_curr], c1_segments[c1_curr],
                                    0.0, 1.0,
                                    c2_segments[c2_curr], c2_segments[c2_curr],
                                    0.0, 1.0);
            }
        }
    }
#else
    Impl_applySafeRanges_rec( result, delta, BezierTangencyFunctor(), 0, c1, c1, 0.0, 1.0, c2, c2, 0.0, 1.0 );
    //Impl_applySafeRanges_rec( result, delta, ClipBezierFunctor(), 0, c1, c1, 0.0, 1.0, c2, c2, 0.0, 1.0 );
#endif
    // that's it, boys'n'girls!
}

int main(int argc, const char *argv[])
{
    double curr_Offset( 0 );
    unsigned int i,j,k;

    Bezier someCurves[] =
        {
//            {Point2D(0.0,0.0),Point2D(0.0,1.0),Point2D(1.0,1.0),Point2D(1.0,0.0)},
//            {Point2D(0.0,0.0),Point2D(0.0,1.0),Point2D(1.0,1.0),Point2D(1.0,0.5)},
//            {Point2D(1.0,0.0),Point2D(0.0,0.0),Point2D(0.0,1.0),Point2D(1.0,1.0)}
//            {Point2D(0.25+1,0.5),Point2D(0.25+1,0.708333),Point2D(0.423611+1,0.916667),Point2D(0.770833+1,0.980324)},
//            {Point2D(0.0+1,0.0),Point2D(0.0+1,1.0),Point2D(1.0+1,1.0),Point2D(1.0+1,0.5)}

// tangency1
//            {Point2D(0.627124+1,0.828427),Point2D(0.763048+1,0.828507),Point2D(0.885547+1,0.77312),Point2D(0.950692+1,0.67325)},
//            {Point2D(0.0,1.0),Point2D(0.1,1.0),Point2D(0.4,1.0),Point2D(0.5,1.0)}

//            {Point2D(0.0,0.0),Point2D(0.0,1.0),Point2D(1.0,1.0),Point2D(1.0,0.5)},
//            {Point2D(0.60114,0.933091),Point2D(0.69461,0.969419),Point2D(0.80676,0.992976),Point2D(0.93756,0.998663)}
//            {Point2D(1.0,0.0),Point2D(0.0,0.0),Point2D(0.0,1.0),Point2D(1.0,1.0)},
//            {Point2D(0.62712,0.828427),Point2D(0.76305,0.828507),Point2D(0.88555,0.77312),Point2D(0.95069,0.67325)}

// clipping1
//            {Point2D(0.0,0.0),Point2D(0.0,3.5),Point2D(1.0,-2.5),Point2D(1.0,1.0)},
//            {Point2D(0.0,1.0),Point2D(3.5,1.0),Point2D(-2.5,0.0),Point2D(1.0,0.0)}

// tangency2
//            {Point2D(0.0,1.0),Point2D(3.5,1.0),Point2D(-2.5,0.0),Point2D(1.0,0.0)},
//            {Point2D(15.3621,0.00986464),Point2D(15.3683,0.0109389),Point2D(15.3682,0.0109315),Point2D(15.3621,0.00986464)}

// tangency3
//            {Point2D(1.0,0.0),Point2D(0.0,0.0),Point2D(0.0,1.0),Point2D(1.0,1.0)},
//            {Point2D(-0.5,0.0),Point2D(0.5,0.0),Point2D(0.5,1.0),Point2D(-0.5,1.0)}

// tangency4
//            {Point2D(-0.5,0.0),Point2D(0.5,0.0),Point2D(0.5,1.0),Point2D(-0.5,1.0)},
//            {Point2D(0.26,0.4),Point2D(0.25,0.5),Point2D(0.25,0.5),Point2D(0.26,0.6)}

// tangency5
//            {Point2D(0.0,0.0),Point2D(0.0,3.5),Point2D(1.0,-2.5),Point2D(1.0,1.0)},
//            {Point2D(15.3621,0.00986464),Point2D(15.3683,0.0109389),Point2D(15.3682,0.0109315),Point2D(15.3621,0.00986464)}

// tangency6
//            {Point2D(0.0,0.0),Point2D(0.0,3.5),Point2D(1.0,-2.5),Point2D(1.0,1.0)},
//            {Point2D(15.3621,10.00986464),Point2D(15.3683,10.0109389),Point2D(15.3682,10.0109315),Point2D(15.3621,10.00986464)}

// tangency7
//            {Point2D(2.505,0.0),Point2D(2.505+4.915,4.300),Point2D(2.505+3.213,10.019),Point2D(2.505-2.505,10.255)},
//            {Point2D(15.3621,10.00986464),Point2D(15.3683,10.0109389),Point2D(15.3682,10.0109315),Point2D(15.3621,10.00986464)}

// tangency Sederberg example
            {Point2D(2.505,0.0),Point2D(2.505+4.915,4.300),Point2D(2.505+3.213,10.019),Point2D(2.505-2.505,10.255)},
            {Point2D(5.33+9.311,0.0),Point2D(5.33+9.311-13.279,4.205),Point2D(5.33+9.311-10.681,9.119),Point2D(5.33+9.311-2.603,10.254)}

// clipping2
//            {Point2D(-0.5,0.0),Point2D(0.5,0.0),Point2D(0.5,1.0),Point2D(-0.5,1.0)},
//            {Point2D(0.2575,0.4),Point2D(0.2475,0.5),Point2D(0.2475,0.5),Point2D(0.2575,0.6)}

//            {Point2D(0.0,0.1),Point2D(0.2,3.5),Point2D(1.0,-2.5),Point2D(1.1,1.2)},
//            {Point2D(0.0,1.0),Point2D(3.5,0.9),Point2D(-2.5,0.1),Point2D(1.1,0.2)}
//            {Point2D(0.0,0.1),Point2D(0.2,3.0),Point2D(1.0,-2.0),Point2D(1.1,1.2)},
//            {Point2D(0.627124+1,0.828427),Point2D(0.763048+1,0.828507),Point2D(0.885547+1,0.77312),Point2D(0.950692+1,0.67325)}
//            {Point2D(0.0,1.0),Point2D(3.0,0.9),Point2D(-2.0,0.1),Point2D(1.1,0.2)}
//            {Point2D(0.0,4.0),Point2D(0.1,5.0),Point2D(0.9,5.0),Point2D(1.0,4.0)},
//            {Point2D(0.0,0.0),Point2D(0.1,0.5),Point2D(0.9,0.5),Point2D(1.0,0.0)},
//            {Point2D(0.0,0.1),Point2D(0.1,1.5),Point2D(0.9,1.5),Point2D(1.0,0.1)},
//            {Point2D(0.0,-4.0),Point2D(0.1,-5.0),Point2D(0.9,-5.0),Point2D(1.0,-4.0)}
        };

    // output gnuplot setup
    cout << "#!/usr/bin/gnuplot -persist" << endl
         << "#" << endl
         << "# automatically generated by bezierclip, don't change!" << endl
         << "#" << endl
         << "set parametric" << endl
         << "bez(p,q,r,s,t) = p*(1-t)**3+q*3*(1-t)**2*t+r*3*(1-t)*t**2+s*t**3" << endl
         << "bezd(p,q,r,s,t) = 3*(q-p)*(1-t)**2+6*(r-q)*(1-t)*t+3*(s-r)*t**2" << endl
         << "pointmarkx(c,t) = c-0.03*t" << endl
         << "pointmarky(c,t) = c+0.03*t" << endl
         << "linex(a,b,c,t) = a*-c + t*-b" << endl
         << "liney(a,b,c,t) = b*-c + t*a" << endl << endl
         << "# end of setup" << endl << endl;

#ifdef WITH_CONVEXHULL_TEST
    // test convex hull algorithm
    const double convHull_xOffset( curr_Offset );
    curr_Offset += 20;
    cout << "# convex hull testing" << endl
         << "plot [t=0:1] ";
    for( i=0; i<sizeof(someCurves)/sizeof(Bezier); ++i )
    {
        Polygon2D aTestPoly(4);
        aTestPoly[0] = someCurves[i].p0;
        aTestPoly[1] = someCurves[i].p1;
        aTestPoly[2] = someCurves[i].p2;
        aTestPoly[3] = someCurves[i].p3;

        aTestPoly[0].x += convHull_xOffset;
        aTestPoly[1].x += convHull_xOffset;
        aTestPoly[2].x += convHull_xOffset;
        aTestPoly[3].x += convHull_xOffset;

        cout << " bez("
             << aTestPoly[0].x << ","
             << aTestPoly[1].x << ","
             << aTestPoly[2].x << ","
             << aTestPoly[3].x << ",t),bez("
             << aTestPoly[0].y << ","
             << aTestPoly[1].y << ","
             << aTestPoly[2].y << ","
             << aTestPoly[3].y << ",t), '-' using ($1):($2) title \"convex hull " << i << "\" with lp";

        if( i+1<sizeof(someCurves)/sizeof(Bezier) )
            cout << ",\\" << endl;
        else
            cout << endl;
    }
    for( i=0; i<sizeof(someCurves)/sizeof(Bezier); ++i )
    {
        Polygon2D aTestPoly(4);
        aTestPoly[0] = someCurves[i].p0;
        aTestPoly[1] = someCurves[i].p1;
        aTestPoly[2] = someCurves[i].p2;
        aTestPoly[3] = someCurves[i].p3;

        aTestPoly[0].x += convHull_xOffset;
        aTestPoly[1].x += convHull_xOffset;
        aTestPoly[2].x += convHull_xOffset;
        aTestPoly[3].x += convHull_xOffset;

        Polygon2D convHull( convexHull(aTestPoly) );

        for( k=0; k<convHull.size(); ++k )
        {
            cout << convHull[k].x << " " << convHull[k].y << endl;
        }
        cout << convHull[0].x << " " << convHull[0].y << endl;
        cout << "e" << endl;
    }
#endif

#ifdef WITH_MULTISUBDIVIDE_TEST
    // test convex hull algorithm
    const double multiSubdivide_xOffset( curr_Offset );
    curr_Offset += 20;
    cout << "# multi subdivide testing" << endl
         << "plot [t=0:1] ";
    for( i=0; i<sizeof(someCurves)/sizeof(Bezier); ++i )
    {
        Bezier c( someCurves[i] );
        Bezier c1_part1;
        Bezier c1_part2;
        Bezier c1_part3;

        c.p0.x += multiSubdivide_xOffset;
        c.p1.x += multiSubdivide_xOffset;
        c.p2.x += multiSubdivide_xOffset;
        c.p3.x += multiSubdivide_xOffset;

        const double t1( 0.1+i/(3.0*sizeof(someCurves)/sizeof(Bezier)) );
        const double t2( 0.9-i/(3.0*sizeof(someCurves)/sizeof(Bezier)) );

        // subdivide at t1
        Impl_deCasteljauAt( c1_part1, c1_part2, c, t1 );

        // subdivide at t2_c1. As we're working on
        // c1_part2 now, we have to adapt t2_c1 since
        // we're no longer in the original parameter
        // interval. This is based on the following
        // assumption: t2_new = (t2-t1)/(1-t1), which
        // relates the t2 value into the new parameter
        // range [0,1] of c1_part2.
        Impl_deCasteljauAt( c1_part1, c1_part3, c1_part2, (t2-t1)/(1.0-t1) );

        // subdivide at t2
        Impl_deCasteljauAt( c1_part3, c1_part2, c, t2 );

        cout << " bez("
             << c1_part1.p0.x << ","
             << c1_part1.p1.x << ","
             << c1_part1.p2.x << ","
             << c1_part1.p3.x << ",t), bez("
             << c1_part1.p0.y+0.01 << ","
             << c1_part1.p1.y+0.01 << ","
             << c1_part1.p2.y+0.01 << ","
             << c1_part1.p3.y+0.01 << ",t) title \"middle " << i << "\", "
             << " bez("
             << c1_part2.p0.x << ","
             << c1_part2.p1.x << ","
             << c1_part2.p2.x << ","
             << c1_part2.p3.x << ",t), bez("
             << c1_part2.p0.y << ","
             << c1_part2.p1.y << ","
             << c1_part2.p2.y << ","
             << c1_part2.p3.y << ",t) title \"right " << i << "\", "
             << " bez("
             << c1_part3.p0.x << ","
             << c1_part3.p1.x << ","
             << c1_part3.p2.x << ","
             << c1_part3.p3.x << ",t), bez("
             << c1_part3.p0.y << ","
             << c1_part3.p1.y << ","
             << c1_part3.p2.y << ","
             << c1_part3.p3.y << ",t) title \"left " << i << "\"";


        if( i+1<sizeof(someCurves)/sizeof(Bezier) )
            cout << ",\\" << endl;
        else
            cout << endl;
    }
#endif

#ifdef WITH_FATLINE_TEST
    // test fatline algorithm
    const double fatLine_xOffset( curr_Offset );
    curr_Offset += 20;
    cout << "# fat line testing" << endl
         << "plot [t=0:1] ";
    for( i=0; i<sizeof(someCurves)/sizeof(Bezier); ++i )
    {
        Bezier c( someCurves[i] );

        c.p0.x += fatLine_xOffset;
        c.p1.x += fatLine_xOffset;
        c.p2.x += fatLine_xOffset;
        c.p3.x += fatLine_xOffset;

        FatLine line;

        Impl_calcFatLine(line, c);

        cout << " bez("
             << c.p0.x << ","
             << c.p1.x << ","
             << c.p2.x << ","
             << c.p3.x << ",t), bez("
             << c.p0.y << ","
             << c.p1.y << ","
             << c.p2.y << ","
             << c.p3.y << ",t) title \"bezier " << i << "\", linex("
             << line.a << ","
             << line.b << ","
             << line.c << ",t), liney("
             << line.a << ","
             << line.b << ","
             << line.c << ",t) title \"fat line (center) on " << i << "\", linex("
             << line.a << ","
             << line.b << ","
             << line.c-line.dMin << ",t), liney("
             << line.a << ","
             << line.b << ","
             << line.c-line.dMin << ",t) title \"fat line (min) on " << i << "\", linex("
             << line.a << ","
             << line.b << ","
             << line.c-line.dMax << ",t), liney("
             << line.a << ","
             << line.b << ","
             << line.c-line.dMax << ",t) title \"fat line (max) on " << i << "\"";

        if( i+1<sizeof(someCurves)/sizeof(Bezier) )
            cout << ",\\" << endl;
        else
            cout << endl;
    }
#endif

#ifdef WITH_CALCFOCUS_TEST
    // test focus curve algorithm
    const double focus_xOffset( curr_Offset );
    curr_Offset += 20;
    cout << "# focus line testing" << endl
         << "plot [t=0:1] ";
    for( i=0; i<sizeof(someCurves)/sizeof(Bezier); ++i )
    {
        Bezier c( someCurves[i] );

        c.p0.x += focus_xOffset;
        c.p1.x += focus_xOffset;
        c.p2.x += focus_xOffset;
        c.p3.x += focus_xOffset;

        // calc focus curve
        Bezier focus;
        Impl_calcFocus(focus, c);

        cout << " bez("
             << c.p0.x << ","
             << c.p1.x << ","
             << c.p2.x << ","
             << c.p3.x << ",t), bez("
             << c.p0.y << ","
             << c.p1.y << ","
             << c.p2.y << ","
             << c.p3.y << ",t) title \"bezier " << i << "\", bez("
             << focus.p0.x << ","
             << focus.p1.x << ","
             << focus.p2.x << ","
             << focus.p3.x << ",t), bez("
             << focus.p0.y << ","
             << focus.p1.y << ","
             << focus.p2.y << ","
             << focus.p3.y << ",t) title \"focus " << i << "\"";


        if( i+1<sizeof(someCurves)/sizeof(Bezier) )
            cout << ",\\" << endl;
        else
            cout << endl;
    }
#endif

#ifdef WITH_SAFEPARAMBASE_TEST
    // test safe params base method
    double safeParamsBase_xOffset( curr_Offset );
    cout << "# safe param base method testing" << endl
         << "plot [t=0:1] ";
    for( i=0; i<sizeof(someCurves)/sizeof(Bezier); ++i )
    {
        Bezier c( someCurves[i] );

        c.p0.x += safeParamsBase_xOffset;
        c.p1.x += safeParamsBase_xOffset;
        c.p2.x += safeParamsBase_xOffset;
        c.p3.x += safeParamsBase_xOffset;

        Polygon2D poly(4);
        poly[0] = c.p0;
        poly[1] = c.p1;
        poly[2] = c.p2;
        poly[3] = c.p3;

        double t1, t2;

        sal_Bool bRet( Impl_calcSafeParams( t1, t2, poly, 0, 1 ) );

        Polygon2D convHull( convexHull( poly ) );

        cout << " bez("
             << poly[0].x << ","
             << poly[1].x << ","
             << poly[2].x << ","
             << poly[3].x << ",t),bez("
             << poly[0].y << ","
             << poly[1].y << ","
             << poly[2].y << ","
             << poly[3].y << ",t), "
             << "t+" << safeParamsBase_xOffset << ", 0, "
             << "t+" << safeParamsBase_xOffset << ", 1, ";
        if( bRet )
        {
            cout << t1+safeParamsBase_xOffset << ", t, "
                 << t2+safeParamsBase_xOffset << ", t, ";
        }
        cout << "'-' using ($1):($2) title \"control polygon\" with lp, "
             << "'-' using ($1):($2) title \"convex hull\" with lp";

        if( i+1<sizeof(someCurves)/sizeof(Bezier) )
            cout << ",\\" << endl;
        else
            cout << endl;

        safeParamsBase_xOffset += 2;
    }

    safeParamsBase_xOffset = curr_Offset;
    for( i=0; i<sizeof(someCurves)/sizeof(Bezier); ++i )
    {
        Bezier c( someCurves[i] );

        c.p0.x += safeParamsBase_xOffset;
        c.p1.x += safeParamsBase_xOffset;
        c.p2.x += safeParamsBase_xOffset;
        c.p3.x += safeParamsBase_xOffset;

        Polygon2D poly(4);
        poly[0] = c.p0;
        poly[1] = c.p1;
        poly[2] = c.p2;
        poly[3] = c.p3;

        double t1, t2;

        Impl_calcSafeParams( t1, t2, poly, 0, 1 );

        Polygon2D convHull( convexHull( poly ) );

        unsigned int k;
        for( k=0; k<poly.size(); ++k )
        {
            cout << poly[k].x << " " << poly[k].y << endl;
        }
        cout << poly[0].x << " " << poly[0].y << endl;
        cout << "e" << endl;

        for( k=0; k<convHull.size(); ++k )
        {
            cout << convHull[k].x << " " << convHull[k].y << endl;
        }
        cout << convHull[0].x << " " << convHull[0].y << endl;
        cout << "e" << endl;

        safeParamsBase_xOffset += 2;
    }
    curr_Offset += 20;
#endif

#ifdef WITH_SAFEPARAMS_TEST
    // test safe parameter range algorithm
    const double safeParams_xOffset( curr_Offset );
    curr_Offset += 20;
    cout << "# safe param range testing" << endl
         << "plot [t=0.0:1.0] ";
    for( i=0; i<sizeof(someCurves)/sizeof(Bezier); ++i )
    {
        for( j=i+1; j<sizeof(someCurves)/sizeof(Bezier); ++j )
        {
            Bezier c1( someCurves[i] );
            Bezier c2( someCurves[j] );

            c1.p0.x += safeParams_xOffset;
            c1.p1.x += safeParams_xOffset;
            c1.p2.x += safeParams_xOffset;
            c1.p3.x += safeParams_xOffset;
            c2.p0.x += safeParams_xOffset;
            c2.p1.x += safeParams_xOffset;
            c2.p2.x += safeParams_xOffset;
            c2.p3.x += safeParams_xOffset;

            double t1, t2;

            if( Impl_calcClipRange(t1, t2, c1, c1, c2, c2) )
            {
                // clip safe ranges off c1
                Bezier c1_part1;
                Bezier c1_part2;
                Bezier c1_part3;

                // subdivide at t1_c1
                Impl_deCasteljauAt( c1_part1, c1_part2, c1, t1 );
                // subdivide at t2_c1
                Impl_deCasteljauAt( c1_part1, c1_part3, c1_part2, (t2-t1)/(1.0-t1) );

                // output remaining segment (c1_part1)

                cout << " bez("
                     << c1.p0.x << ","
                     << c1.p1.x << ","
                     << c1.p2.x << ","
                     << c1.p3.x << ",t),bez("
                     << c1.p0.y << ","
                     << c1.p1.y << ","
                     << c1.p2.y << ","
                     << c1.p3.y << ",t), bez("
                     << c2.p0.x << ","
                     << c2.p1.x << ","
                     << c2.p2.x << ","
                     << c2.p3.x << ",t),bez("
                     << c2.p0.y << ","
                     << c2.p1.y << ","
                     << c2.p2.y << ","
                     << c2.p3.y << ",t), bez("
                     << c1_part1.p0.x << ","
                     << c1_part1.p1.x << ","
                     << c1_part1.p2.x << ","
                     << c1_part1.p3.x << ",t),bez("
                     << c1_part1.p0.y << ","
                     << c1_part1.p1.y << ","
                     << c1_part1.p2.y << ","
                     << c1_part1.p3.y << ",t)";

                if( i+2<sizeof(someCurves)/sizeof(Bezier) )
                    cout << ",\\" << endl;
                else
                    cout << endl;
            }
        }
    }
#endif

#ifdef WITH_SAFEPARAM_DETAILED_TEST
    // test safe parameter range algorithm
    const double safeParams2_xOffset( curr_Offset );
    curr_Offset += 20;
    if( sizeof(someCurves)/sizeof(Bezier) > 1 )
    {
        Bezier c1( someCurves[0] );
        Bezier c2( someCurves[1] );

        c1.p0.x += safeParams2_xOffset;
        c1.p1.x += safeParams2_xOffset;
        c1.p2.x += safeParams2_xOffset;
        c1.p3.x += safeParams2_xOffset;
        c2.p0.x += safeParams2_xOffset;
        c2.p1.x += safeParams2_xOffset;
        c2.p2.x += safeParams2_xOffset;
        c2.p3.x += safeParams2_xOffset;

        double t1, t2;

        // output happens here
        Impl_calcClipRange(t1, t2, c1, c1, c2, c2);
    }
#endif

#ifdef WITH_SAFEFOCUSPARAM_TEST
    // test safe parameter range from focus algorithm
    const double safeParamsFocus_xOffset( curr_Offset );
    curr_Offset += 20;
    cout << "# safe param range from focus testing" << endl
         << "plot [t=0.0:1.0] ";
    for( i=0; i<sizeof(someCurves)/sizeof(Bezier); ++i )
    {
        for( j=i+1; j<sizeof(someCurves)/sizeof(Bezier); ++j )
        {
            Bezier c1( someCurves[i] );
            Bezier c2( someCurves[j] );

            c1.p0.x += safeParamsFocus_xOffset;
            c1.p1.x += safeParamsFocus_xOffset;
            c1.p2.x += safeParamsFocus_xOffset;
            c1.p3.x += safeParamsFocus_xOffset;
            c2.p0.x += safeParamsFocus_xOffset;
            c2.p1.x += safeParamsFocus_xOffset;
            c2.p2.x += safeParamsFocus_xOffset;
            c2.p3.x += safeParamsFocus_xOffset;

            double t1, t2;

            Bezier focus;
#ifdef WITH_SAFEFOCUSPARAM_CALCFOCUS
#if 0
            {
                // clip safe ranges off c1_orig
                Bezier c1_part1;
                Bezier c1_part2;
                Bezier c1_part3;

                // subdivide at t1_c1
                Impl_deCasteljauAt( c1_part1, c1_part2, c2, 0.30204 );

                // subdivide at t2_c1. As we're working on
                // c1_part2 now, we have to adapt t2_c1 since
                // we're no longer in the original parameter
                // interval. This is based on the following
                // assumption: t2_new = (t2-t1)/(1-t1), which
                // relates the t2 value into the new parameter
                // range [0,1] of c1_part2.
                Impl_deCasteljauAt( c1_part1, c1_part3, c1_part2, (0.57151-0.30204)/(1.0-0.30204) );

                c2 = c1_part1;
                Impl_calcFocus( focus, c2 );
            }
#else
            Impl_calcFocus( focus, c2 );
#endif
#else
            focus = c2;
#endif
            // determine safe range on c1
            sal_Bool bRet( Impl_calcSafeParams_focus( t1, t2,
                                                  c1, focus ) );

            cerr << "t1: " << t1 << ", t2: " << t2 << endl;

            // clip safe ranges off c1
            Bezier c1_part1;
            Bezier c1_part2;
            Bezier c1_part3;

            // subdivide at t1_c1
            Impl_deCasteljauAt( c1_part1, c1_part2, c1, t1 );
            // subdivide at t2_c1
            Impl_deCasteljauAt( c1_part1, c1_part3, c1_part2, (t2-t1)/(1.0-t1) );

            // output remaining segment (c1_part1)

            cout << " bez("
                 << c1.p0.x << ","
                 << c1.p1.x << ","
                 << c1.p2.x << ","
                 << c1.p3.x << ",t),bez("
                 << c1.p0.y << ","
                 << c1.p1.y << ","
                 << c1.p2.y << ","
                 << c1.p3.y << ",t) title \"c1\", "
#ifdef WITH_SAFEFOCUSPARAM_CALCFOCUS
                 << "bez("
                 << c2.p0.x << ","
                 << c2.p1.x << ","
                 << c2.p2.x << ","
                 << c2.p3.x << ",t),bez("
                 << c2.p0.y << ","
                 << c2.p1.y << ","
                 << c2.p2.y << ","
                 << c2.p3.y << ",t) title \"c2\", "
                 << "bez("
                 << focus.p0.x << ","
                 << focus.p1.x << ","
                 << focus.p2.x << ","
                 << focus.p3.x << ",t),bez("
                 << focus.p0.y << ","
                 << focus.p1.y << ","
                 << focus.p2.y << ","
                 << focus.p3.y << ",t) title \"focus\"";
#else
                 << "bez("
                 << c2.p0.x << ","
                 << c2.p1.x << ","
                 << c2.p2.x << ","
                 << c2.p3.x << ",t),bez("
                 << c2.p0.y << ","
                 << c2.p1.y << ","
                 << c2.p2.y << ","
                 << c2.p3.y << ",t) title \"focus\"";
#endif
            if( bRet )
            {
                cout << ", bez("
                     << c1_part1.p0.x << ","
                     << c1_part1.p1.x << ","
                     << c1_part1.p2.x << ","
                     << c1_part1.p3.x << ",t),bez("
                     << c1_part1.p0.y+0.01 << ","
                     << c1_part1.p1.y+0.01 << ","
                     << c1_part1.p2.y+0.01 << ","
                     << c1_part1.p3.y+0.01 << ",t) title \"part\"";
            }

            if( i+2<sizeof(someCurves)/sizeof(Bezier) )
                cout << ",\\" << endl;
            else
                cout << endl;
        }
    }
#endif

#ifdef WITH_SAFEFOCUSPARAM_DETAILED_TEST
    // test safe parameter range algorithm
    const double safeParams3_xOffset( curr_Offset );
    curr_Offset += 20;
    if( sizeof(someCurves)/sizeof(Bezier) > 1 )
    {
        Bezier c1( someCurves[0] );
        Bezier c2( someCurves[1] );

        c1.p0.x += safeParams3_xOffset;
        c1.p1.x += safeParams3_xOffset;
        c1.p2.x += safeParams3_xOffset;
        c1.p3.x += safeParams3_xOffset;
        c2.p0.x += safeParams3_xOffset;
        c2.p1.x += safeParams3_xOffset;
        c2.p2.x += safeParams3_xOffset;
        c2.p3.x += safeParams3_xOffset;

        double t1, t2;

        Bezier focus;
#ifdef WITH_SAFEFOCUSPARAM_CALCFOCUS
        Impl_calcFocus( focus, c2 );
#else
        focus = c2;
#endif

        // determine safe range on c1, output happens here
        Impl_calcSafeParams_focus( t1, t2,
                                   c1, focus );
    }
#endif

#ifdef WITH_BEZIERCLIP_TEST
    ::std::vector< ::std::pair<double, double> >                                result;
    ::std::back_insert_iterator< ::std::vector< ::std::pair<double, double> > > ii(result);

    // test full bezier clipping
    const double bezierClip_xOffset( curr_Offset );
    curr_Offset += 20;
    cout << endl << endl << "# bezier clip testing" << endl
         << "plot [t=0:1] ";
    for( i=0; i<sizeof(someCurves)/sizeof(Bezier); ++i )
    {
        for( j=i+1; j<sizeof(someCurves)/sizeof(Bezier); ++j )
        {
            Bezier c1( someCurves[i] );
            Bezier c2( someCurves[j] );

            c1.p0.x += bezierClip_xOffset;
            c1.p1.x += bezierClip_xOffset;
            c1.p2.x += bezierClip_xOffset;
            c1.p3.x += bezierClip_xOffset;
            c2.p0.x += bezierClip_xOffset;
            c2.p1.x += bezierClip_xOffset;
            c2.p2.x += bezierClip_xOffset;
            c2.p3.x += bezierClip_xOffset;

            cout << " bez("
                 << c1.p0.x << ","
                 << c1.p1.x << ","
                 << c1.p2.x << ","
                 << c1.p3.x << ",t),bez("
                 << c1.p0.y << ","
                 << c1.p1.y << ","
                 << c1.p2.y << ","
                 << c1.p3.y << ",t), bez("
                 << c2.p0.x << ","
                 << c2.p1.x << ","
                 << c2.p2.x << ","
                 << c2.p3.x << ",t),bez("
                 << c2.p0.y << ","
                 << c2.p1.y << ","
                 << c2.p2.y << ","
                 << c2.p3.y << ",t), '-' using (bez("
                 << c1.p0.x << ","
                 << c1.p1.x << ","
                 << c1.p2.x << ","
                 << c1.p3.x
                 << ",$1)):(bez("
                 << c1.p0.y << ","
                 << c1.p1.y << ","
                 << c1.p2.y << ","
                 << c1.p3.y << ",$1)) title \"bezier " << i << " clipped against " << j << " (t on " << i << ")\", "
                 << " '-' using (bez("
                 << c2.p0.x << ","
                 << c2.p1.x << ","
                 << c2.p2.x << ","
                 << c2.p3.x
                 << ",$1)):(bez("
                 << c2.p0.y << ","
                 << c2.p1.y << ","
                 << c2.p2.y << ","
                 << c2.p3.y << ",$1)) title \"bezier " << i << " clipped against " << j << " (t on " << j << ")\"";

            if( i+2<sizeof(someCurves)/sizeof(Bezier) )
                cout << ",\\" << endl;
            else
                cout << endl;
        }
    }
    for( i=0; i<sizeof(someCurves)/sizeof(Bezier); ++i )
    {
        for( j=i+1; j<sizeof(someCurves)/sizeof(Bezier); ++j )
        {
            result.clear();
            Bezier c1( someCurves[i] );
            Bezier c2( someCurves[j] );

            c1.p0.x += bezierClip_xOffset;
            c1.p1.x += bezierClip_xOffset;
            c1.p2.x += bezierClip_xOffset;
            c1.p3.x += bezierClip_xOffset;
            c2.p0.x += bezierClip_xOffset;
            c2.p1.x += bezierClip_xOffset;
            c2.p2.x += bezierClip_xOffset;
            c2.p3.x += bezierClip_xOffset;

            clipBezier( ii, 0.00001, c1, c2 );

            for( k=0; k<result.size(); ++k )
            {
                cout << result[k].first << endl;
            }
            cout << "e" << endl;

            for( k=0; k<result.size(); ++k )
            {
                cout << result[k].second << endl;
            }
            cout << "e" << endl;
        }
    }
#endif

    return 0;
}