summaryrefslogtreecommitdiff
path: root/basegfx/source/polygon/b2dpolypolygonrasterconverter.cxx
blob: e0a4b58374614a7ff7d5db71c0d7d1e8c2681583 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*************************************************************************
 *
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * Copyright 2000, 2010 Oracle and/or its affiliates.
 *
 * OpenOffice.org - a multi-platform office productivity suite
 *
 * This file is part of OpenOffice.org.
 *
 * OpenOffice.org is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License version 3
 * only, as published by the Free Software Foundation.
 *
 * OpenOffice.org is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License version 3 for more details
 * (a copy is included in the LICENSE file that accompanied this code).
 *
 * You should have received a copy of the GNU Lesser General Public License
 * version 3 along with OpenOffice.org.  If not, see
 * <http://www.openoffice.org/license.html>
 * for a copy of the LGPLv3 License.
 *
 ************************************************************************/

#include <basegfx/polygon/b2dpolypolygonrasterconverter.hxx>

#include <basegfx/numeric/ftools.hxx>
#include <basegfx/polygon/b2dpolygon.hxx>
#include <basegfx/polygon/b2dpolygontools.hxx>
#include <basegfx/polygon/b2dpolypolygontools.hxx>

#include <boost/mem_fn.hpp>

#include <algorithm>

namespace basegfx
{
    class radixSort {

        //! public interface
        public:

            //! default constructor
            radixSort( void );

            //! destructor
            ~radixSort( void );

            bool sort( const float *pInput, sal_uInt32 nNumElements, sal_uInt32 dwStride );

            inline sal_uInt32 *indices( void ) const { return m_indices1; }

        //! private attributes
        private:

            // current size of index list
            sal_uInt32 m_current_size;

            // last known size of index list
            sal_uInt32 m_previous_size;

            // index lists
            sal_uInt32 *m_indices1;
            sal_uInt32 *m_indices2;

            sal_uInt32 m_counter[256*4];
            sal_uInt32 m_offset[256];

        //! private methods
        private:

            bool resize( sal_uInt32 nNumElements );
            inline void reset_indices( void );
            bool prepareCounters( const float *pInput, sal_uInt32 nNumElements, sal_uInt32 dwStride );
    };

    inline radixSort::radixSort( void ) {

        m_indices1 = NULL;
        m_indices2 = NULL;
        m_current_size = 0;
        m_previous_size = 0;

        reset_indices();
    }

    inline radixSort::~radixSort( void ) {

        delete [] m_indices2;
        delete [] m_indices1;
    }

    bool radixSort::resize( sal_uInt32 nNumElements ) {

        if(nNumElements==m_previous_size)
            return true;

        if(nNumElements > m_current_size) {

            // release index lists
            if(m_indices2)
                delete [] m_indices2;
            if(m_indices1)
                delete [] m_indices1;

            // allocate new index lists
            m_indices1 = new sal_uInt32[nNumElements];
            m_indices2 = new sal_uInt32[nNumElements];

            // check for out of memory situation
            if(!m_indices1 || !m_indices2) {
                delete [] m_indices1;
                delete [] m_indices2;
                m_indices1 = NULL;
                m_indices2 = NULL;
                m_current_size = 0;
                return false;
            }

            m_current_size = nNumElements;
        }

        m_previous_size = nNumElements;

        // initialize indices
        reset_indices();

        return true;
    }

    inline void radixSort::reset_indices( void ) {

        for(sal_uInt32 i=0;i<m_current_size;i++)
            m_indices1[i] = i;
    }

    bool radixSort::prepareCounters( const float *pInput, sal_uInt32 nNumElements, sal_uInt32 dwStride ) {

        // clear counters
        sal_uInt32 *ptr = m_counter;
        for(int i=0; i<64; ++i)
        {
            *ptr++ = 0;
            *ptr++ = 0;
            *ptr++ = 0;
            *ptr++ = 0;
            *ptr++ = 0;
            *ptr++ = 0;
            *ptr++ = 0;
            *ptr++ = 0;
            *ptr++ = 0;
            *ptr++ = 0;
            *ptr++ = 0;
            *ptr++ = 0;
            *ptr++ = 0;
            *ptr++ = 0;
            *ptr++ = 0;
            *ptr++ = 0;
        }

        // prepare pointers to relevant memory addresses
        sal_uInt8 *p = (sal_uInt8*)pInput;
        sal_uInt8 *pe = p+(nNumElements*dwStride);
        sal_uInt32 *h0= &m_counter[0];
        sal_uInt32 *h1= &m_counter[256];
        sal_uInt32 *h2= &m_counter[512];
        sal_uInt32 *h3= &m_counter[768];

        sal_uInt32 *Indices = m_indices1;
        float previous_value = *(float *)(((sal_uInt8 *)pInput)+(m_indices1[0]*dwStride));
        bool bSorted = true;
        while(p!=pe) {
            float value = *(float *)(((sal_uInt8 *)pInput)+((*Indices++)*dwStride));
            if(value<previous_value)    {
                bSorted = false;
                break;
            }
            previous_value = value;
            h0[*p++]++;
            h1[*p++]++;
            h2[*p++]++;
            h3[*p++]++;
            p += dwStride-4;
        }
        if(bSorted)
            return true;
        while(p!=pe) {
            h0[*p++]++;
            h1[*p++]++;
            h2[*p++]++;
            h3[*p++]++;
            p += dwStride-4;
        }
        return false;
    }

    bool radixSort::sort( const float *pInput, sal_uInt32 nNumElements, sal_uInt32 dwStride ) {

        if(!(pInput))
            return false;
        if(!(nNumElements))
            return false;
        if(!(resize(nNumElements)))
            return false;

        // prepare radix counters, return if already sorted
        if(prepareCounters(pInput,nNumElements,dwStride))
            return true;

        // count number of negative values
        sal_uInt32 num_negatives = 0;
        sal_uInt32 *h3= &m_counter[768];
        for(sal_uInt32 i=128;i<256;i++)
            num_negatives += h3[i];

        // perform passes, one for each byte
        for(sal_uInt32 j=0;j<4;j++) {

            // ignore this pass if all values have the same byte
            bool bRun = true;
            sal_uInt32 *current_counter = &m_counter[j<<8];
            sal_uInt8 unique_value = *(((sal_uInt8*)pInput)+j);
            if(current_counter[unique_value]==nNumElements)
                bRun=false;

            // does the incoming byte contain the sign bit?
            sal_uInt32 i;
            if(j!=3) {
                if(bRun) {
                    m_offset[0] = 0;
                    for(i=1;i<256;i++)
                        m_offset[i] = m_offset[i-1] + current_counter[i-1];
                    sal_uInt8 *InputBytes = (sal_uInt8 *)pInput;
                    sal_uInt32 *Indices = m_indices1;
                    sal_uInt32 *IndicesEnd = &m_indices1[nNumElements];
                    InputBytes += j;
                    while(Indices!=IndicesEnd) {
                        sal_uInt32 id = *Indices++;
                        m_indices2[m_offset[InputBytes[id*dwStride]]++] = id;
                    }
                    sal_uInt32 *Tmp = m_indices1;
                    m_indices1 = m_indices2;
                    m_indices2 = Tmp;
                }
            }
            else {
                if(bRun) {
                    m_offset[0] = num_negatives;
                    for(i=1;i<128;i++)
                        m_offset[i] = m_offset[i-1] + current_counter[i-1];
                    m_offset[255] = 0;
                    for(i=0;i<127;i++)
                        m_offset[254-i] = m_offset[255-i] + current_counter[255-i];
                    for(i=128;i<256;i++)
                        m_offset[i] += current_counter[i];
                    for(i=0;i<nNumElements;i++) {
                        sal_uInt32 Radix = (*(sal_uInt32 *)(((sal_uInt8 *)pInput)+(m_indices1[i]*dwStride)))>>24;
                        if(Radix<128) m_indices2[m_offset[Radix]++] = m_indices1[i];
                        else m_indices2[--m_offset[Radix]] = m_indices1[i];
                    }
                    sal_uInt32 *Tmp = m_indices1;
                    m_indices1 = m_indices2;
                    m_indices2 = Tmp;
                }
                else {
                    if(unique_value>=128) {
                        for(i=0;i<nNumElements;i++)
                            m_indices2[i] = m_indices1[nNumElements-i-1];
                        sal_uInt32 *Tmp = m_indices1;
                        m_indices1 = m_indices2;
                        m_indices2 = Tmp;
                    }
                }
            }
        }

        return true;
    }

    //************************************************************
    // Internal vertex storage of B2DPolyPolygonRasterConverter
    //************************************************************

    inline B2DPolyPolygonRasterConverter::Vertex::Vertex() :
        aP1(),
        aP2(),
        bDownwards( true )
    {
    }

    inline B2DPolyPolygonRasterConverter::Vertex::Vertex( const B2DPoint& rP1, const B2DPoint& rP2, bool bDown ) :
        aP1( rP1 ),
        aP2( rP2 ),
        bDownwards( bDown )
    {
    }


    //************************************************************
    // Helper class for holding horizontal line segments during raster
    // conversion
    //************************************************************

    namespace
    {
        class ImplLineNode
        {
        public:
            sal_Int32   mnYCounter;
            float       mfXPos;
            float       mfXDelta;
            bool        mbDownwards;

        public:
            /**rP1 and rP2 must not have equal y values, when rounded
               to integer!
            */
            ImplLineNode(const B2DPoint& rP1, const B2DPoint& rP2, bool bDown) :
                mnYCounter( fround(rP2.getY()) - fround(rP1.getY()) ),
                mfXPos( (float)(rP1.getX()) ),
                mfXDelta((float) ((rP2.getX() - rP1.getX()) / mnYCounter) ),
                mbDownwards( bDown )
            {
            }

            /// get current x position
            const float& getXPos() const
            {
                return mfXPos;
            }

            /// returns true, if line ends on this Y value
            float nextLine()
            {
                if(mnYCounter>=0)
                {
                    // go one step in Y
                    mfXPos += mfXDelta;
                    --mnYCounter;
                    return mfXDelta;
                }

                return 0.0f;
            }

            bool isEnded() const
            {
                return mnYCounter<=0;
            }

            bool isDownwards() const
            {
                return mbDownwards;
            }
        };
    }

    typedef ::std::vector<ImplLineNode> VectorOfLineNodes;


    //************************************************************
    //   Base2D PolyPolygon Raster Converter (Rasterizer)
    //************************************************************

    namespace
    {
        struct VertexComparator
        {
            bool operator()( const B2DPolyPolygonRasterConverter::Vertex& rLHS,
                             const B2DPolyPolygonRasterConverter::Vertex& rRHS )
            {
                return rLHS.aP1.getX() < rRHS.aP1.getX();
            }
        };
    }

    void B2DPolyPolygonRasterConverter::init()
    {
        if(!maPolyPolyRectangle.isEmpty())
        {
            const sal_Int32 nMinY( fround(maPolyPolyRectangle.getMinY()) );
            const sal_Int32 nScanlines(fround(maPolyPolyRectangle.getMaxY()) - nMinY);

            maScanlines.resize( nScanlines+1 );

            // add all polygons
            for( sal_uInt32 i(0), nCount(maPolyPolygon.count());
                 i < nCount;
                 ++i )
            {
                // add all vertices
                const B2DPolygon& rPoly( maPolyPolygon.getB2DPolygon(i) );
                for( sal_uInt32 k(0), nVertices(rPoly.count());
                     k<nVertices;
                     ++k )
                {
                    const B2DPoint& rP1( rPoly.getB2DPoint(k) );
                    const B2DPoint& rP2( rPoly.getB2DPoint( (k + 1) % nVertices ) );

                    const sal_Int32 nVertexYP1( fround(rP1.getY()) );
                    const sal_Int32 nVertexYP2( fround(rP2.getY()) );

                    // insert only vertices which are not strictly
                    // horizontal. Note that the ImplLineNode relies on
                    // this.
                    if(nVertexYP1 != nVertexYP2)
                    {
                        if( nVertexYP2 < nVertexYP1 )
                        {
                            const sal_Int32 nStartScanline(nVertexYP2 - nMinY);

                            // swap edges
                            maScanlines[ nStartScanline ].push_back( Vertex(rP2, rP1, false) );
                        }
                        else
                        {
                            const sal_Int32 nStartScanline(nVertexYP1 - nMinY);

                            maScanlines[ nStartScanline ].push_back( Vertex(rP1, rP2, true) );
                        }
                    }
                }
            }

            // now sort all scanlines, with increasing x coordinates
            VectorOfVertexVectors::iterator aIter( maScanlines.begin() );
            VectorOfVertexVectors::iterator aEnd( maScanlines.end() );
            while( aIter != aEnd )
            {
                ::std::sort( aIter->begin(),
                             aIter->end(),
                             VertexComparator() );
                ++aIter;
            }
        }
    }

    B2DPolyPolygonRasterConverter::B2DPolyPolygonRasterConverter( const B2DPolyPolygon& rPolyPoly ) :
        maPolyPolygon( rPolyPoly ),
        maPolyPolyRectangle( tools::getRange( rPolyPoly ) ),
        maScanlines()
    {
        init();
    }

    namespace
    {
        B2DRectangle getCombinedBounds( const B2DPolyPolygon& rPolyPolyRaster,
                                        const B2DRectangle&   rRasterArea )
        {
            B2DRectangle aRect( tools::getRange( rPolyPolyRaster ) );
            aRect.expand( rRasterArea );

            return aRect;
        }
    }

    B2DPolyPolygonRasterConverter::B2DPolyPolygonRasterConverter( const B2DPolyPolygon& rPolyPolyRaster,
                                                                  const B2DRectangle&   rRasterArea ) :
        maPolyPolygon( rPolyPolyRaster ),
        maPolyPolyRectangle(
            getCombinedBounds( rPolyPolyRaster,
                               rRasterArea ) ),
        maScanlines()
    {
        init();
    }

    B2DPolyPolygonRasterConverter::~B2DPolyPolygonRasterConverter()
    {
    }

    namespace
    {
        class LineNodeGenerator
        {
        public:
            LineNodeGenerator( VectorOfLineNodes& rActiveVertices ) :
                mrActiveVertices( rActiveVertices )
            {
            }

            void operator()( const B2DPolyPolygonRasterConverter::Vertex& rVertex )
            {
                mrActiveVertices.push_back( ImplLineNode(rVertex.aP1,
                                                         rVertex.aP2,
                                                         rVertex.bDownwards) );
            }

        private:
            VectorOfLineNodes& mrActiveVertices;
        };

        struct LineNodeComparator
        {
            bool operator()( const ImplLineNode& rLHS, const ImplLineNode& rRHS )
            {
                return rLHS.getXPos() < rRHS.getXPos();
            }
        };
    }

    void B2DPolyPolygonRasterConverter::rasterConvert( FillRule eFillRule )
    {
        if( maScanlines.empty() )
            return; // no scanlines at all -> bail out

        const sal_Int32 nMinY( fround(maPolyPolyRectangle.getMinY()) );
        const sal_Int32 nScanlines(fround(maPolyPolyRectangle.getMaxY()) - nMinY);

        // Vector of currently active vertices. A vertex is active, if
        // it crosses or touches the current scanline.
        VectorOfLineNodes   aActiveVertices;

        // mickey's optimized version...
        radixSort   rs;
        std::size_t nb(0);
        std::size_t nb_previous(0);
        bool        bSort(false);

        // process each scanline
        for( sal_Int32 y(0); y <= nScanlines; ++y )
        {
            // add vertices which start at current scanline into
            // active vertex vector
            ::std::for_each( maScanlines[y].begin(),
                             maScanlines[y].end(),
                             LineNodeGenerator( aActiveVertices ) );
            nb = aActiveVertices.size();
            if(nb != nb_previous)
            {
                nb_previous = nb;
                bSort = true;
            }

            // sort with increasing X
            if(bSort)
            {
                bSort = false;

                if( nb )
                {
                    rs.sort(&aActiveVertices[0].mfXPos,
                            nb,
                            sizeof(ImplLineNode));
                }
            }

            const std::size_t nLen( nb );
            if( !nLen )
            {
                // empty scanline - call derived with an 'off' span
                // for the full width
                span( maPolyPolyRectangle.getMinX(),
                      maPolyPolyRectangle.getMaxX(),
                      nMinY + y,
                      false );
            }
            else
            {
                const sal_Int32 nCurrY( nMinY + y );

                // scanline not empty - forward all scans to derived,
                // according to selected fill rule

                // TODO(P1): Maybe allow these 'off' span calls to be
                // switched off (or all 'on' span calls, depending on
                // use case scenario)

                // sorting didn't change the order of the elements
                // in memory but prepared a list of indices in sorted order.
                // thus we now process the nodes with an additional indirection.
                sal_uInt32 *sorted = rs.indices();

                // call derived with 'off' span for everything left of first active span
                if( aActiveVertices[sorted[0]].getXPos() > maPolyPolyRectangle.getMinX() )
                {
                    span( maPolyPolyRectangle.getMinX(),
                          aActiveVertices[sorted[0]].getXPos(),
                          nCurrY,
                          false );
                }

                switch( eFillRule )
                {
                    default:
                        OSL_FAIL("B2DPolyPolygonRasterConverter::rasterConvert(): Unexpected fill rule");
                        return;

                    case FillRule_EVEN_ODD:
                        // process each span in current scanline, with
                        // even-odd fill rule
                        for( ::std::size_t i(0), nLength(aActiveVertices.size());
                             i+1 < nLength;
                             ++i )
                        {
                            sal_uInt32 nIndex = sorted[i];
                            sal_uInt32 nNextIndex = sorted[i+1];
                            span( aActiveVertices[nIndex].getXPos(),
                                  aActiveVertices[nNextIndex].getXPos(),
                                  nCurrY,
                                  i % 2 == 0 );

                            float delta = aActiveVertices[nIndex].nextLine();
                            if(delta > 0.0f)
                            {
                                if(aActiveVertices[nIndex].getXPos() > aActiveVertices[nNextIndex].getXPos())
                                    bSort = true;
                            }
                            else if(delta < 0.0f)
                            {
                                if(i)
                                {
                                    sal_uInt32 nPrevIndex = sorted[i-1];
                                    if(aActiveVertices[nIndex].getXPos() < aActiveVertices[nPrevIndex].getXPos())
                                        bSort = true;
                                }
                            }
                        }
                        break;

                    case FillRule_NONZERO_WINDING_NUMBER:
                        // process each span in current scanline, with
                        // non-zero winding numbe fill rule
                        sal_Int32 nWindingNumber(0);
                        for( ::std::size_t i(0), nLength(aActiveVertices.size());
                             i+1 < nLength;
                             ++i )
                        {
                            sal_uInt32 nIndex = sorted[i];
                            sal_uInt32 nNextIndex = sorted[i+1];
                            nWindingNumber += -1 + 2*aActiveVertices[nIndex].isDownwards();

                            span( aActiveVertices[nIndex].getXPos(),
                                  aActiveVertices[nNextIndex].getXPos(),
                                  nCurrY,
                                  nWindingNumber != 0 );

                            float delta = aActiveVertices[nIndex].nextLine();
                            if(delta > 0.0f)
                            {
                                if(aActiveVertices[nIndex].getXPos() > aActiveVertices[nNextIndex].getXPos())
                                    bSort = true;
                            }
                            else if(delta < 0.0f)
                            {
                                if(i)
                                {
                                    sal_uInt32 nPrevIndex = sorted[i-1];
                                    if(aActiveVertices[nIndex].getXPos() < aActiveVertices[nPrevIndex].getXPos())
                                        bSort = true;
                                }
                            }
                        }
                        break;
                }

                // call derived with 'off' span for everything right of last active span
                if( aActiveVertices[sorted[nb-1]].getXPos()+1.0 < maPolyPolyRectangle.getMaxX() )
                {
                    span( aActiveVertices[sorted[nb-1]].getXPos()+1.0,
                          maPolyPolyRectangle.getMaxX(),
                          nCurrY,
                          false );
                }

                // also call nextLine on very last line node
                sal_uInt32 nIndex = sorted[nb-1];
                float delta = aActiveVertices[nIndex].nextLine();
                if(delta < 0.0f)
                {
                    if(nb)
                    {
                        sal_uInt32 nPrevIndex = sorted[nb-2];
                        if(aActiveVertices[nIndex].getXPos() < aActiveVertices[nPrevIndex].getXPos())
                            bSort = true;
                    }
                }
            }

            // remove line nodes which have ended on the current scanline
            aActiveVertices.erase( ::std::remove_if( aActiveVertices.begin(),
                                                     aActiveVertices.end(),
                                                     ::boost::mem_fn( &ImplLineNode::isEnded ) ),
                                   aActiveVertices.end() );
            nb = aActiveVertices.size();
            if(nb != nb_previous)
            {
                nb_previous = nb;
                bSort = true;
            }
        }
    }
}
// eof

/* vim:set shiftwidth=4 softtabstop=4 expandtab: */