summaryrefslogtreecommitdiff
path: root/basegfx/source/curve/b2dcubicbezier.cxx
blob: a221df17fb4436735326dfeef7c11c88d4e052bb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
/*************************************************************************
 *
 *  OpenOffice.org - a multi-platform office productivity suite
 *
 *  $RCSfile: b2dcubicbezier.cxx,v $
 *
 *  $Revision: 1.10 $
 *
 *  last change: $Author: rt $ $Date: 2005-09-07 20:40:27 $
 *
 *  The Contents of this file are made available subject to
 *  the terms of GNU Lesser General Public License Version 2.1.
 *
 *
 *    GNU Lesser General Public License Version 2.1
 *    =============================================
 *    Copyright 2005 by Sun Microsystems, Inc.
 *    901 San Antonio Road, Palo Alto, CA 94303, USA
 *
 *    This library is free software; you can redistribute it and/or
 *    modify it under the terms of the GNU Lesser General Public
 *    License version 2.1, as published by the Free Software Foundation.
 *
 *    This library is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *    Lesser General Public License for more details.
 *
 *    You should have received a copy of the GNU Lesser General Public
 *    License along with this library; if not, write to the Free Software
 *    Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 *    MA  02111-1307  USA
 *
 ************************************************************************/

#ifndef _BGFX_CURVE_B2DCUBICBEZIER_HXX
#include <basegfx/curve/b2dcubicbezier.hxx>
#endif

#ifndef _BGFX_VECTOR_B2DVECTOR_HXX
#include <basegfx/vector/b2dvector.hxx>
#endif

#ifndef _BGFX_POLYGON_B2DPOLYGON_HXX
#include <basegfx/polygon/b2dpolygon.hxx>
#endif

#ifndef _BGFX_NUMERIC_FTOOLS_HXX
#include <basegfx/numeric/ftools.hxx>
#endif

// #i37443#
#define FACTOR_FOR_UNSHARPEN    (1.6)
#ifdef DBG_UTIL
static double fMultFactUnsharpen = FACTOR_FOR_UNSHARPEN;
#endif

//////////////////////////////////////////////////////////////////////////////

namespace basegfx
{
    namespace
    {
        void ImpSubDiv(
            const B2DPoint& rfPA,           // start point
            const B2DPoint& rfEA,           // edge on A
            const B2DPoint& rfEB,           // edge on B
            const B2DPoint& rfPB,           // end point
            B2DPolygon& rTarget,            // target polygon
            double fAngleBound,             // angle bound in [0.0 .. 2PI]
            bool bAddLastPoint,             // should last point be added?
            bool bAllowUnsharpen,           // #i37443# allow the criteria to get unsharp in recursions
            sal_uInt16 nMaxRecursionDepth)  // endless loop protection
        {
            if(nMaxRecursionDepth)
            {
                // do angle test
                const B2DVector aLeft(rfEA - rfPA);
                const B2DVector aRight(rfEB - rfPB);
                const double fCurrentAngle(aLeft.angle(aRight));

                if(fabs(fCurrentAngle) > (F_PI - fAngleBound))
                {
                    // end recursion
                    nMaxRecursionDepth = 0;
                }
                else
                {
                    if(bAllowUnsharpen)
                    {
                        // #i37443# unsharpen criteria
#ifdef DBG_UTIL
                        fAngleBound *= fMultFactUnsharpen;
#else
                        fAngleBound *= FACTOR_FOR_UNSHARPEN;
#endif
                    }
                }
            }

            if(nMaxRecursionDepth)
            {
                // divide at 0.5
                const B2DPoint aS1L(average(rfPA, rfEA));
                const B2DPoint aS1C(average(rfEA, rfEB));
                const B2DPoint aS1R(average(rfEB, rfPB));
                const B2DPoint aS2L(average(aS1L, aS1C));
                const B2DPoint aS2R(average(aS1C, aS1R));
                const B2DPoint aS3C(average(aS2L, aS2R));

                // left recursion
                ImpSubDiv(rfPA, aS1L, aS2L, aS3C, rTarget, fAngleBound,
                    bAddLastPoint, bAllowUnsharpen, nMaxRecursionDepth - 1);

                // right recursion
                ImpSubDiv(aS3C, aS2R, aS1R, rfPB, rTarget, fAngleBound,
                    bAddLastPoint, bAllowUnsharpen, nMaxRecursionDepth - 1);
            }
            else
            {
                // add points
                rTarget.append(rfPA);

                if(bAddLastPoint)
                {
                    rTarget.append(rfPB);
                }
            }
        }

        void ImpSubDivStart(
            const B2DPoint& rfPA,           // start point
            const B2DPoint& rfEA,           // edge on A
            const B2DPoint& rfEB,           // edge on B
            const B2DPoint& rfPB,           // end point
            B2DPolygon& rTarget,            // target polygon
            const double& rfAngleBound,     // angle bound in [0.0 .. 2PI]
            bool bAddLastPoint,             // should last point be added?
            bool bAllowUnsharpen)           // #i37443# allow the criteria to get unsharp in recursions
        {
            sal_uInt16 nMaxRecursionDepth(8);
            const B2DVector aLeft(rfEA - rfPA);
            const B2DVector aRight(rfEB - rfPB);
            bool bLeftEqualZero(aLeft.equalZero());
            bool bRightEqualZero(aRight.equalZero());
            bool bAllParallel(false);

            if(bLeftEqualZero && bRightEqualZero)
            {
                nMaxRecursionDepth = 0;
            }
            else
            {
                const B2DVector aBase(rfPB - rfPA);
                const bool bBaseEqualZero(aLeft.equalZero());

                if(!bBaseEqualZero)
                {
                    const bool bLeftParallel(bLeftEqualZero ? true : areParallel(aLeft, aBase));
                    const bool bRightParallel(bRightEqualZero ? true : areParallel(aRight, aBase));

                    if(bLeftParallel && bRightParallel)
                    {
                        bAllParallel = true;

                        if(!bLeftEqualZero)
                        {
                            double fFactor;

                            if(fabs(aBase.getX()) > fabs(aBase.getY()))
                            {
                                fFactor = aLeft.getX() / aBase.getX();
                            }
                            else
                            {
                                fFactor = aLeft.getY() / aBase.getY();
                            }

                            if(fFactor >= 0.0 && fFactor <= 1.0)
                            {
                                bLeftEqualZero = true;
                            }
                        }

                        if(!bRightEqualZero)
                        {
                            double fFactor;

                            if(fabs(aBase.getX()) > fabs(aBase.getY()))
                            {
                                fFactor = aRight.getX() / -aBase.getX();
                            }
                            else
                            {
                                fFactor = aRight.getY() / -aBase.getY();
                            }

                            if(fFactor >= 0.0 && fFactor <= 1.0)
                            {
                                bRightEqualZero = true;
                            }
                        }

                        if(bLeftEqualZero && bRightEqualZero)
                        {
                            nMaxRecursionDepth = 0;
                        }
                    }
                }
            }

            if(nMaxRecursionDepth)
            {
                // divide at 0.5 ad test both edges for angle criteria
                const B2DPoint aS1L(average(rfPA, rfEA));
                const B2DPoint aS1C(average(rfEA, rfEB));
                const B2DPoint aS1R(average(rfEB, rfPB));
                const B2DPoint aS2L(average(aS1L, aS1C));
                const B2DPoint aS2R(average(aS1C, aS1R));
                const B2DPoint aS3C(average(aS2L, aS2R));

                // test left
                bool bAngleIsSmallerLeft(bAllParallel && bLeftEqualZero);
                if(!bAngleIsSmallerLeft)
                {
                    const B2DVector aLeftLeft(aS1L - rfPA);
                    const B2DVector aRightLeft(aS2L - aS3C);
                    const double fCurrentAngleLeft(aLeftLeft.angle(aRightLeft));
                    bAngleIsSmallerLeft = (fabs(fCurrentAngleLeft) > (F_PI - rfAngleBound));
                }

                // test right
                bool bAngleIsSmallerRight(bAllParallel && bRightEqualZero);
                if(!bAngleIsSmallerRight)
                {
                    const B2DVector aLeftRight(aS2R - aS3C);
                    const B2DVector aRightRight(aS1R - rfPB);
                    const double fCurrentAngleRight(aLeftRight.angle(aRightRight));
                    bAngleIsSmallerRight = (fabs(fCurrentAngleRight) > (F_PI - rfAngleBound));
                }

                if(bAngleIsSmallerLeft && bAngleIsSmallerRight)
                {
                    // no recursion necessary at all
                    nMaxRecursionDepth = 0;
                }
                else
                {
                    // left
                    if(bAngleIsSmallerLeft)
                    {
                        rTarget.append(rfPA);
                        if(bAddLastPoint)
                        {
                            rTarget.append(aS3C);
                        }
                    }
                    else
                    {
                        ImpSubDiv(rfPA, aS1L, aS2L, aS3C, rTarget, rfAngleBound,
                            bAddLastPoint, bAllowUnsharpen, nMaxRecursionDepth);
                    }

                    // right
                    if(bAngleIsSmallerRight)
                    {
                        rTarget.append(aS3C);
                        if(bAddLastPoint)
                        {
                            rTarget.append(rfPB);
                        }
                    }
                    else
                    {
                        ImpSubDiv(aS3C, aS2R, aS1R, rfPB, rTarget, rfAngleBound,
                            bAddLastPoint, bAllowUnsharpen, nMaxRecursionDepth);
                    }
                }
            }

            if(!nMaxRecursionDepth)
            {
                rTarget.append(rfPA);
                if(bAddLastPoint)
                {
                    rTarget.append(rfPB);
                }
            }
        }
    } // end of anonymous namespace
} // end of namespace basegfx

//////////////////////////////////////////////////////////////////////////////

namespace basegfx
{
    B2DCubicBezier::B2DCubicBezier(const B2DCubicBezier& rBezier)
    :   maStartPoint(rBezier.maStartPoint),
        maEndPoint(rBezier.maEndPoint),
        maControlPointA(rBezier.maControlPointA),
        maControlPointB(rBezier.maControlPointB)
    {
    }

    B2DCubicBezier::B2DCubicBezier()
    {
    }

    B2DCubicBezier::B2DCubicBezier(const B2DPoint& rStart, const B2DPoint& rEnd)
    :   maStartPoint(rStart),
        maEndPoint(rEnd),
        maControlPointA(rStart),
        maControlPointB(rEnd)
    {
    }

    B2DCubicBezier::B2DCubicBezier(const B2DPoint& rStart, const B2DPoint& rControlPointA,
        const B2DPoint& rControlPointB, const B2DPoint& rEnd)
    :   maStartPoint(rStart),
        maEndPoint(rEnd),
        maControlPointA(rControlPointA),
        maControlPointB(rControlPointB)
    {
    }

    B2DCubicBezier::~B2DCubicBezier()
    {
    }

    // assignment operator
    B2DCubicBezier& B2DCubicBezier::operator=(const B2DCubicBezier& rBezier)
    {
        maStartPoint = rBezier.maStartPoint;
        maEndPoint = rBezier.maEndPoint;
        maControlPointA = rBezier.maControlPointA;
        maControlPointB = rBezier.maControlPointB;

        return *this;
    }

    // compare operators
    bool B2DCubicBezier::operator==(const B2DCubicBezier& rBezier) const
    {
        return (
            maStartPoint == rBezier.maStartPoint
            && maEndPoint == rBezier.maEndPoint
            && maControlPointA == rBezier.maControlPointA
            && maControlPointB == rBezier.maControlPointB
        );
    }

    bool B2DCubicBezier::operator!=(const B2DCubicBezier& rBezier) const
    {
        return (
            maStartPoint != rBezier.maStartPoint
            || maEndPoint != rBezier.maEndPoint
            || maControlPointA != rBezier.maControlPointA
            || maControlPointB != rBezier.maControlPointB
        );
    }

    // test if vectors are used
    bool B2DCubicBezier::isBezier() const
    {
        if(maControlPointA != maStartPoint || maControlPointB != maEndPoint)
        {
            return true;
        }

        return false;
    }

    void B2DCubicBezier::testAndSolveTrivialBezier()
    {
        // TODO
    }

    double B2DCubicBezier::getEdgeLength() const
    {
        const B2DVector aEdge(maEndPoint - maStartPoint);
        return aEdge.getLength();
    }

    double B2DCubicBezier::getControlPolygonLength() const
    {
        const B2DVector aVectorA(maControlPointA - maStartPoint);
        const B2DVector aVectorB(maEndPoint - maControlPointB);
        const B2DVector aTop(maControlPointB - maControlPointA);
        return (aVectorA.getLength() + aVectorB.getLength() + aTop.getLength());
    }

    void B2DCubicBezier::adaptiveSubdivideByAngle(B2DPolygon& rTarget, double fAngleBound,
        bool bAddLastPoint, bool bAllowUnsharpen) const
    {
        // use support method #i37443# and allow unsharpen the criteria
        ImpSubDivStart(maStartPoint, maControlPointA, maControlPointB, maEndPoint,
            rTarget, fAngleBound * F_PI180, bAddLastPoint, bAllowUnsharpen);
    }

    // #i37443# adaptive subdivide by nCount subdivisions
    void B2DCubicBezier::adaptiveSubdivideByCount(B2DPolygon& rTarget, sal_uInt32 nCount, bool bAddLastPoint) const
    {
        rTarget.append(maStartPoint);

        if(nCount)
        {
            for(sal_uInt32 a(0L); a < nCount; a++)
            {
                const double fPos(double(a + 1L) / double(nCount + 1L));
                const B2DPoint aS1L(interpolate(maStartPoint, maControlPointA, fPos));
                const B2DPoint aS1C(interpolate(maControlPointA, maControlPointB, fPos));
                const B2DPoint aS1R(interpolate(maControlPointB, maEndPoint, fPos));
                const B2DPoint aS2L(interpolate(aS1L, aS1C, fPos));
                const B2DPoint aS2R(interpolate(aS1C, aS1R, fPos));
                const B2DPoint aS3C(interpolate(aS2L, aS2R, fPos));
                rTarget.append(aS3C);
            }
        }

        if(bAddLastPoint)
        {
            rTarget.append(maEndPoint);
        }
    }
} // end of namespace basegfx

// eof