summaryrefslogtreecommitdiff
path: root/agg/inc/agg_trans_affine.h
blob: 5a4098f904ded72bca5cae9671d3fb4d56e9c23b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.3
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
//          mcseemagg@yahoo.com
//          http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Affine transformation classes.
//
//----------------------------------------------------------------------------
#ifndef AGG_TRANS_AFFINE_INCLUDED
#define AGG_TRANS_AFFINE_INCLUDED

#include <math.h>
#include "agg_basics.h"

namespace agg
{
    const double affine_epsilon = 1e-14; // About of precision of doubles

    //============================================================trans_affine
    //
    // See Implementation agg_trans_affine.cpp
    //
    // Affine transformation are linear transformations in Cartesian coordinates
    // (strictly speaking not only in Cartesian, but for the beginning we will
    // think so). They are rotation, scaling, translation and skewing.
    // After any affine transformation a line segment remains a line segment
    // and it will never become a curve.
    //
    // There will be no math about matrix calculations, since it has been
    // described many times. Ask yourself a very simple question:
    // "why do we need to understand and use some matrix stuff instead of just
    // rotating, scaling and so on". The answers are:
    //
    // 1. Any combination of transformations can be done by only 4 multiplications
    //    and 4 additions in floating point.
    // 2. One matrix transformation is equivalent to the number of consecutive
    //    discrete transformations, i.e. the matrix "accumulates" all transformations
    //    in the order of their settings. Suppose we have 4 transformations:
    //       * rotate by 30 degrees,
    //       * scale X to 2.0,
    //       * scale Y to 1.5,
    //       * move to (100, 100).
    //    The result will depend on the order of these transformations,
    //    and the advantage of matrix is that the sequence of discret calls:
    //    rotate(30), scaleX(2.0), scaleY(1.5), move(100,100)
    //    will have exactly the same result as the following matrix transformations:
    //
    //    affine_matrix m;
    //    m *= rotate_matrix(30);
    //    m *= scaleX_matrix(2.0);
    //    m *= scaleY_matrix(1.5);
    //    m *= move_matrix(100,100);
    //
    //    m.transform_my_point_at_last(x, y);
    //
    // What is the good of it? In real life we will set-up the matrix only once
    // and then transform many points, let alone the convenience to set any
    // combination of transformations.
    //
    // So, how to use it? Very easy - literally as it's shown above. Not quite,
    // let us write a correct example:
    //
    // agg::trans_affine m;
    // m *= agg::trans_affine_rotation(30.0 * 3.1415926 / 180.0);
    // m *= agg::trans_affine_scaling(2.0, 1.5);
    // m *= agg::trans_affine_translation(100.0, 100.0);
    // m.transform(&x, &y);
    //
    // The affine matrix is all you need to perform any linear transformation,
    // but all transformations have origin point (0,0). It means that we need to
    // use 2 translations if we want to rotate someting around (100,100):
    //
    // m *= agg::trans_affine_translation(-100.0, -100.0);         // move to (0,0)
    // m *= agg::trans_affine_rotation(30.0 * 3.1415926 / 180.0);  // rotate
    // m *= agg::trans_affine_translation(100.0, 100.0);           // move back to (100,100)
    //----------------------------------------------------------------------
    class trans_affine
    {
    public:
        //------------------------------------------ Construction
        // Construct an identity matrix - it does not transform anything
        trans_affine() :
            m0(1.0), m1(0.0), m2(0.0), m3(1.0), m4(0.0), m5(0.0)
        {}

        // Construct a custom matrix. Usually used in derived classes
        trans_affine(double v0, double v1, double v2, double v3, double v4, double v5) :
            m0(v0), m1(v1), m2(v2), m3(v3), m4(v4), m5(v5)
        {}

        // Construct a matrix to transform a parallelogram to another one.
        trans_affine(const double* rect, const double* parl)
        {
            parl_to_parl(rect, parl);
        }

        // Construct a matrix to transform a rectangle to a parallelogram.
        trans_affine(double x1, double y1, double x2, double y2,
                     const double* parl)
        {
            rect_to_parl(x1, y1, x2, y2, parl);
        }

        // Construct a matrix to transform a parallelogram to a rectangle.
        trans_affine(const double* parl,
                     double x1, double y1, double x2, double y2)
        {
            parl_to_rect(parl, x1, y1, x2, y2);
        }


        //---------------------------------- Parellelogram transformations
        // Calculate a matrix to transform a parallelogram to another one.
        // src and dst are pointers to arrays of three points
        // (double[6], x,y,...) that identify three corners of the
        // parallelograms assuming implicit fourth points.
        // There are also transformations rectangtle to parallelogram and
        // parellelogram to rectangle
        const trans_affine& parl_to_parl(const double* src,
                                         const double* dst);

        const trans_affine& rect_to_parl(double x1, double y1,
                                         double x2, double y2,
                                         const double* parl);

        const trans_affine& parl_to_rect(const double* parl,
                                         double x1, double y1,
                                         double x2, double y2);


        //------------------------------------------ Operations
        // Reset - actually load an identity matrix
        const trans_affine& reset();

        // Multiply matrix to another one
        const trans_affine& multiply(const trans_affine& m);

        // Multiply "m" to "this" and assign the result to "this"
        const trans_affine& premultiply(const trans_affine& m);

        // Invert matrix. Do not try to invert degenerate matrices,
        // there's no check for validity. If you set scale to 0 and
        // then try to invert matrix, expect unpredictable result.
        const trans_affine& invert();

        // Mirroring around X
        const trans_affine& flip_x();

        // Mirroring around Y
        const trans_affine& flip_y();

        //------------------------------------------- Load/Store
        // Store matrix to an array [6] of double
        void store_to(double* m) const
        {
            *m++ = m0; *m++ = m1; *m++ = m2; *m++ = m3; *m++ = m4; *m++ = m5;
        }

        // Load matrix from an array [6] of double
        const trans_affine& load_from(const double* m)
        {
            m0 = *m++; m1 = *m++; m2 = *m++; m3 = *m++; m4 = *m++;  m5 = *m++;
            return *this;
        }

        //------------------------------------------- Operators

        // Multiply current matrix to another one
        const trans_affine& operator *= (const trans_affine& m)
        {
            return multiply(m);
        }

        // Multiply current matrix to another one and return
        // the result in a separete matrix.
        trans_affine operator * (const trans_affine& m)
        {
            return trans_affine(*this).multiply(m);
        }

        // Calculate and return the inverse matrix
        trans_affine operator ~ () const
        {
            trans_affine ret = *this;
            return ret.invert();
        }

        // Equal operator with default epsilon
        bool operator == (const trans_affine& m) const
        {
            return is_equal(m, affine_epsilon);
        }

        // Not Equal operator with default epsilon
        bool operator != (const trans_affine& m) const
        {
            return !is_equal(m, affine_epsilon);
        }

        //-------------------------------------------- Transformations
        // Direct transformation x and y
        void transform(double* x, double* y) const;

        // Inverse transformation x and y. It works slower than the
        // direct transformation, so if the performance is critical
        // it's better to invert() the matrix and then use transform()
        void inverse_transform(double* x, double* y) const;

        //-------------------------------------------- Auxiliary
        // Calculate the determinant of matrix
        double determinant() const
        {
            return 1.0 / (m0 * m3 - m1 * m2);
        }

        // Get the average scale (by X and Y).
        // Basically used to calculate the approximation_scale when
        // decomposinting curves into line segments.
        double scale() const;

        // Check to see if it's an identity matrix
        bool is_identity(double epsilon = affine_epsilon) const;

        // Check to see if two matrices are equal
        bool is_equal(const trans_affine& m, double epsilon = affine_epsilon) const;

        // Determine the major parameters. Use carefully considering degenerate matrices
        double rotation() const;
        void   translation(double* dx, double* dy) const;
        void   scaling(double* sx, double* sy) const;
        void   scaling_abs(double* sx, double* sy) const
        {
            *sx = sqrt(m0*m0 + m2*m2);
            *sy = sqrt(m1*m1 + m3*m3);
        }

    private:
        double m0;
        double m1;
        double m2;
        double m3;
        double m4;
        double m5;
    };

    //------------------------------------------------------------------------
    inline void trans_affine::transform(double* x, double* y) const
    {
        register double tx = *x;
        *x = tx * m0 + *y * m2 + m4;
        *y = tx * m1 + *y * m3 + m5;
    }

    //------------------------------------------------------------------------
    inline void trans_affine::inverse_transform(double* x, double* y) const
    {
        register double d = determinant();
        register double a = (*x - m4) * d;
        register double b = (*y - m5) * d;
        *x = a * m3 - b * m2;
        *y = b * m0 - a * m1;
    }

    //------------------------------------------------------------------------
    inline double trans_affine::scale() const
    {
        double x = 0.707106781 * m0 + 0.707106781 * m2;
        double y = 0.707106781 * m1 + 0.707106781 * m3;
        return sqrt(x*x + y*y);
    }


    //------------------------------------------------------------------------
    inline const trans_affine& trans_affine::premultiply(const trans_affine& m)
    {
        trans_affine t = m;
        return *this = t.multiply(*this);
    }


    //====================================================trans_affine_rotation
    // Rotation matrix. sin() and cos() are calculated twice for the same angle.
    // There's no harm because the performance of sin()/cos() is very good on all
    // modern processors. Besides, this operation is not going to be invoked too
    // often.
    class trans_affine_rotation : public trans_affine
    {
    public:
        trans_affine_rotation(double a) :
          trans_affine(cos(a), sin(a), -sin(a), cos(a), 0.0, 0.0)
        {}
    };

    //====================================================trans_affine_scaling
    // Scaling matrix. sx, sy - scale coefficients by X and Y respectively
    class trans_affine_scaling : public trans_affine
    {
    public:
        trans_affine_scaling(double sx, double sy) :
          trans_affine(sx, 0.0, 0.0, sy, 0.0, 0.0)
        {}

        trans_affine_scaling(double s) :
          trans_affine(s, 0.0, 0.0, s, 0.0, 0.0)
        {}
    };

    //================================================trans_affine_translation
    // Translation matrix
    class trans_affine_translation : public trans_affine
    {
    public:
        trans_affine_translation(double tx, double ty) :
          trans_affine(1.0, 0.0, 0.0, 1.0, tx, ty)
        {}
    };

    //====================================================trans_affine_skewing
    // Sckewing (shear) matrix
    class trans_affine_skewing : public trans_affine
    {
    public:
        trans_affine_skewing(double sx, double sy) :
          trans_affine(1.0, tan(sy), tan(sx), 1.0, 0.0, 0.0)
        {}
    };



}


#endif