summaryrefslogtreecommitdiff
path: root/agg/inc/agg_span_gradient.h
blob: 6bac1c652a8479d4b81c8b639fb48cc8ba930f1c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.3
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
//          mcseemagg@yahoo.com
//          http://www.antigrain.com
//----------------------------------------------------------------------------

#ifndef AGG_SPAN_GRADIENT_INCLUDED
#define AGG_SPAN_GRADIENT_INCLUDED

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "agg_basics.h"
#include "agg_span_generator.h"
#include "agg_math.h"
#include "agg_array.h"


namespace agg
{

    enum
    {
        gradient_subpixel_shift = 4,                              //-----gradient_subpixel_shift
        gradient_subpixel_size  = 1 << gradient_subpixel_shift,   //-----gradient_subpixel_size
        gradient_subpixel_mask  = gradient_subpixel_size - 1      //-----gradient_subpixel_mask
    };



    //==========================================================span_gradient
    template<class ColorT,
             class Interpolator,
             class GradientF,
             class ColorF,
             class Allocator = span_allocator<ColorT> >
    class span_gradient : public span_generator<ColorT, Allocator>
    {
    public:
        typedef Interpolator interpolator_type;
        typedef Allocator alloc_type;
        typedef ColorT color_type;
        typedef span_generator<color_type, alloc_type> base_type;

        enum
        {
            downscale_shift = interpolator_type::subpixel_shift -
                              gradient_subpixel_shift
        };

        //--------------------------------------------------------------------
        span_gradient(alloc_type& alloc) : base_type(alloc) {}

        //--------------------------------------------------------------------
        span_gradient(alloc_type& alloc,
                      interpolator_type& inter,
                      const GradientF& gradient_function_,
                      const ColorF& color_function_,
                      double d1_, double d2_) :
            base_type(alloc),
            m_interpolator(&inter),
            m_gradient_function(&gradient_function_),
            m_color_function(&color_function_),
            m_d1(int(d1_ * gradient_subpixel_size)),
            m_d2(int(d2_ * gradient_subpixel_size))
        {}

        //--------------------------------------------------------------------
        interpolator_type& interpolator() { return *m_interpolator; }
        const GradientF& gradient_function() const { return *m_gradient_function; }
        const ColorF& color_function() const { return *m_color_function; }
        double d1() const { return double(m_d1) / gradient_subpixel_size; }
        double d2() const { return double(m_d2) / gradient_subpixel_size; }

        //--------------------------------------------------------------------
        void interpolator(interpolator_type& i) { m_interpolator = &i; }
        void gradient_function(const GradientF& gf) { m_gradient_function = &gf; }
        void color_function(const ColorF& cf) { m_color_function = &cf; }
        void d1(double v) { m_d1 = int(v * gradient_subpixel_size); }
        void d2(double v) { m_d2 = int(v * gradient_subpixel_size); }

        //--------------------------------------------------------------------
        color_type* generate(int x, int y, unsigned len)
        {
            color_type* span = base_type::allocator().span();
            int dd = m_d2 - m_d1;
            if(dd < 1) dd = 1;
            m_interpolator->begin(x+0.5, y+0.5, len);
            do
            {
                m_interpolator->coordinates(&x, &y);
                int d = m_gradient_function->calculate(x >> downscale_shift,
                                                       y >> downscale_shift, dd);
                d = ((d - m_d1) * (int)m_color_function->size()) / dd;
                if(d < 0) d = 0;
                if(d >= (int)m_color_function->size()) d = m_color_function->size() - 1;
                *span++ = (*m_color_function)[d];
                ++(*m_interpolator);
            }
            while(--len);
            return base_type::allocator().span();
        }

    private:
        interpolator_type* m_interpolator;
        const GradientF*   m_gradient_function;
        const ColorF*      m_color_function;
        int                m_d1;
        int                m_d2;
    };




    //=====================================================gradient_linear_color
    template<class ColorT>
    struct gradient_linear_color
    {
        typedef ColorT color_type;

        gradient_linear_color() {}
        gradient_linear_color(const color_type& c1, const color_type& c2,
                              unsigned size = 256) :
            m_c1(c1), m_c2(c2), m_size(size) {}

        unsigned size() const { return m_size; }
        color_type operator [] (unsigned v) const
        {
            return m_c1.gradient(m_c2, double(v) / double(m_size - 1));
        }

        void colors(const color_type& c1, const color_type& c2, unsigned size = 256)
        {
            m_c1 = c1;
            m_c2 = c2;
            m_size = size;
        }

        color_type m_c1;
        color_type m_c2;
        unsigned m_size;
    };


    //==========================================================gradient_circle
    class gradient_circle
    {
        // Actually the same as radial. Just for compatibility
    public:
        static AGG_INLINE int calculate(int x, int y, int)
        {
            return int(fast_sqrt(x*x + y*y));
        }
    };


    //==========================================================gradient_radial
    class gradient_radial
    {
    public:
        static AGG_INLINE int calculate(int x, int y, int)
        {
            return int(fast_sqrt(x*x + y*y));
        }
    };


    //========================================================gradient_radial_d
    class gradient_radial_d
    {
    public:
        static AGG_INLINE int calculate(int x, int y, int)
        {
            return int(sqrt(double(x)*double(x) + double(y)*double(y)));
        }
    };


    //====================================================gradient_radial_focus
    class gradient_radial_focus
    {
    public:
        //---------------------------------------------------------------------
        gradient_radial_focus() :
            m_radius(100 * gradient_subpixel_size),
            m_focus_x(0),
            m_focus_y(0)
        {
            update_values();
        }

        //---------------------------------------------------------------------
        gradient_radial_focus(double r, double fx, double fy) :
            m_radius (int(r  * gradient_subpixel_size)),
            m_focus_x(int(fx * gradient_subpixel_size)),
            m_focus_y(int(fy * gradient_subpixel_size))
        {
            update_values();
        }

        //---------------------------------------------------------------------
        void init(double r, double fx, double fy)
        {
            m_radius  = int(r  * gradient_subpixel_size);
            m_focus_x = int(fx * gradient_subpixel_size);
            m_focus_y = int(fy * gradient_subpixel_size);
            update_values();
        }

        //---------------------------------------------------------------------
        double radius()  const { return double(m_radius)  / gradient_subpixel_size; }
        double focus_x() const { return double(m_focus_x) / gradient_subpixel_size; }
        double focus_y() const { return double(m_focus_y) / gradient_subpixel_size; }

        //---------------------------------------------------------------------
        int calculate(int x, int y, int d) const
        {
            double solution_x;
            double solution_y;

            // Special case to avoid divide by zero or very near zero
            //---------------------------------
            if(x == int(m_focus_x))
            {
                solution_x = m_focus_x;
                solution_y = 0.0;
                solution_y += (y > m_focus_y) ? m_trivial : -m_trivial;
            }
            else
            {
                // Slope of the focus-current line
                //-------------------------------
                double slope = double(y - m_focus_y) / double(x - m_focus_x);

                // y-intercept of that same line
                //--------------------------------
                double yint  = double(y) - (slope * x);

                // Use the classical quadratic formula to calculate
                // the intersection point
                //--------------------------------
                double a = (slope * slope) + 1;
                double b =  2 * slope * yint;
                double c =  yint * yint - m_radius2;
                double det = sqrt((b * b) - (4.0 * a * c));
                solution_x = -b;

                // Choose the positive or negative root depending
                // on where the X coord lies with respect to the focus.
                solution_x += (x < m_focus_x) ? -det : det;
                solution_x /= 2.0 * a;

                // Calculating of Y is trivial
                solution_y  = (slope * solution_x) + yint;
            }

            // Calculate the percentage (0...1) of the current point along the
            // focus-circumference line and return the normalized (0...d) value
            //-------------------------------
            solution_x -= double(m_focus_x);
            solution_y -= double(m_focus_y);
            double int_to_focus = solution_x * solution_x + solution_y * solution_y;
            double cur_to_focus = double(x - m_focus_x) * double(x - m_focus_x) +
                                  double(y - m_focus_y) * double(y - m_focus_y);

            return int(sqrt(cur_to_focus / int_to_focus) * d);
        }

    private:
        //---------------------------------------------------------------------
        void update_values()
        {
            // For use in the quadractic equation
            //-------------------------------
            m_radius2 = double(m_radius) * double(m_radius);

            double dist = sqrt(double(m_focus_x) * double(m_focus_x) +
                               double(m_focus_y) * double(m_focus_y));

            // Test if distance from focus to center is greater than the radius
            // For the sake of assurance factor restrict the point to be
            // no further than 99% of the radius.
            //-------------------------------
            double r = m_radius * 0.99;
            if(dist > r)
            {
                // clamp focus to radius
                // x = r cos theta, y = r sin theta
                //------------------------
                double a = atan2(double(m_focus_y), double(m_focus_x));
                m_focus_x = int(r * cos(a));
                m_focus_y = int(r * sin(a));
            }

            // Calculate the solution to be used in the case where x == focus_x
            //------------------------------
            m_trivial = sqrt(m_radius2 - (m_focus_x * m_focus_x));
        }

        int m_radius;
        int m_focus_x;
        int m_focus_y;
        double m_radius2;
        double m_trivial;
    };



    //==============================================================gradient_x
    class gradient_x
    {
    public:
        static int calculate(int x, int, int) { return x; }
    };


    //==============================================================gradient_y
    class gradient_y
    {
    public:
        static int calculate(int, int y, int) { return y; }
    };


    //========================================================gradient_diamond
    class gradient_diamond
    {
    public:
        static AGG_INLINE int calculate(int x, int y, int)
        {
            int ax = abs(x);
            int ay = abs(y);
            return ax > ay ? ax : ay;
        }
    };


    //=============================================================gradient_xy
    class gradient_xy
    {
    public:
        static AGG_INLINE int calculate(int x, int y, int d)
        {
            return abs(x) * abs(y) / d;
        }
    };


    //========================================================gradient_sqrt_xy
    class gradient_sqrt_xy
    {
    public:
        static AGG_INLINE int calculate(int x, int y, int)
        {
            return fast_sqrt(abs(x) * abs(y));
        }
    };


    //==========================================================gradient_conic
    class gradient_conic
    {
    public:
        static AGG_INLINE int calculate(int x, int y, int d)
        {
            return int(fabs(atan2(double(y), double(x))) * double(d) / pi);
        }
    };


    //=================================================gradient_repeat_adaptor
    template<class GradientF> class gradient_repeat_adaptor
    {
    public:
        gradient_repeat_adaptor(const GradientF& gradient) :
            m_gradient(&gradient) {}

        AGG_INLINE int calculate(int x, int y, int d) const
        {
            int ret = m_gradient->calculate(x, y, d) % d;
            if(ret < 0) ret += d;
            return ret;
        }

    private:
        const GradientF* m_gradient;
    };


    //================================================gradient_reflect_adaptor
    template<class GradientF> class gradient_reflect_adaptor
    {
    public:
        gradient_reflect_adaptor(const GradientF& gradient) :
            m_gradient(&gradient) {}

        AGG_INLINE int calculate(int x, int y, int d) const
        {
            int d2 = d << 1;
            int ret = m_gradient->calculate(x, y, d) % d2;
            if(ret <  0) ret += d2;
            if(ret >= d) ret  = d2 - ret;
            return ret;
        }

    private:
        const GradientF* m_gradient;
    };


}

#endif