/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ // bootstrap stuff #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "vcl/svapp.hxx" #include "vcl/canvastools.hxx" #include "vcl/canvasbitmap.hxx" #include "vcl/dialog.hxx" #include "vcl/outdev.hxx" #include "vcl/bmpacc.hxx" #include "vcl/virdev.hxx" #include "vcl/bitmapex.hxx" using namespace ::com::sun::star; using namespace ::vcl::unotools; // ----------------------------------------------------------------------- void Main(); // ----------------------------------------------------------------------- SAL_IMPLEMENT_MAIN() { tools::extendApplicationEnvironment(); uno::Reference< lang::XMultiServiceFactory > xMS; xMS = cppu::createRegistryServiceFactory( rtl::OUString( "applicat.rdb" ), sal_True ); comphelper::setProcessServiceFactory( xMS ); InitVCL(); ::Main(); DeInitVCL(); return 0; } // ----------------------------------------------------------------------- namespace com { namespace sun { namespace star { namespace rendering { bool operator==( const RGBColor& rLHS, const ARGBColor& rRHS ) { return rLHS.Red == rRHS.Red && rLHS.Green == rRHS.Green && rLHS.Blue == rRHS.Blue; } bool operator==( const ARGBColor& rLHS, const RGBColor& rRHS ) { return rLHS.Red == rRHS.Red && rLHS.Green == rRHS.Green && rLHS.Blue == rRHS.Blue; } } } } } //---------------------------------------------------------------------------------- namespace { class TestApp : public Application { public: virtual void Main(); virtual sal_uInt16 Exception( sal_uInt16 nError ); }; class TestWindow : public Dialog { public: TestWindow() : Dialog( (Window *) NULL ) { SetText( rtl::OUString("CanvasBitmap test harness") ); SetSizePixel( Size( 1024, 1024 ) ); EnablePaint( true ); Show(); } virtual ~TestWindow() {} virtual void Paint( const Rectangle& rRect ); }; //---------------------------------------------------------------------------------- static bool g_failure=false; void test( bool bResult, const char* msg ) { if( bResult ) { OSL_TRACE("Testing: %s - PASSED", msg); } else { g_failure = true; OSL_TRACE("Testing: %s - FAILED", msg); } } //---------------------------------------------------------------------------------- bool rangeCheck( const rendering::RGBColor& rColor ) { return rColor.Red < 0.0 || rColor.Red > 1.0 || rColor.Green < 0.0 || rColor.Green > 1.0 || rColor.Blue < 0.0 || rColor.Blue > 1.0; } //---------------------------------------------------------------------------------- void checkCanvasBitmap( const rtl::Reference& xBmp, const char* msg, int nOriginalDepth ) { OSL_TRACE("-------------------------"); OSL_TRACE("Testing %s, with depth %d", msg, nOriginalDepth); BitmapEx aContainedBmpEx( xBmp->getBitmapEx() ); Bitmap aContainedBmp( aContainedBmpEx.GetBitmap() ); int nDepth = nOriginalDepth; { Bitmap::ScopedReadAccess pAcc( aContainedBmp ); nDepth = pAcc->GetBitCount(); } test( aContainedBmp.GetSizePixel() == Size(200,200), "Original bitmap size" ); test( xBmp->getSize().Width == 200 && xBmp->getSize().Height == 200, "Original bitmap size via API" ); test( xBmp->hasAlpha() == aContainedBmpEx.IsTransparent(), "Correct alpha state" ); test( xBmp->getScaledBitmap( geometry::RealSize2D(500,500), sal_False ).is(), "getScaledBitmap()" ); rendering::IntegerBitmapLayout aLayout; uno::Sequence aPixelData = xBmp->getData(aLayout, geometry::IntegerRectangle2D(0,0,1,1)); const sal_Int32 nExpectedBitsPerPixel( aContainedBmpEx.IsTransparent() ? std::max(8,nDepth)+8 : nDepth); test( aLayout.ScanLines == 1, "# scanlines" ); test( aLayout.ScanLineBytes == (nExpectedBitsPerPixel+7)/8, "# scanline bytes" ); test( aLayout.ScanLineStride == (nExpectedBitsPerPixel+7)/8 || aLayout.ScanLineStride == -(nExpectedBitsPerPixel+7)/8, "# scanline stride" ); test( aLayout.PlaneStride == 0, "# plane stride" ); test( aLayout.ColorSpace.is(), "Color space there" ); test( aLayout.Palette.is() == (nDepth <= 8), "Palette existance conforms to bitmap" ); uno::Sequence aPixelData2 = xBmp->getPixel( aLayout, geometry::IntegerPoint2D(0,0) ); test( aPixelData2.getLength() == aPixelData.getLength(), "getData and getPixel return same amount of data" ); aPixelData = xBmp->getData(aLayout, geometry::IntegerRectangle2D(0,0,200,1)); test( aLayout.ScanLines == 1, "# scanlines" ); test( aLayout.ScanLineBytes == (200*nExpectedBitsPerPixel+7)/8, "# scanline bytes" ); test( aLayout.ScanLineStride == (200*nExpectedBitsPerPixel+7)/8 || aLayout.ScanLineStride == -(200*nExpectedBitsPerPixel+7)/8, "# scanline stride" ); uno::Sequence< rendering::RGBColor > aRGBColors = xBmp->convertIntegerToRGB( aPixelData ); uno::Sequence< rendering::ARGBColor > aARGBColors = xBmp->convertIntegerToARGB( aPixelData ); const rendering::RGBColor* pRGBStart ( aRGBColors.getConstArray() ); const rendering::RGBColor* pRGBEnd ( aRGBColors.getConstArray()+aRGBColors.getLength() ); const rendering::ARGBColor* pARGBStart( aARGBColors.getConstArray() ); std::pair aRes = std::mismatch( pRGBStart, pRGBEnd, pARGBStart ); test( aRes.first == pRGBEnd, "argb and rgb colors are equal" ); test( std::find_if(pRGBStart,pRGBEnd,&rangeCheck) == pRGBEnd, "rgb colors are within [0,1] range" ); test( pRGBStart[0].Red == 1.0 && pRGBStart[0].Green == 1.0 && pRGBStart[0].Blue == 1.0, "First pixel is white" ); test( pARGBStart[1].Alpha == 1.0, "Second pixel is opaque" ); if( aContainedBmpEx.IsTransparent() ) { test( pARGBStart[0].Alpha == 0.0, "First pixel is fully transparent" ); } test( pRGBStart[1].Red == 0.0 && pRGBStart[1].Green == 0.0 && pRGBStart[1].Blue == 0.0, "Second pixel is black" ); if( nOriginalDepth > 8 ) { const Color aCol(COL_GREEN); test( pRGBStart[5].Red == vcl::unotools::toDoubleColor(aCol.GetRed()) && pRGBStart[5].Green == vcl::unotools::toDoubleColor(aCol.GetGreen()) && pRGBStart[5].Blue == vcl::unotools::toDoubleColor(aCol.GetBlue()), "Sixth pixel is green" ); } else if( nDepth <= 8 ) { uno::Reference xPal = xBmp->getPalette(); test( xPal.is(), "8bit or less: needs palette" ); test( xPal->getNumberOfEntries() == 1L << nOriginalDepth, "Palette has correct entry count" ); uno::Sequence aIndex; test( xPal->setIndex(aIndex,sal_True,0) == sal_False, "Palette is read-only" ); test( xPal->getIndex(aIndex,0), "Palette entry 0 is opaque" ); test( xPal->getColorSpace().is(), "Palette has a valid color space" ); } test( pRGBStart[150].Red == 1.0 && pRGBStart[150].Green == 1.0 && pRGBStart[150].Blue == 1.0, "150th pixel is white" ); if( nOriginalDepth > 8 ) { const uno::Sequence aComponentTags( xBmp->getComponentTags() ); uno::Sequence aARGBColor(1); uno::Sequence aRGBColor(1); uno::Sequence aPixel3, aPixel4; const Color aCol(COL_GREEN); aARGBColor[0].Red = vcl::unotools::toDoubleColor(aCol.GetRed()); aARGBColor[0].Green = vcl::unotools::toDoubleColor(aCol.GetGreen()); aARGBColor[0].Blue = vcl::unotools::toDoubleColor(aCol.GetBlue()); aARGBColor[0].Alpha = 1.0; aRGBColor[0].Red = vcl::unotools::toDoubleColor(aCol.GetRed()); aRGBColor[0].Green = vcl::unotools::toDoubleColor(aCol.GetGreen()); aRGBColor[0].Blue = vcl::unotools::toDoubleColor(aCol.GetBlue()); aPixel3 = xBmp->convertIntegerFromARGB( aARGBColor ); aPixel4 = xBmp->getPixel( aLayout, geometry::IntegerPoint2D(5,0) ); test( aPixel3 == aPixel4, "Green pixel from bitmap matches with manually converted green pixel" ); if( !aContainedBmpEx.IsTransparent() ) { aPixel3 = xBmp->convertIntegerFromRGB( aRGBColor ); test( aPixel3 == aPixel4, "Green pixel from bitmap matches with manually RGB-converted green pixel" ); } } } //---------------------------------------------------------------------------------- void checkBitmapImport( const rtl::Reference& xBmp, const char* msg, int nOriginalDepth ) { OSL_TRACE("-------------------------"); OSL_TRACE("Testing %s, with depth %d", msg, nOriginalDepth); BitmapEx aContainedBmpEx( xBmp->getBitmapEx() ); Bitmap aContainedBmp( aContainedBmpEx.GetBitmap() ); int nDepth = nOriginalDepth; { Bitmap::ScopedReadAccess pAcc( aContainedBmp ); nDepth = pAcc->GetBitCount(); } test( aContainedBmp.GetSizePixel() == Size(200,200), "Original bitmap size" ); test( xBmp->getSize().Width == 200 && xBmp->getSize().Height == 200, "Original bitmap size via API" ); test( xBmp->hasAlpha() == aContainedBmpEx.IsTransparent(), "Correct alpha state" ); test( xBmp->getScaledBitmap( geometry::RealSize2D(500,500), sal_False ).is(), "getScaledBitmap()" ); rendering::IntegerBitmapLayout aLayout; uno::Sequence aPixelData = xBmp->getData(aLayout, geometry::IntegerRectangle2D(0,0,1,1)); const sal_Int32 nExpectedBitsPerPixel( aContainedBmpEx.IsTransparent() ? std::max(8,nDepth)+8 : nDepth); test( aLayout.ScanLines == 1, "# scanlines" ); test( aLayout.ScanLineBytes == (nExpectedBitsPerPixel+7)/8, "# scanline bytes" ); test( aLayout.ScanLineStride == (nExpectedBitsPerPixel+7)/8 || aLayout.ScanLineStride == -(nExpectedBitsPerPixel+7)/8, "# scanline stride" ); test( aLayout.PlaneStride == 0, "# plane stride" ); test( aLayout.ColorSpace.is(), "Color space there" ); test( aLayout.Palette.is() == (nDepth <= 8), "Palette existance conforms to bitmap" ); uno::Sequence aPixelData2 = xBmp->getPixel( aLayout, geometry::IntegerPoint2D(0,0) ); test( aPixelData2.getLength() == aPixelData.getLength(), "getData and getPixel return same amount of data" ); aPixelData = xBmp->getData(aLayout, geometry::IntegerRectangle2D(0,0,200,1)); test( aLayout.ScanLines == 1, "# scanlines" ); test( aLayout.ScanLineBytes == (200*nExpectedBitsPerPixel+7)/8, "# scanline bytes" ); test( aLayout.ScanLineStride == (200*nExpectedBitsPerPixel+7)/8 || aLayout.ScanLineStride == -(200*nExpectedBitsPerPixel+7)/8, "# scanline stride" ); uno::Sequence< rendering::RGBColor > aRGBColors = xBmp->convertIntegerToRGB( aPixelData ); uno::Sequence< rendering::ARGBColor > aARGBColors = xBmp->convertIntegerToARGB( aPixelData ); const rendering::RGBColor* pRGBStart ( aRGBColors.getConstArray() ); const rendering::RGBColor* pRGBEnd ( aRGBColors.getConstArray()+aRGBColors.getLength() ); const rendering::ARGBColor* pARGBStart( aARGBColors.getConstArray() ); std::pair aRes = std::mismatch( pRGBStart, pRGBEnd, pARGBStart ); test( aRes.first == pRGBEnd, "argb and rgb colors are equal" ); test( std::find_if(pRGBStart,pRGBEnd,&rangeCheck) == pRGBEnd, "rgb colors are within [0,1] range" ); test( pRGBStart[0].Red == 1.0 && pRGBStart[0].Green == 1.0 && pRGBStart[0].Blue == 1.0, "First pixel is white" ); test( pARGBStart[1].Alpha == 1.0, "Second pixel is opaque" ); if( aContainedBmpEx.IsTransparent() ) { test( pARGBStart[0].Alpha == 0.0, "First pixel is fully transparent" ); } test( pRGBStart[1].Red == 0.0 && pRGBStart[1].Green == 0.0 && pRGBStart[1].Blue == 0.0, "Second pixel is black" ); if( nOriginalDepth > 8 ) { const Color aCol(COL_GREEN); test( pRGBStart[5].Red == vcl::unotools::toDoubleColor(aCol.GetRed()) && pRGBStart[5].Green == vcl::unotools::toDoubleColor(aCol.GetGreen()) && pRGBStart[5].Blue == vcl::unotools::toDoubleColor(aCol.GetBlue()), "Sixth pixel is green" ); } else if( nDepth <= 8 ) { uno::Reference xPal = xBmp->getPalette(); test( xPal.is(), "8bit or less: needs palette" ); test( xPal->getNumberOfEntries() == 1L << nOriginalDepth, "Palette has correct entry count" ); uno::Sequence aIndex; test( xPal->setIndex(aIndex,sal_True,0) == sal_False, "Palette is read-only" ); test( xPal->getIndex(aIndex,0), "Palette entry 0 is opaque" ); test( xPal->getColorSpace().is(), "Palette has a valid color space" ); } test( pRGBStart[150].Red == 1.0 && pRGBStart[150].Green == 1.0 && pRGBStart[150].Blue == 1.0, "150th pixel is white" ); if( nOriginalDepth > 8 ) { const uno::Sequence aComponentTags( xBmp->getComponentTags() ); uno::Sequence aARGBColor(1); uno::Sequence aRGBColor(1); uno::Sequence aPixel3, aPixel4; const Color aCol(COL_GREEN); aARGBColor[0].Red = vcl::unotools::toDoubleColor(aCol.GetRed()); aARGBColor[0].Green = vcl::unotools::toDoubleColor(aCol.GetGreen()); aARGBColor[0].Blue = vcl::unotools::toDoubleColor(aCol.GetBlue()); aARGBColor[0].Alpha = 1.0; aRGBColor[0].Red = vcl::unotools::toDoubleColor(aCol.GetRed()); aRGBColor[0].Green = vcl::unotools::toDoubleColor(aCol.GetGreen()); aRGBColor[0].Blue = vcl::unotools::toDoubleColor(aCol.GetBlue()); aPixel3 = xBmp->convertIntegerFromARGB( aARGBColor ); aPixel4 = xBmp->getPixel( aLayout, geometry::IntegerPoint2D(5,0) ); test( aPixel3 == aPixel4, "Green pixel from bitmap matches with manually converted green pixel" ); if( !aContainedBmpEx.IsTransparent() ) { aPixel3 = xBmp->convertIntegerFromRGB( aRGBColor ); test( aPixel3 == aPixel4, "Green pixel from bitmap matches with manually RGB-converted green pixel" ); } } } //---------------------------------------------------------------------------------- class TestBitmap : public cppu::WeakImplHelper3< rendering::XIntegerReadOnlyBitmap, rendering::XBitmapPalette, rendering::XIntegerBitmapColorSpace > { private: geometry::IntegerSize2D maSize; uno::Sequence maComponentTags; uno::Sequence maComponentBitCounts; rendering::IntegerBitmapLayout maLayout; const sal_Int32 mnBitsPerPixel; // XBitmap virtual geometry::IntegerSize2D SAL_CALL getSize() throw (uno::RuntimeException) { return maSize; } virtual ::sal_Bool SAL_CALL hasAlpha( ) throw (uno::RuntimeException) { return mnBitsPerPixel != 8; } virtual uno::Reference< rendering::XBitmap > SAL_CALL getScaledBitmap( const geometry::RealSize2D&, sal_Bool ) throw (uno::RuntimeException) { return this; } // XIntegerReadOnlyBitmap virtual uno::Sequence< ::sal_Int8 > SAL_CALL getData( rendering::IntegerBitmapLayout& bitmapLayout, const geometry::IntegerRectangle2D& rect ) throw (lang::IndexOutOfBoundsException, rendering::VolatileContentDestroyedException, uno::RuntimeException) { test( rect.X1 >= 0, "X1 within bounds" ); test( rect.Y1 >= 0, "Y1 within bounds" ); test( rect.X2 <= maSize.Width, "X2 within bounds" ); test( rect.Y2 <= maSize.Height, "Y2 within bounds" ); bitmapLayout = getMemoryLayout(); const sal_Int32 nWidth = rect.X2-rect.X1; const sal_Int32 nHeight = rect.Y2-rect.Y1; const sal_Int32 nScanlineLen = (nWidth * mnBitsPerPixel + 7)/8; uno::Sequence aRes( nScanlineLen * nHeight ); sal_Int8* pOut = aRes.getArray(); bitmapLayout.ScanLines = nHeight; bitmapLayout.ScanLineBytes = bitmapLayout.ScanLineStride= nScanlineLen; if( mnBitsPerPixel == 8 ) { for( sal_Int32 y=0; y SAL_CALL getPixel( rendering::IntegerBitmapLayout&, const geometry::IntegerPoint2D& ) throw (lang::IndexOutOfBoundsException, rendering::VolatileContentDestroyedException, uno::RuntimeException) { test(false, "Method not implemented"); return uno::Sequence< sal_Int8 >(); } virtual uno::Reference< rendering::XBitmapPalette > SAL_CALL getPalette( ) throw (uno::RuntimeException) { uno::Reference< XBitmapPalette > aRet; if( mnBitsPerPixel == 8 ) aRet.set(this); return aRet; } virtual rendering::IntegerBitmapLayout SAL_CALL getMemoryLayout( ) throw (uno::RuntimeException) { rendering::IntegerBitmapLayout aLayout( maLayout ); const sal_Int32 nScanlineLen = (maSize.Width * mnBitsPerPixel + 7)/8; aLayout.ScanLines = maSize.Height; aLayout.ScanLineBytes = aLayout.ScanLineStride= nScanlineLen; aLayout.Palette = getPalette(); aLayout.ColorSpace.set( this ); return aLayout; } // XBitmapPalette virtual sal_Int32 SAL_CALL getNumberOfEntries() throw (uno::RuntimeException) { test( getPalette().is(), "Got palette interface call without handing out palette?!" ); return 255; } virtual ::sal_Bool SAL_CALL getIndex( uno::Sequence< double >& entry, ::sal_Int32 nIndex ) throw (lang::IndexOutOfBoundsException, uno::RuntimeException) { test( getPalette().is(), "Got palette interface call without handing out palette?!" ); test( nIndex >= 0 && nIndex < 256, "Index out of range" ); entry = colorToStdColorSpaceSequence( Color(UINT8(nIndex), UINT8(nIndex), UINT8(nIndex)) ); return sal_True; // no palette transparency here. } virtual ::sal_Bool SAL_CALL setIndex( const uno::Sequence< double >&, ::sal_Bool, ::sal_Int32 nIndex ) throw (lang::IndexOutOfBoundsException, lang::IllegalArgumentException, uno::RuntimeException) { test( getPalette().is(), "Got palette interface call without handing out palette?!" ); test( nIndex >= 0 && nIndex < 256, "Index out of range" ); return sal_False; } struct PaletteColorSpaceHolder: public rtl::StaticWithInit, PaletteColorSpaceHolder> { uno::Reference operator()() { return vcl::unotools::createStandardColorSpace(); } }; virtual uno::Reference< rendering::XColorSpace > SAL_CALL getColorSpace( ) throw (uno::RuntimeException) { // this is the method from XBitmapPalette. Return palette color // space here return PaletteColorSpaceHolder::get(); } // XIntegerBitmapColorSpace virtual ::sal_Int8 SAL_CALL getType( ) throw (uno::RuntimeException) { return rendering::ColorSpaceType::RGB; } virtual uno::Sequence< sal_Int8 > SAL_CALL getComponentTags( ) throw (uno::RuntimeException) { return maComponentTags; } virtual ::sal_Int8 SAL_CALL getRenderingIntent( ) throw (uno::RuntimeException) { return rendering::RenderingIntent::PERCEPTUAL; } virtual uno::Sequence< beans::PropertyValue > SAL_CALL getProperties( ) throw (uno::RuntimeException) { test(false, "Method not implemented"); return uno::Sequence< ::beans::PropertyValue >(); } virtual uno::Sequence< double > SAL_CALL convertColorSpace( const uno::Sequence< double >&, const uno::Reference< rendering::XColorSpace >& ) throw (uno::RuntimeException) { test(false, "Method not implemented"); return uno::Sequence< double >(); } virtual uno::Sequence< rendering::RGBColor > SAL_CALL convertToRGB( const uno::Sequence< double >& ) throw (lang::IllegalArgumentException, uno::RuntimeException) { test(false, "Method not implemented"); return uno::Sequence< rendering::RGBColor >(); } virtual uno::Sequence< rendering::ARGBColor > SAL_CALL convertToARGB( const uno::Sequence< double >& ) throw (lang::IllegalArgumentException, uno::RuntimeException) { test(false, "Method not implemented"); return uno::Sequence< rendering::ARGBColor >(); } virtual uno::Sequence< rendering::ARGBColor > SAL_CALL convertToPARGB( const uno::Sequence< double >& ) throw (lang::IllegalArgumentException, uno::RuntimeException) { test(false, "Method not implemented"); return uno::Sequence< rendering::ARGBColor >(); } virtual uno::Sequence< double > SAL_CALL convertFromRGB( const uno::Sequence< rendering::RGBColor >& ) throw (lang::IllegalArgumentException, uno::RuntimeException) { test(false, "Method not implemented"); return uno::Sequence< double >(); } virtual uno::Sequence< double > SAL_CALL convertFromARGB( const uno::Sequence< rendering::ARGBColor >& ) throw (lang::IllegalArgumentException, uno::RuntimeException) { test(false, "This method is not expected to be called!"); return uno::Sequence< double >(); } virtual uno::Sequence< double > SAL_CALL convertFromPARGB( const uno::Sequence< rendering::ARGBColor >& ) throw (lang::IllegalArgumentException, uno::RuntimeException) { test(false, "This method is not expected to be called!"); return uno::Sequence< double >(); } virtual ::sal_Int32 SAL_CALL getBitsPerPixel( ) throw (uno::RuntimeException) { return mnBitsPerPixel; } virtual uno::Sequence< ::sal_Int32 > SAL_CALL getComponentBitCounts( ) throw (uno::RuntimeException) { return maComponentBitCounts; } virtual ::sal_Int8 SAL_CALL getEndianness( ) throw (uno::RuntimeException) { return util::Endianness::LITTLE; } virtual uno::Sequence< double > SAL_CALL convertFromIntegerColorSpace( const uno::Sequence< ::sal_Int8 >& , const uno::Reference< rendering::XColorSpace >& ) throw (lang::IllegalArgumentException, uno::RuntimeException) { test(false, "Method not implemented"); return uno::Sequence< double >(); } virtual uno::Sequence< ::sal_Int8 > SAL_CALL convertToIntegerColorSpace( const uno::Sequence< ::sal_Int8 >& , const uno::Reference< rendering::XIntegerBitmapColorSpace >& ) throw (lang::IllegalArgumentException, uno::RuntimeException) { test(false, "Method not implemented"); return uno::Sequence< sal_Int8 >(); } virtual uno::Sequence< rendering::RGBColor > SAL_CALL convertIntegerToRGB( const uno::Sequence< ::sal_Int8 >& deviceColor ) throw (lang::IllegalArgumentException, uno::RuntimeException) { const uno::Sequence< rendering::ARGBColor > aTemp( convertIntegerToARGB(deviceColor) ); const sal_Size nLen(aTemp.getLength()); uno::Sequence< rendering::RGBColor > aRes( nLen ); rendering::RGBColor* pOut = aRes.getArray(); for( sal_Size i=0; i SAL_CALL convertIntegerToARGB( const uno::Sequence< ::sal_Int8 >& deviceColor ) throw (lang::IllegalArgumentException, uno::RuntimeException) { const sal_Size nLen( deviceColor.getLength() ); const sal_Int32 nBytesPerPixel(mnBitsPerPixel == 8 ? 1 : 4); test(nLen%nBytesPerPixel==0, "number of channels no multiple of pixel element count"); uno::Sequence< rendering::ARGBColor > aRes( nLen / nBytesPerPixel ); rendering::ARGBColor* pOut( aRes.getArray() ); if( getPalette().is() ) { for( sal_Size i=0; i SAL_CALL convertIntegerToPARGB( const uno::Sequence< ::sal_Int8 >& deviceColor ) throw (lang::IllegalArgumentException, uno::RuntimeException) { const sal_Size nLen( deviceColor.getLength() ); const sal_Int32 nBytesPerPixel(mnBitsPerPixel == 8 ? 1 : 4); test(nLen%nBytesPerPixel==0, "number of channels no multiple of pixel element count"); uno::Sequence< rendering::ARGBColor > aRes( nLen / nBytesPerPixel ); rendering::ARGBColor* pOut( aRes.getArray() ); if( getPalette().is() ) { for( sal_Size i=0; i SAL_CALL convertIntegerFromRGB( const uno::Sequence< rendering::RGBColor >& ) throw (lang::IllegalArgumentException, uno::RuntimeException) { test(false, "Method not implemented"); return uno::Sequence< sal_Int8 >(); } virtual uno::Sequence< ::sal_Int8 > SAL_CALL convertIntegerFromARGB( const uno::Sequence< rendering::ARGBColor >& ) throw (lang::IllegalArgumentException, uno::RuntimeException) { test(false, "Method not implemented"); return uno::Sequence< sal_Int8 >(); } virtual uno::Sequence< ::sal_Int8 > SAL_CALL convertIntegerFromPARGB( const uno::Sequence< rendering::ARGBColor >& ) throw (lang::IllegalArgumentException, uno::RuntimeException) { test(false, "Method not implemented"); return uno::Sequence< sal_Int8 >(); } public: TestBitmap( const geometry::IntegerSize2D& rSize, bool bPalette ) : maSize(rSize), maComponentTags(), maComponentBitCounts(), maLayout(), mnBitsPerPixel( bPalette ? 8 : 32 ) { if( bPalette ) { maComponentTags.realloc(1); maComponentTags[0] = rendering::ColorComponentTag::INDEX; maComponentBitCounts.realloc(1); maComponentBitCounts[0] = 8; } else { maComponentTags.realloc(4); sal_Int8* pTags = maComponentTags.getArray(); pTags[0] = rendering::ColorComponentTag::RGB_BLUE; pTags[1] = rendering::ColorComponentTag::RGB_GREEN; pTags[2] = rendering::ColorComponentTag::RGB_RED; pTags[3] = rendering::ColorComponentTag::ALPHA; maComponentBitCounts.realloc(4); sal_Int32* pCounts = maComponentBitCounts.getArray(); pCounts[0] = 8; pCounts[1] = 8; pCounts[2] = 8; pCounts[3] = 8; } maLayout.ScanLines = 0; maLayout.ScanLineBytes = 0; maLayout.ScanLineStride = 0; maLayout.PlaneStride = 0; maLayout.ColorSpace.clear(); maLayout.Palette.clear(); maLayout.IsMsbFirst = sal_False; } }; //---------------------------------------------------------------------------------- void TestWindow::Paint( const Rectangle& ) { static sal_Int8 lcl_depths[]={1,4,8,16,24}; try { // Testing VclCanvasBitmap wrapper // =============================== for( unsigned int i=0; iHasPalette() ) { aBlack.SetIndex( sal::static_int_cast(pAcc->GetBestPaletteIndex(BitmapColor(0,0,0))) ); aWhite.SetIndex( sal::static_int_cast(pAcc->GetBestPaletteIndex(BitmapColor(255,255,255))) ); } else { aBlack = Color(COL_BLACK); aWhite = Color(COL_WHITE); } pAcc->SetFillColor(COL_GREEN); pAcc->FillRect(Rectangle(0,0,100,100)); pAcc->SetPixel(0,0,aWhite); pAcc->SetPixel(0,1,aBlack); pAcc->SetPixel(0,2,aWhite); } } rtl::Reference xBmp( new VclCanvasBitmap(aBitmap) ); checkCanvasBitmap( xBmp, "single bitmap", nDepth ); Bitmap aMask(Size(200,200),1); aMask.Erase(COL_WHITE); { Bitmap::ScopedWriteAccess pAcc(aMask); if( pAcc.get() ) { pAcc->SetFillColor(COL_BLACK); pAcc->FillRect(Rectangle(0,0,100,100)); pAcc->SetPixel(0,0,BitmapColor(1)); pAcc->SetPixel(0,1,BitmapColor(0)); pAcc->SetPixel(0,2,BitmapColor(1)); } } xBmp.set( new VclCanvasBitmap(BitmapEx(aBitmap,aMask)) ); checkCanvasBitmap( xBmp, "masked bitmap", nDepth ); AlphaMask aAlpha(Size(200,200)); aAlpha.Erase(255); { BitmapWriteAccess* pAcc = aAlpha.AcquireWriteAccess(); if( pAcc ) { pAcc->SetFillColor(COL_BLACK); pAcc->FillRect(Rectangle(0,0,100,100)); pAcc->SetPixel(0,0,BitmapColor(255)); pAcc->SetPixel(0,1,BitmapColor(0)); pAcc->SetPixel(0,2,BitmapColor(255)); aAlpha.ReleaseAccess(pAcc); } } xBmp.set( new VclCanvasBitmap(BitmapEx(aBitmap,aAlpha)) ); checkCanvasBitmap( xBmp, "alpha bitmap", nDepth ); } // Testing XBitmap import // ====================== uno::Reference< rendering::XIntegerReadOnlyBitmap > xTestBmp( new TestBitmap( geometry::IntegerSize2D(10,10), true )); BitmapEx aBmp = vcl::unotools::bitmapExFromXBitmap(xTestBmp); test( aBmp.IsTransparent() == false, "Palette bitmap is not transparent" ); test( aBmp.GetSizePixel() == Size(10,10), "Bitmap has size (10,10)" ); test( aBmp.GetBitCount() == 8, "Bitmap has bitcount of 8" ); { BitmapReadAccess* pBmpAcc = aBmp.GetBitmap().AcquireReadAccess(); test( pBmpAcc, "Bitmap has valid BitmapReadAccess" ); test(pBmpAcc->GetPixel(0,0) == BitmapColor(0), "(0,0) correct content"); test(pBmpAcc->GetPixel(2,2) == BitmapColor(2), "(2,2) correct content"); test(pBmpAcc->GetPixel(2,9) == BitmapColor(9), "(9,2) correct content"); aBmp.GetBitmap().ReleaseAccess(pBmpAcc); } xTestBmp.set( new TestBitmap( geometry::IntegerSize2D(10,10), false )); aBmp = vcl::unotools::bitmapExFromXBitmap(xTestBmp); test( aBmp.IsTransparent() == TRUE, "Palette bitmap is transparent" ); test( aBmp.IsAlpha() == TRUE, "Palette bitmap has alpha" ); test( aBmp.GetSizePixel() == Size(10,10), "Bitmap has size (10,10)" ); test( aBmp.GetBitCount() == 24, "Bitmap has bitcount of 24" ); { BitmapReadAccess* pBmpAcc = aBmp.GetBitmap().AcquireReadAccess(); BitmapReadAccess* pAlphaAcc = aBmp.GetAlpha().AcquireReadAccess(); test( pBmpAcc, "Bitmap has valid BitmapReadAccess" ); test( pAlphaAcc, "Bitmap has valid alpha BitmapReadAccess" ); test(pBmpAcc->GetPixel(0,0) == BitmapColor(0,1,0), "(0,0) correct content"); test(pAlphaAcc->GetPixel(0,0) == BitmapColor(255), "(0,0) correct alpha content"); test(pBmpAcc->GetPixel(2,2) == BitmapColor(0,3,2), "(2,2) correct content"); test(pAlphaAcc->GetPixel(2,2) == BitmapColor(253), "(2,2) correct alpha content"); test(pBmpAcc->GetPixel(2,9) == BitmapColor(0,3,9), "(9,2) correct content"); test(pAlphaAcc->GetPixel(2,9) == BitmapColor(253), "(9,2) correct alpha content"); aBmp.GetAlpha().ReleaseAccess(pAlphaAcc); aBmp.GetBitmap().ReleaseAccess(pBmpAcc); } } catch( uno::Exception& ) { DBG_UNHANDLED_EXCEPTION(); exit(2); } catch( std::exception& ) { OSL_TRACE( "Caught std exception!" ); } if( g_failure ) exit(2); } } // namespace void Main() { TestWindow aWindow; aWindow.Execute(); aWindow.SetText( rtl::OUString( "VCL - canvasbitmaptest" ) ); Application::Execute(); } /* vim:set shiftwidth=4 softtabstop=4 expandtab: */