/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include "interpre.hxx" #include #include #include #include #include #include #include "svl/sharedstringpool.hxx" #include #include "attrib.hxx" #include "sc.hrc" #include "ddelink.hxx" #include "scmatrix.hxx" #include "compiler.hxx" #include "formulacell.hxx" #include "document.hxx" #include "dociter.hxx" #include "docoptio.hxx" #include "unitconv.hxx" #include "globstr.hrc" #include "hints.hxx" #include "dpobject.hxx" #include "postit.hxx" #include "tokenarray.hxx" #include "globalnames.hxx" #include #include #include using ::std::vector; using namespace com::sun::star; using namespace formula; #define SCdEpsilon 1.0E-7 // Datum und Zeit double ScInterpreter::GetDateSerial( sal_Int16 nYear, sal_Int16 nMonth, sal_Int16 nDay, bool bStrict, bool bCheckGregorian ) { if ( nYear < 100 && !bStrict ) nYear = pFormatter->ExpandTwoDigitYear( nYear ); // Do not use a default Date ctor here because it asks system time with a // performance penalty. sal_Int16 nY, nM, nD; if (bStrict) nY = nYear, nM = nMonth, nD = nDay; else { if (nMonth > 0) { nY = nYear + (nMonth-1) / 12; nM = ((nMonth-1) % 12) + 1; } else { nY = nYear + (nMonth-12) / 12; nM = 12 - (-nMonth) % 12; } nD = 1; } Date aDate( nD, nM, nY); if (!bStrict) aDate += nDay - 1; if ((!bCheckGregorian && aDate.IsValidDate()) || (bCheckGregorian && aDate.IsValidAndGregorian())) return (double) (aDate - *(pFormatter->GetNullDate())); else { SetError(errNoValue); return 0; } } // Funktionen void ScInterpreter::ScGetActDate() { nFuncFmtType = NUMBERFORMAT_DATE; Date aActDate( Date::SYSTEM ); long nDiff = aActDate - *(pFormatter->GetNullDate()); PushDouble((double) nDiff); } void ScInterpreter::ScGetActTime() { nFuncFmtType = NUMBERFORMAT_DATETIME; Date aActDate( Date::SYSTEM ); long nDiff = aActDate - *(pFormatter->GetNullDate()); Time aActTime( Time::SYSTEM ); double nTime = aActTime.GetHour() / static_cast(::Time::hourPerDay) + aActTime.GetMin() / static_cast(::Time::minutePerDay) + aActTime.GetSec() / static_cast(::Time::secondPerDay) + aActTime.GetNanoSec() / static_cast(::Time::nanoSecPerDay); PushDouble( (double) nDiff + nTime ); } void ScInterpreter::ScGetYear() { Date aDate = *(pFormatter->GetNullDate()); aDate += (long) ::rtl::math::approxFloor(GetDouble()); PushDouble( (double) aDate.GetYear() ); } void ScInterpreter::ScGetMonth() { Date aDate = *(pFormatter->GetNullDate()); aDate += (long) ::rtl::math::approxFloor(GetDouble()); PushDouble( (double) aDate.GetMonth() ); } void ScInterpreter::ScGetDay() { Date aDate = *(pFormatter->GetNullDate()); aDate += (long)::rtl::math::approxFloor(GetDouble()); PushDouble((double) aDate.GetDay()); } void ScInterpreter::ScGetMin() { double fTime = GetDouble(); fTime -= ::rtl::math::approxFloor(fTime); // Datumsanteil weg long nVal = (long)::rtl::math::approxFloor(fTime*DATE_TIME_FACTOR+0.5) % ::Time::secondPerHour; PushDouble( (double) (nVal / ::Time::secondPerMinute) ); } void ScInterpreter::ScGetSec() { double fTime = GetDouble(); fTime -= ::rtl::math::approxFloor(fTime); // Datumsanteil weg long nVal = (long)::rtl::math::approxFloor(fTime*DATE_TIME_FACTOR+0.5) % ::Time::secondPerMinute; PushDouble( (double) nVal ); } void ScInterpreter::ScGetHour() { double fTime = GetDouble(); fTime -= ::rtl::math::approxFloor(fTime); // Datumsanteil weg long nVal = (long)::rtl::math::approxFloor(fTime*DATE_TIME_FACTOR+0.5) / ::Time::secondPerHour; PushDouble((double) nVal); } void ScInterpreter::ScGetDateValue() { OUString aInputString = GetString().getString(); sal_uInt32 nFIndex = 0; // damit default Land/Spr. double fVal; if (pFormatter->IsNumberFormat(aInputString, nFIndex, fVal)) { short eType = pFormatter->GetType(nFIndex); if (eType == NUMBERFORMAT_DATE || eType == NUMBERFORMAT_DATETIME) PushDouble(::rtl::math::approxFloor(fVal)); else PushIllegalArgument(); } else PushIllegalArgument(); } void ScInterpreter::ScGetDayOfWeek() { sal_uInt8 nParamCount = GetByte(); if ( MustHaveParamCount( nParamCount, 1, 2 ) ) { short nFlag; if (nParamCount == 2) nFlag = (short) ::rtl::math::approxFloor(GetDouble()); else nFlag = 1; Date aDate = *(pFormatter->GetNullDate()); aDate += (long)::rtl::math::approxFloor(GetDouble()); int nVal = (int) aDate.GetDayOfWeek(); if (nFlag == 1) { if (nVal == 6) nVal = 1; else nVal += 2; } else if (nFlag == 2) nVal += 1; PushInt( nVal ); } } void ScInterpreter::ScGetWeekOfYear() { if ( MustHaveParamCount( GetByte(), 2 ) ) { short nFlag = (short) ::rtl::math::approxFloor(GetDouble()); Date aDate = *(pFormatter->GetNullDate()); aDate += (long)::rtl::math::approxFloor(GetDouble()); PushInt( (int) aDate.GetWeekOfYear( nFlag == 1 ? SUNDAY : MONDAY )); } } void ScInterpreter::ScEasterSunday() { nFuncFmtType = NUMBERFORMAT_DATE; if ( MustHaveParamCount( GetByte(), 1 ) ) { sal_Int16 nDay, nMonth, nYear; nYear = (sal_Int16) ::rtl::math::approxFloor( GetDouble() ); if ( nYear < 100 ) nYear = pFormatter->ExpandTwoDigitYear( nYear ); // don't worry, be happy :) int B,C,D,E,F,G,H,I,K,L,M,N,O; N = nYear % 19; B = int(nYear / 100); C = nYear % 100; D = int(B / 4); E = B % 4; F = int((B + 8) / 25); G = int((B - F + 1) / 3); H = (19 * N + B - D - G + 15) % 30; I = int(C / 4); K = C % 4; L = (32 + 2 * E + 2 * I - H - K) % 7; M = int((N + 11 * H + 22 * L) / 451); O = H + L - 7 * M + 114; nDay = sal::static_int_cast( O % 31 + 1 ); nMonth = sal::static_int_cast( int(O / 31) ); PushDouble( GetDateSerial( nYear, nMonth, nDay, true, true ) ); } } sal_uInt16 ScInterpreter::GetWeekendAndHolidayMasks( const sal_uInt8 nParamCount, const sal_uInt32 nNullDate, vector< double >& rSortArray, OUString& rWeekendDays, bool bWeekendMask[ 7 ] ) { sal_uInt16 nErr = 0; if ( nParamCount == 4 ) { GetSortArray( 1, rSortArray ); size_t nMax = rSortArray.size(); for ( size_t i = 0; i < nMax; i++ ) rSortArray.at( i ) = ::rtl::math::approxFloor( rSortArray.at( i ) ) + nNullDate; } if ( nParamCount >= 3 ) rWeekendDays = GetString().getString(); for ( int i = 0; i < 7; i++ ) bWeekendMask[ i] = false; if ( rWeekendDays.isEmpty() ) { bWeekendMask[ SATURDAY ] = true; bWeekendMask[ SUNDAY ] = true; } else { switch ( rWeekendDays.getLength() ) { case 1 : // Weekend days defined by code switch ( rWeekendDays[ 0 ] ) { case '1' : bWeekendMask[ SATURDAY ] = true; bWeekendMask[ SUNDAY ] = true; break; case '2' : bWeekendMask[ SUNDAY ] = true; bWeekendMask[ MONDAY ] = true; break; case '3' : bWeekendMask[ MONDAY ] = true; bWeekendMask[ TUESDAY ] = true; break; case '4' : bWeekendMask[ TUESDAY ] = true; bWeekendMask[ WEDNESDAY ] = true; break; case '5' : bWeekendMask[ WEDNESDAY ] = true; bWeekendMask[ THURSDAY ] = true; break; case '6' : bWeekendMask[ THURSDAY ] = true; bWeekendMask[ FRIDAY ] = true; break; case '7' : bWeekendMask[ FRIDAY ] = true; bWeekendMask[ SATURDAY ] = true; break; default : nErr = errIllegalArgument; break; } break; case 2 : // Weekend day defined by code if ( rWeekendDays[ 0 ] == '1' ) { switch ( rWeekendDays[ 1 ] ) { case '1' : bWeekendMask[ SUNDAY ] = true; break; case '2' : bWeekendMask[ MONDAY ] = true; break; case '3' : bWeekendMask[ TUESDAY ] = true; break; case '4' : bWeekendMask[ WEDNESDAY ] = true; break; case '5' : bWeekendMask[ THURSDAY ] = true; break; case '6' : bWeekendMask[ FRIDAY ] = true; break; case '7' : bWeekendMask[ SATURDAY ] = true; break; default : nErr = errIllegalArgument; break; } } else nErr = errIllegalArgument; break; case 7 : // Weekend days defined by string for ( int i = 0; i < 7 && !nErr; i++ ) { switch ( rWeekendDays[ i ] ) { case '0' : bWeekendMask[ i ] = false; break; case '1' : bWeekendMask[ i ] = true; break; default : nErr = errIllegalArgument; break; } } break; default : nErr = errIllegalArgument; break; } } return nErr; } void ScInterpreter::ScNetWorkdays_MS() { sal_uInt8 nParamCount = GetByte(); if ( MustHaveParamCount( nParamCount, 2, 4 ) ) { vector nSortArray; bool bWeekendMask[ 7 ]; OUString aWeekendDays; Date aNullDate = *( pFormatter->GetNullDate() ); sal_uInt32 nNullDate = Date::DateToDays( aNullDate.GetDay(), aNullDate.GetMonth(), aNullDate.GetYear() ); sal_uInt16 nErr = GetWeekendAndHolidayMasks( nParamCount, nNullDate, nSortArray , aWeekendDays, bWeekendMask ); if ( nErr ) PushError( nErr ); else { sal_uInt32 nDate2 = ( sal_uInt32 )::rtl::math::approxFloor( GetDouble() ) + nNullDate; sal_uInt32 nDate1 = ( sal_uInt32 )::rtl::math::approxFloor( GetDouble() ) + nNullDate; sal_Int32 nCnt = 0; size_t nRef = 0; bool bReverse = ( nDate1 > nDate2 ); if ( bReverse ) { sal_uInt32 nTemp = nDate1; nDate1 = nDate2; nDate2 = nTemp; } size_t nMax = nSortArray.size(); while ( nDate1 <= nDate2 ) { if ( !bWeekendMask[ GetDayOfWeek( nDate1 ) ] ) { while ( nRef < nMax && nSortArray.at( nRef ) < nDate1 ) nRef++; if ( !( nRef < nMax && nSortArray.at( nRef ) == nDate1 ) ) nCnt++; } ++nDate1; } PushDouble( ( double ) ( bReverse ? -nCnt : nCnt ) ); } } } void ScInterpreter::ScWorkday_MS() { sal_uInt8 nParamCount = GetByte(); if ( MustHaveParamCount( nParamCount, 2, 4 ) ) { nFuncFmtType = NUMBERFORMAT_DATE; vector nSortArray; bool bWeekendMask[ 7 ]; OUString aWeekendDays; Date aNullDate = *( pFormatter->GetNullDate() ); sal_uInt32 nNullDate = Date::DateToDays( aNullDate.GetDay(), aNullDate.GetMonth(), aNullDate.GetYear() ); sal_uInt16 nErr = GetWeekendAndHolidayMasks( nParamCount, nNullDate, nSortArray , aWeekendDays, bWeekendMask ); if ( nErr ) PushError( nErr ); else { sal_Int32 nDays = ::rtl::math::approxFloor( GetDouble() ); sal_uInt32 nDate = ( sal_uInt32 )::rtl::math::approxFloor( GetDouble() ) + nNullDate; if ( !nDays ) PushDouble( ( double ) ( nDate - nNullDate ) ); else { size_t nMax = nSortArray.size(); if ( nDays > 0 ) { size_t nRef = 0; while ( nDays ) { while ( nRef < nMax && nSortArray.at( nRef ) < nDate ) nRef++; if ( !( nRef < nMax && nSortArray.at( nRef ) == nDate ) || nRef >= nMax ) nDays--; do ++nDate; while ( bWeekendMask[ GetDayOfWeek( nDate ) ] ); //jump over weekend day(s) } } else { sal_Int16 nRef = nMax - 1; while ( nDays ) { while ( nRef >= 0 && nSortArray.at( nRef ) > nDate ) nRef--; if ( !( nRef >= 0 && nSortArray.at( nRef ) == nDate ) || nRef < 0 ) nDays++; do --nDate; while ( bWeekendMask[ GetDayOfWeek( nDate ) ] ); //jump over weekend day(s) } } PushDouble( ( double ) ( nDate - nNullDate ) ); } } } } void ScInterpreter::ScGetDate() { nFuncFmtType = NUMBERFORMAT_DATE; if ( MustHaveParamCount( GetByte(), 3 ) ) { sal_Int16 nDay = (sal_Int16) ::rtl::math::approxFloor(GetDouble()); sal_Int16 nMonth = (sal_Int16) ::rtl::math::approxFloor(GetDouble()); sal_Int16 nYear = (sal_Int16) ::rtl::math::approxFloor(GetDouble()); if (nYear < 0) PushIllegalArgument(); else { PushDouble(GetDateSerial(nYear, nMonth, nDay, false, true)); } } } void ScInterpreter::ScGetTime() { nFuncFmtType = NUMBERFORMAT_TIME; if ( MustHaveParamCount( GetByte(), 3 ) ) { double nSec = GetDouble(); double nMin = GetDouble(); double nHour = GetDouble(); double fTime = fmod( (nHour * ::Time::secondPerHour) + (nMin * ::Time::secondPerMinute) + nSec, DATE_TIME_FACTOR) / DATE_TIME_FACTOR; if (fTime < 0) PushIllegalArgument(); else PushDouble( fTime); } } void ScInterpreter::ScGetDiffDate() { if ( MustHaveParamCount( GetByte(), 2 ) ) { double nDate2 = GetDouble(); double nDate1 = GetDouble(); PushDouble(nDate1 - nDate2); } } void ScInterpreter::ScGetDiffDate360() { /* Implementation follows * http://www.bondmarkets.com/eCommerce/SMD_Fields_030802.pdf * Appendix B: Day-Count Bases, there are 7 different ways to calculate the * 30-days count. That document also claims that Excel implements the "PSA * 30" or "NASD 30" method (funny enough they also state that Excel is the * only tool that does so). * * Note that the definition given in * http://msdn.microsoft.com/library/en-us/office97/html/SEB7C.asp * is _not_ the way how it is actually calculated by Excel (that would not * even match any of the 7 methods mentioned above) and would result in the * following test cases producing wrong results according to that appendix B: * * 28-Feb-95 31-Aug-95 181 instead of 180 * 29-Feb-96 31-Aug-96 181 instead of 180 * 30-Jan-96 31-Mar-96 61 instead of 60 * 31-Jan-96 31-Mar-96 61 instead of 60 * * Still, there is a difference between OOoCalc and Excel: * In Excel: * 02-Feb-99 31-Mar-00 results in 419 * 31-Mar-00 02-Feb-99 results in -418 * In Calc the result is 419 respectively -419. I consider the -418 a bug in Excel. */ sal_uInt8 nParamCount = GetByte(); if ( MustHaveParamCount( nParamCount, 2, 3 ) ) { bool bFlag; if (nParamCount == 3) bFlag = GetBool(); else bFlag = false; double nDate2 = GetDouble(); double nDate1 = GetDouble(); if (nGlobalError) PushError( nGlobalError); else { double fSign; // #i84934# only for non-US European algorithm swap dates. Else // follow Excel's meaningless extrapolation for "interoperability". if (bFlag && (nDate2 < nDate1)) { fSign = nDate1; nDate1 = nDate2; nDate2 = fSign; fSign = -1.0; } else fSign = 1.0; Date aDate1 = *(pFormatter->GetNullDate()); aDate1 += (long) ::rtl::math::approxFloor(nDate1); Date aDate2 = *(pFormatter->GetNullDate()); aDate2 += (long) ::rtl::math::approxFloor(nDate2); if (aDate1.GetDay() == 31) aDate1 -= (sal_uLong) 1; else if (!bFlag) { if (aDate1.GetMonth() == 2) { switch ( aDate1.GetDay() ) { case 28 : if ( !aDate1.IsLeapYear() ) aDate1.SetDay(30); break; case 29 : aDate1.SetDay(30); break; } } } if (aDate2.GetDay() == 31) { if (!bFlag ) { if (aDate1.GetDay() == 30) aDate2 -= (sal_uLong) 1; } else aDate2.SetDay(30); } PushDouble( fSign * (double) ( (double) aDate2.GetDay() + (double) aDate2.GetMonth() * 30.0 + (double) aDate2.GetYear() * 360.0 - (double) aDate1.GetDay() - (double) aDate1.GetMonth() * 30.0 - (double)aDate1.GetYear() * 360.0) ); } } } // fdo#44456 function DATEDIF as defined in ODF1.2 (Par. 6.10.3) void ScInterpreter::ScGetDateDif() { if ( MustHaveParamCount( GetByte(), 3 ) ) { OUString aInterval = GetString().getString(); double nDate2 = GetDouble(); double nDate1 = GetDouble(); if (nGlobalError) { PushError( nGlobalError); return; } // Excel doesn't swap dates or return negative numbers, so don't we. if (nDate1 > nDate2) { PushIllegalArgument(); return; } long dd = nDate2 - nDate1; // Zero difference or number of days can be returned immediately. if (dd == 0 || aInterval.equalsIgnoreAsciiCase( "d" )) { PushDouble( dd ); return; } // split dates in day, month, year for use with formats other than "d" sal_uInt16 d1, m1, y1, d2, m2, y2; Date aDate1( *( pFormatter->GetNullDate())); aDate1 += (long) ::rtl::math::approxFloor( nDate1 ); y1 = aDate1.GetYear(); m1 = aDate1.GetMonth(); d1 = aDate1.GetDay(); Date aDate2( *( pFormatter->GetNullDate())); aDate2 += (long) ::rtl::math::approxFloor( nDate2 ); y2 = aDate2.GetYear(); m2 = aDate2.GetMonth(); d2 = aDate2.GetDay(); if ( aInterval.equalsIgnoreAsciiCase( "m" ) ) { // Return number of months. int md = m2 - m1 + 12 * (y2 - y1); if (d1 > d2) --md; PushInt( md ); } else if ( aInterval.equalsIgnoreAsciiCase( "y" ) ) { // Return number of years. int yd; if ( y2 > y1 ) { if (m2 > m1 || (m2 == m1 && d2 >= d1)) yd = y2 - y1; // complete years between dates else yd = y2 - y1 - 1; // one incomplete year } else { // Year is equal as we don't allow reversed arguments, no // complete year between dates. yd = 0; } PushInt( yd ); } else if ( aInterval.equalsIgnoreAsciiCase( "md" ) ) { // Return number of days, excluding months and years. // This is actually the remainder of days when subtracting years // and months from the difference of dates. Birthday-like 23 years // and 10 months and 19 days. // Algorithm's roll-over behavior extracted from Excel by try and // error.. // If day1 <= day2 then simply day2 - day1. // If day1 > day2 then set month1 to month2-1 and year1 to // year2(-1) and subtract dates, e.g. for 2012-01-28,2012-03-01 set // 2012-02-28 and then (2012-03-01)-(2012-02-28) => 2 days (leap // year). // For 2011-01-29,2011-03-01 the non-existent 2011-02-29 rolls over // to 2011-03-01 so the result is 0. Same for day 31 in months with // only 30 days. long nd; if (d1 <= d2) nd = d2 - d1; else { if (m2 == 1) { aDate1.SetYear( y2 - 1 ); aDate1.SetMonth( 12 ); } else { aDate1.SetYear( y2 ); aDate1.SetMonth( m2 - 1 ); } aDate1.Normalize(); nd = aDate2 - aDate1; } PushDouble( nd ); } else if ( aInterval.equalsIgnoreAsciiCase( "ym" ) ) { // Return number of months, excluding years. int md = m2 - m1 + 12 * (y2 - y1); if (d1 > d2) --md; md %= 12; PushInt( md ); } else if ( aInterval.equalsIgnoreAsciiCase( "yd" ) ) { // Return number of days, excluding years. /* TODO: check what Excel really does, though this seems to be * reasonable */ // Condition corresponds with "y". if (m2 > m1 || (m2 == m1 && d2 >= d1)) aDate1.SetYear( y2 ); else aDate1.SetYear( y2 - 1 ); // XXX NOTE: Excel for the case 1988-06-22,2012-05-11 returns // 323, whereas the result here is 324. Don't they use the leap // year of 2012? // http://www.cpearson.com/excel/datedif.aspx "DATEDIF And Leap // Years" is not correct and Excel 2010 correctly returns 0 in // both cases mentioned there. Also using year1 as mentioned // produces incorrect results in other cases and different from // Excel 2010. Apparently they fixed some calculations. aDate1.Normalize(); double nd = aDate2 - aDate1; PushDouble( nd ); } else PushIllegalArgument(); // unsupported format } } void ScInterpreter::ScGetTimeValue() { OUString aInputString = GetString().getString(); sal_uInt32 nFIndex = 0; // damit default Land/Spr. double fVal; if (pFormatter->IsNumberFormat(aInputString, nFIndex, fVal)) { short eType = pFormatter->GetType(nFIndex); if (eType == NUMBERFORMAT_TIME || eType == NUMBERFORMAT_DATETIME) { double fDateVal = rtl::math::approxFloor(fVal); double fTimeVal = fVal - fDateVal; PushDouble(fTimeVal); } else PushIllegalArgument(); } else PushIllegalArgument(); } void ScInterpreter::ScPlusMinus() { double nVal = GetDouble(); short n = 0; if (nVal < 0.0) n = -1; else if (nVal > 0.0) n = 1; PushInt( n ); } void ScInterpreter::ScAbs() { PushDouble(fabs(GetDouble())); } void ScInterpreter::ScInt() { PushDouble(::rtl::math::approxFloor(GetDouble())); } void ScInterpreter::RoundNumber( rtl_math_RoundingMode eMode ) { sal_uInt8 nParamCount = GetByte(); if ( MustHaveParamCount( nParamCount, 1, 2 ) ) { double fVal = 0.0; if (nParamCount == 1) fVal = ::rtl::math::round( GetDouble(), 0, eMode ); else { sal_Int32 nDec = (sal_Int32) ::rtl::math::approxFloor(GetDouble()); if( nDec < -20 || nDec > 20 ) PushIllegalArgument(); else fVal = ::rtl::math::round( GetDouble(), (short)nDec, eMode ); } PushDouble(fVal); } } void ScInterpreter::ScRound() { RoundNumber( rtl_math_RoundingMode_Corrected ); } void ScInterpreter::ScRoundDown() { RoundNumber( rtl_math_RoundingMode_Down ); } void ScInterpreter::ScRoundUp() { RoundNumber( rtl_math_RoundingMode_Up ); } void ScInterpreter::ScCeil() { sal_uInt8 nParamCount = GetByte(); if ( MustHaveParamCount( nParamCount, 2, 3 ) ) { bool bAbs = ( nParamCount == 3 ? GetBool() : false ); double fDec = GetDouble(); double fVal = GetDouble(); if ( fDec == 0.0 ) PushInt(0); else if (fVal*fDec < 0.0) PushIllegalArgument(); else { if ( !bAbs && fVal < 0.0 ) PushDouble(::rtl::math::approxFloor(fVal/fDec) * fDec); else PushDouble(::rtl::math::approxCeil(fVal/fDec) * fDec); } } } void ScInterpreter::ScCeil_MS() { sal_uInt8 nParamCount = GetByte(); if ( MustHaveParamCount( nParamCount, 1, 2 ) ) { double fDec, fVal; if ( nParamCount == 1 ) { fVal = GetDouble(); fDec = 1.0; } else { fDec = fabs( GetDoubleWithDefault( 1.0 )); fVal = GetDouble(); } if ( fDec == 0.0 || fVal == 0.0 ) PushInt( 0 ); else PushDouble(::rtl::math::approxCeil( fVal / fDec ) * fDec ); } } void ScInterpreter::ScFloor() { sal_uInt8 nParamCount = GetByte(); if ( MustHaveParamCount( nParamCount, 2, 3 ) ) { bool bAbs = ( nParamCount == 3 ? GetBool() : false ); double fDec = GetDouble(); double fVal = GetDouble(); if ( fDec == 0.0 ) PushInt(0); else if (fVal*fDec < 0.0) PushIllegalArgument(); else { if ( !bAbs && fVal < 0.0 ) PushDouble(::rtl::math::approxCeil(fVal/fDec) * fDec); else PushDouble(::rtl::math::approxFloor(fVal/fDec) * fDec); } } } void ScInterpreter::ScFloor_MS() { sal_uInt8 nParamCount = GetByte(); if ( MustHaveParamCount( nParamCount, 1, 2 ) ) { double fDec, fVal; if ( nParamCount == 1 ) { fVal = GetDouble(); fDec = 1.0; } else { fDec = fabs( GetDoubleWithDefault( 1.0 )); fVal = GetDouble(); } if ( fDec == 0.0 || fVal == 0.0 ) PushInt( 0 ); else PushDouble(::rtl::math::approxFloor( fVal / fDec ) * fDec ); } } void ScInterpreter::ScEven() { double fVal = GetDouble(); if (fVal < 0.0) PushDouble(::rtl::math::approxFloor(fVal/2.0) * 2.0); else PushDouble(::rtl::math::approxCeil(fVal/2.0) * 2.0); } void ScInterpreter::ScOdd() { double fVal = GetDouble(); if (fVal >= 0.0) { fVal = ::rtl::math::approxCeil(fVal); if (fmod(fVal, 2.0) == 0.0) fVal += 1.0; } else { fVal = ::rtl::math::approxFloor(fVal); if (fmod(fVal, 2.0) == 0.0) fVal -= 1.0; } PushDouble(fVal); } void ScInterpreter::ScArcTan2() { if ( MustHaveParamCount( GetByte(), 2 ) ) { double nVal2 = GetDouble(); double nVal1 = GetDouble(); PushDouble(atan2(nVal2, nVal1)); } } void ScInterpreter::ScLog() { sal_uInt8 nParamCount = GetByte(); if ( MustHaveParamCount( nParamCount, 1, 2 ) ) { double nBase; if (nParamCount == 2) nBase = GetDouble(); else nBase = 10.0; double nVal = GetDouble(); if (nVal > 0.0 && nBase > 0.0 && nBase != 1.0) PushDouble(log(nVal) / log(nBase)); else PushIllegalArgument(); } } void ScInterpreter::ScLn() { double fVal = GetDouble(); if (fVal > 0.0) PushDouble(log(fVal)); else PushIllegalArgument(); } void ScInterpreter::ScLog10() { double fVal = GetDouble(); if (fVal > 0.0) PushDouble(log10(fVal)); else PushIllegalArgument(); } void ScInterpreter::ScNPV() { nFuncFmtType = NUMBERFORMAT_CURRENCY; short nParamCount = GetByte(); if ( MustHaveParamCount( nParamCount, 2, 31 ) ) { double nVal = 0.0; // Wir drehen den Stack um!! FormulaToken* pTemp[ 31 ]; for( short i = 0; i < nParamCount; i++ ) pTemp[ i ] = pStack[ sp - i - 1 ]; memcpy( &pStack[ sp - nParamCount ], pTemp, nParamCount * sizeof( FormulaToken* ) ); if (nGlobalError == 0) { double nCount = 1.0; double nZins = GetDouble(); --nParamCount; size_t nRefInList = 0; ScRange aRange; while (nParamCount-- > 0) { switch (GetStackType()) { case svDouble : { nVal += (GetDouble() / pow(1.0 + nZins, (double)nCount)); nCount++; } break; case svSingleRef : { ScAddress aAdr; PopSingleRef( aAdr ); ScRefCellValue aCell; aCell.assign(*pDok, aAdr); if (!aCell.hasEmptyValue() && aCell.hasNumeric()) { double nCellVal = GetCellValue(aAdr, aCell); nVal += (nCellVal / pow(1.0 + nZins, (double)nCount)); nCount++; } } break; case svDoubleRef : case svRefList : { sal_uInt16 nErr = 0; double nCellVal; PopDoubleRef( aRange, nParamCount, nRefInList); ScHorizontalValueIterator aValIter( pDok, aRange, glSubTotal); while ((nErr == 0) && aValIter.GetNext(nCellVal, nErr)) { nVal += (nCellVal / pow(1.0 + nZins, (double)nCount)); nCount++; } if ( nErr != 0 ) SetError(nErr); } break; default : SetError(errIllegalParameter); break; } } } PushDouble(nVal); } } void ScInterpreter::ScIRR() { double fSchaetzwert; nFuncFmtType = NUMBERFORMAT_PERCENT; sal_uInt8 nParamCount = GetByte(); if ( !MustHaveParamCount( nParamCount, 1, 2 ) ) return; if (nParamCount == 2) fSchaetzwert = GetDouble(); else fSchaetzwert = 0.1; sal_uInt16 sPos = sp; // Stack-Position merken double fEps = 1.0; double x, xNeu, fWert, fZaehler, fNenner, nCount; if (fSchaetzwert == -1.0) x = 0.1; // default gegen Nulldivisionen else x = fSchaetzwert; // Startwert switch (GetStackType()) { case svDoubleRef : break; default: { PushIllegalParameter(); return; } } const sal_uInt16 nIterationsMax = 20; sal_uInt16 nItCount = 0; ScRange aRange; while (fEps > SCdEpsilon && nItCount < nIterationsMax) { // Newton-Verfahren: sp = sPos; // Stack zuruecksetzen nCount = 0.0; fZaehler = 0.0; fNenner = 0.0; sal_uInt16 nErr = 0; PopDoubleRef( aRange ); ScValueIterator aValIter(pDok, aRange, glSubTotal); if (aValIter.GetFirst(fWert, nErr)) { fZaehler += fWert / pow(1.0+x,(double)nCount); fNenner += -nCount * fWert / pow(1.0+x,nCount+1.0); nCount++; while ((nErr == 0) && aValIter.GetNext(fWert, nErr)) { fZaehler += fWert / pow(1.0+x,(double)nCount); fNenner += -nCount * fWert / pow(1.0+x,nCount+1.0); nCount++; } SetError(nErr); } xNeu = x - fZaehler / fNenner; // x(i+1) = x(i)-f(x(i))/f'(x(i)) nItCount++; fEps = fabs(xNeu - x); x = xNeu; } if (fSchaetzwert == 0.0 && fabs(x) < SCdEpsilon) x = 0.0; // auf Null normieren if (fEps < SCdEpsilon) PushDouble(x); else PushError( errNoConvergence); } void ScInterpreter::ScMIRR() { // range_of_values ; rate_invest ; rate_reinvest nFuncFmtType = NUMBERFORMAT_PERCENT; if( MustHaveParamCount( GetByte(), 3 ) ) { double fRate1_reinvest = GetDouble() + 1; double fRate1_invest = GetDouble() + 1; ScRange aRange; PopDoubleRef( aRange ); if( nGlobalError ) PushError( nGlobalError); else { double fNPV_reinvest = 0.0; double fPow_reinvest = 1.0; double fNPV_invest = 0.0; double fPow_invest = 1.0; ScValueIterator aValIter( pDok, aRange, glSubTotal ); double fCellValue; sal_uLong nCount = 0; sal_uInt16 nIterError = 0; bool bLoop = aValIter.GetFirst( fCellValue, nIterError ); while( bLoop ) { if( fCellValue > 0.0 ) // reinvestments fNPV_reinvest += fCellValue * fPow_reinvest; else if( fCellValue < 0.0 ) // investments fNPV_invest += fCellValue * fPow_invest; fPow_reinvest /= fRate1_reinvest; fPow_invest /= fRate1_invest; nCount++; bLoop = aValIter.GetNext( fCellValue, nIterError ); } if( nIterError ) PushError( nIterError ); else { double fResult = -fNPV_reinvest / fNPV_invest; fResult *= pow( fRate1_reinvest, (double) nCount - 1 ); fResult = pow( fResult, 1.0 / (nCount - 1) ); PushDouble( fResult - 1.0 ); } } } } void ScInterpreter::ScISPMT() { // rate ; period ; total_periods ; invest if( MustHaveParamCount( GetByte(), 4 ) ) { double fInvest = GetDouble(); double fTotal = GetDouble(); double fPeriod = GetDouble(); double fRate = GetDouble(); if( nGlobalError ) PushError( nGlobalError); else PushDouble( fInvest * fRate * (fPeriod / fTotal - 1.0) ); } } // Finanzfunktionen double ScInterpreter::ScGetBw(double fZins, double fZzr, double fRmz, double fZw, double fF) { double fBw; if (fZins == 0.0) fBw = fZw + fRmz * fZzr; else if (fF > 0.0) fBw = (fZw * pow(1.0 + fZins, -fZzr)) + (fRmz * (1.0 - pow(1.0 + fZins, -fZzr + 1.0)) / fZins) + fRmz; else fBw = (fZw * pow(1.0 + fZins, -fZzr)) + (fRmz * (1.0 - pow(1.0 + fZins, -fZzr)) / fZins); return -fBw; } void ScInterpreter::ScBW() { nFuncFmtType = NUMBERFORMAT_CURRENCY; double nRmz, nZzr, nZins, nZw = 0, nFlag = 0; sal_uInt8 nParamCount = GetByte(); if ( !MustHaveParamCount( nParamCount, 3, 5 ) ) return; if (nParamCount == 5) nFlag = GetDouble(); if (nParamCount >= 4) nZw = GetDouble(); nRmz = GetDouble(); nZzr = GetDouble(); nZins = GetDouble(); PushDouble(ScGetBw(nZins, nZzr, nRmz, nZw, nFlag)); } void ScInterpreter::ScDIA() { nFuncFmtType = NUMBERFORMAT_CURRENCY; if ( MustHaveParamCount( GetByte(), 4 ) ) { double nZr = GetDouble(); double nDauer = GetDouble(); double nRest = GetDouble(); double nWert = GetDouble(); double nDia = ((nWert - nRest) * (nDauer - nZr + 1.0)) / ((nDauer * (nDauer + 1.0)) / 2.0); PushDouble(nDia); } } double ScInterpreter::ScGetGDA(double fWert, double fRest, double fDauer, double fPeriode, double fFactor) { double fGda, fZins, fAlterWert, fNeuerWert; fZins = fFactor / fDauer; if (fZins >= 1.0) { fZins = 1.0; if (fPeriode == 1.0) fAlterWert = fWert; else fAlterWert = 0.0; } else fAlterWert = fWert * pow(1.0 - fZins, fPeriode - 1.0); fNeuerWert = fWert * pow(1.0 - fZins, fPeriode); if (fNeuerWert < fRest) fGda = fAlterWert - fRest; else fGda = fAlterWert - fNeuerWert; if (fGda < 0.0) fGda = 0.0; return fGda; } void ScInterpreter::ScGDA() { nFuncFmtType = NUMBERFORMAT_CURRENCY; sal_uInt8 nParamCount = GetByte(); if ( MustHaveParamCount( nParamCount, 4, 5 ) ) { double nFactor; if (nParamCount == 5) nFactor = GetDouble(); else nFactor = 2.0; double nPeriode = GetDouble(); double nDauer = GetDouble(); double nRest = GetDouble(); double nWert = GetDouble(); if (nWert < 0.0 || nRest < 0.0 || nFactor <= 0.0 || nRest > nWert || nPeriode < 1.0 || nPeriode > nDauer) PushIllegalArgument(); else PushDouble(ScGetGDA(nWert, nRest, nDauer, nPeriode, nFactor)); } } void ScInterpreter::ScGDA2() { nFuncFmtType = NUMBERFORMAT_CURRENCY; sal_uInt8 nParamCount = GetByte(); if ( !MustHaveParamCount( nParamCount, 4, 5 ) ) return ; double nMonate; if (nParamCount == 4) nMonate = 12.0; else nMonate = ::rtl::math::approxFloor(GetDouble()); double nPeriode = GetDouble(); double nDauer = GetDouble(); double nRest = GetDouble(); double nWert = GetDouble(); if (nMonate < 1.0 || nMonate > 12.0 || nDauer > 1200.0 || nRest < 0.0 || nPeriode > (nDauer + 1.0) || nRest > nWert || nWert < 0.0) { PushIllegalArgument(); return; } double nAbRate = 1.0 - pow(nRest / nWert, 1.0 / nDauer); nAbRate = ::rtl::math::approxFloor((nAbRate * 1000.0) + 0.5) / 1000.0; double nErsteAbRate = nWert * nAbRate * nMonate / 12.0; double nGda2 = 0.0; if (::rtl::math::approxFloor(nPeriode) == 1) nGda2 = nErsteAbRate; else { double nSummAbRate = nErsteAbRate; double nMin = nDauer; if (nMin > nPeriode) nMin = nPeriode; sal_uInt16 iMax = (sal_uInt16)::rtl::math::approxFloor(nMin); for (sal_uInt16 i = 2; i <= iMax; i++) { nGda2 = (nWert - nSummAbRate) * nAbRate; nSummAbRate += nGda2; } if (nPeriode > nDauer) nGda2 = ((nWert - nSummAbRate) * nAbRate * (12.0 - nMonate)) / 12.0; } PushDouble(nGda2); } double ScInterpreter::ScInterVDB(double fWert,double fRest,double fDauer, double fDauer1,double fPeriode,double fFactor) { double fVdb=0; double fIntEnd = ::rtl::math::approxCeil(fPeriode); sal_uLong nLoopEnd = (sal_uLong) fIntEnd; double fTerm, fLia; double fRestwert = fWert - fRest; bool bNowLia = false; double fGda; sal_uLong i; fLia=0; for ( i = 1; i <= nLoopEnd; i++) { if(!bNowLia) { fGda = ScGetGDA(fWert, fRest, fDauer, (double) i, fFactor); fLia = fRestwert/ (fDauer1 - (double) (i-1)); if (fLia > fGda) { fTerm = fLia; bNowLia = true; } else { fTerm = fGda; fRestwert -= fGda; } } else { fTerm = fLia; } if ( i == nLoopEnd) fTerm *= ( fPeriode + 1.0 - fIntEnd ); fVdb += fTerm; } return fVdb; } inline double DblMin( double a, double b ) { return (a < b) ? a : b; } void ScInterpreter::ScVDB() { nFuncFmtType = NUMBERFORMAT_CURRENCY; sal_uInt8 nParamCount = GetByte(); if ( MustHaveParamCount( nParamCount, 5, 7 ) ) { double fWert, fRest, fDauer, fAnfang, fEnde, fFactor, fVdb = 0.0; bool bFlag; if (nParamCount == 7) bFlag = GetBool(); else bFlag = false; if (nParamCount >= 6) fFactor = GetDouble(); else fFactor = 2.0; fEnde = GetDouble(); fAnfang = GetDouble(); fDauer = GetDouble(); fRest = GetDouble(); fWert = GetDouble(); if (fAnfang < 0.0 || fEnde < fAnfang || fEnde > fDauer || fWert < 0.0 || fRest > fWert || fFactor <= 0.0) PushIllegalArgument(); else { double fIntStart = ::rtl::math::approxFloor(fAnfang); double fIntEnd = ::rtl::math::approxCeil(fEnde); sal_uLong nLoopStart = (sal_uLong) fIntStart; sal_uLong nLoopEnd = (sal_uLong) fIntEnd; fVdb = 0.0; if (bFlag) { for (sal_uLong i = nLoopStart + 1; i <= nLoopEnd; i++) { double fTerm = ScGetGDA(fWert, fRest, fDauer, (double) i, fFactor); // Teilperioden am Anfang / Ende beruecksichtigen: if ( i == nLoopStart+1 ) fTerm *= ( DblMin( fEnde, fIntStart + 1.0 ) - fAnfang ); else if ( i == nLoopEnd ) fTerm *= ( fEnde + 1.0 - fIntEnd ); fVdb += fTerm; } } else { double fDauer1=fDauer; //@Die Frage aller Fragen: "Ist das hier richtig" if(!::rtl::math::approxEqual(fAnfang,::rtl::math::approxFloor(fAnfang))) { if(fFactor>1) { if(fAnfang>fDauer/2 || ::rtl::math::approxEqual(fAnfang,fDauer/2)) { double fPart=fAnfang-fDauer/2; fAnfang=fDauer/2; fEnde-=fPart; fDauer1+=1; } } } fWert-=ScInterVDB(fWert,fRest,fDauer,fDauer1,fAnfang,fFactor); fVdb=ScInterVDB(fWert,fRest,fDauer,fDauer-fAnfang,fEnde-fAnfang,fFactor); } } PushDouble(fVdb); } } void ScInterpreter::ScLaufz() { if ( MustHaveParamCount( GetByte(), 3 ) ) { double nZukunft = GetDouble(); double nGegenwart = GetDouble(); double nZins = GetDouble(); PushDouble(log(nZukunft / nGegenwart) / log(1.0 + nZins)); } } void ScInterpreter::ScLIA() { nFuncFmtType = NUMBERFORMAT_CURRENCY; if ( MustHaveParamCount( GetByte(), 3 ) ) { double nDauer = GetDouble(); double nRest = GetDouble(); double nWert = GetDouble(); PushDouble((nWert - nRest) / nDauer); } } double ScInterpreter::ScGetRmz(double fRate, double fNper, double fPv, double fFv, double fPaytype) { double fPayment; if (fRate == 0.0) fPayment = (fPv + fFv) / fNper; else { if (fPaytype > 0.0) // payment in advance fPayment = (fFv + fPv * exp( fNper * ::rtl::math::log1p(fRate) ) ) * fRate / (::rtl::math::expm1( (fNper + 1) * ::rtl::math::log1p(fRate) ) - fRate); else // payment in arrear fPayment = (fFv + fPv * exp(fNper * ::rtl::math::log1p(fRate) ) ) * fRate / ::rtl::math::expm1( fNper * ::rtl::math::log1p(fRate) ); } return -fPayment; } void ScInterpreter::ScRMZ() { double nZins, nZzr, nBw, nZw = 0, nFlag = 0; nFuncFmtType = NUMBERFORMAT_CURRENCY; sal_uInt8 nParamCount = GetByte(); if ( !MustHaveParamCount( nParamCount, 3, 5 ) ) return; if (nParamCount == 5) nFlag = GetDouble(); if (nParamCount >= 4) nZw = GetDouble(); nBw = GetDouble(); nZzr = GetDouble(); nZins = GetDouble(); PushDouble(ScGetRmz(nZins, nZzr, nBw, nZw, nFlag)); } void ScInterpreter::ScZGZ() { nFuncFmtType = NUMBERFORMAT_PERCENT; if ( MustHaveParamCount( GetByte(), 3 ) ) { double nZukunftswert = GetDouble(); double nGegenwartswert = GetDouble(); double nZeitraum = GetDouble(); PushDouble(pow(nZukunftswert / nGegenwartswert, 1.0 / nZeitraum) - 1.0); } } double ScInterpreter::ScGetZw(double fZins, double fZzr, double fRmz, double fBw, double fF) { double fZw; if (fZins == 0.0) fZw = fBw + fRmz * fZzr; else { double fTerm = pow(1.0 + fZins, fZzr); if (fF > 0.0) fZw = fBw * fTerm + fRmz*(1.0 + fZins)*(fTerm - 1.0)/fZins; else fZw = fBw * fTerm + fRmz*(fTerm - 1.0)/fZins; } return -fZw; } void ScInterpreter::ScZW() { double nZins, nZzr, nRmz, nBw = 0, nFlag = 0; nFuncFmtType = NUMBERFORMAT_CURRENCY; sal_uInt8 nParamCount = GetByte(); if ( !MustHaveParamCount( nParamCount, 3, 5 ) ) return; if (nParamCount == 5) nFlag = GetDouble(); if (nParamCount >= 4) nBw = GetDouble(); nRmz = GetDouble(); nZzr = GetDouble(); nZins = GetDouble(); PushDouble(ScGetZw(nZins, nZzr, nRmz, nBw, nFlag)); } void ScInterpreter::ScZZR() { double nZins, nRmz, nBw, nZw = 0, nFlag = 0; sal_uInt8 nParamCount = GetByte(); if ( !MustHaveParamCount( nParamCount, 3, 5 ) ) return; if (nParamCount == 5) nFlag = GetDouble(); if (nParamCount >= 4) nZw = GetDouble(); nBw = GetDouble(); nRmz = GetDouble(); nZins = GetDouble(); if (nZins == 0.0) PushDouble(-(nBw + nZw)/nRmz); else if (nFlag > 0.0) PushDouble(log(-(nZins*nZw-nRmz*(1.0+nZins))/(nZins*nBw+nRmz*(1.0+nZins))) /log(1.0+nZins)); else PushDouble(log(-(nZins*nZw-nRmz)/(nZins*nBw+nRmz))/log(1.0+nZins)); } bool ScInterpreter::RateIteration( double fNper, double fPayment, double fPv, double fFv, double fPayType, double & fGuess ) { // See also #i15090# // Newton-Raphson method: x(i+1) = x(i) - f(x(i)) / f'(x(i)) // This solution handles integer and non-integer values of Nper different. // If ODFF will constraint Nper to integer, the distinction of cases can be // removed; only the integer-part is needed then. bool bValid = true, bFound = false; double fX, fXnew, fTerm, fTermDerivation; double fGeoSeries, fGeoSeriesDerivation; const sal_uInt16 nIterationsMax = 150; sal_uInt16 nCount = 0; const double fEpsilonSmall = 1.0E-14; // convert any fPayType situation to fPayType == zero situation fFv = fFv - fPayment * fPayType; fPv = fPv + fPayment * fPayType; if (fNper == ::rtl::math::round( fNper, 0, rtl_math_RoundingMode_Corrected )) { // Nper is an integer value fX = fGuess; double fPowN, fPowNminus1; // for (1.0+fX)^Nper and (1.0+fX)^(Nper-1) while (!bFound && nCount < nIterationsMax) { fPowNminus1 = pow( 1.0+fX, fNper-1.0); fPowN = fPowNminus1 * (1.0+fX); if (rtl::math::approxEqual( fabs(fX), 0.0)) { fGeoSeries = fNper; fGeoSeriesDerivation = fNper * (fNper-1.0)/2.0; } else { fGeoSeries = (fPowN-1.0)/fX; fGeoSeriesDerivation = fNper * fPowNminus1 / fX - fGeoSeries / fX; } fTerm = fFv + fPv *fPowN+ fPayment * fGeoSeries; fTermDerivation = fPv * fNper * fPowNminus1 + fPayment * fGeoSeriesDerivation; if (fabs(fTerm) < fEpsilonSmall) bFound = true; // will catch root which is at an extreme else { if (rtl::math::approxEqual( fabs(fTermDerivation), 0.0)) fXnew = fX + 1.1 * SCdEpsilon; // move away from zero slope else fXnew = fX - fTerm / fTermDerivation; nCount++; // more accuracy not possible in oscillating cases bFound = (fabs(fXnew - fX) < SCdEpsilon); fX = fXnew; } } // Gnumeric returns roots < -1, Excel gives an error in that cases, // ODFF says nothing about it. Enable the statement, if you want Excel's // behavior. //bValid =(fX >=-1.0); // Update 2013-06-17: Gnumeric (v1.12.2) doesn't return roots <= -1 // anymore. bValid = (fX > -1.0); } else { // Nper is not an integer value. fX = (fGuess < -1.0) ? -1.0 : fGuess; // start with a valid fX while (bValid && !bFound && nCount < nIterationsMax) { if (rtl::math::approxEqual( fabs(fX), 0.0)) { fGeoSeries = fNper; fGeoSeriesDerivation = fNper * (fNper-1.0)/2.0; } else { fGeoSeries = (pow( 1.0+fX, fNper) - 1.0) / fX; fGeoSeriesDerivation = fNper * pow( 1.0+fX, fNper-1.0) / fX - fGeoSeries / fX; } fTerm = fFv + fPv *pow(1.0 + fX,fNper)+ fPayment * fGeoSeries; fTermDerivation = fPv * fNper * pow( 1.0+fX, fNper-1.0) + fPayment * fGeoSeriesDerivation; if (fabs(fTerm) < fEpsilonSmall) bFound = true; // will catch root which is at an extreme else { if (rtl::math::approxEqual( fabs(fTermDerivation), 0.0)) fXnew = fX + 1.1 * SCdEpsilon; // move away from zero slope else fXnew = fX - fTerm / fTermDerivation; nCount++; // more accuracy not possible in oscillating cases bFound = (fabs(fXnew - fX) < SCdEpsilon); fX = fXnew; bValid = (fX >= -1.0); // otherwise pow(1.0+fX,fNper) will fail } } } fGuess = fX; // return approximate root return bValid && bFound; } // In Calc UI it is the function RATE(Nper;Pmt;Pv;Fv;Type;Guess) void ScInterpreter::ScZins() { double fPv, fPayment, fNper; // defaults for missing arguments, see ODFF spec double fFv = 0, fPayType = 0, fGuess = 0.1, fOrigGuess = 0.1; bool bValid = true; bool bDefaultGuess = true; nFuncFmtType = NUMBERFORMAT_PERCENT; sal_uInt8 nParamCount = GetByte(); if ( !MustHaveParamCount( nParamCount, 3, 6 ) ) return; if (nParamCount == 6) { fOrigGuess = fGuess = GetDouble(); bDefaultGuess = false; } if (nParamCount >= 5) fPayType = GetDouble(); if (nParamCount >= 4) fFv = GetDouble(); fPv = GetDouble(); fPayment = GetDouble(); fNper = GetDouble(); if (fNper <= 0.0) // constraint from ODFF spec { PushIllegalArgument(); return; } // other values for fPayType might be meaningful, // ODFF spec is not clear yet, enable statement if you want only 0 and 1 //if (fPayType != 0.0) fPayType = 1.0; bValid = RateIteration(fNper, fPayment, fPv, fFv, fPayType, fGuess); if (!bValid) { /* TODO: try also for specified guess values, not only default? As is, * a specified 0.1 guess may be error result but a default 0.1 guess * may succeed. On the other hand, using a different guess value than * the specified one may not be desired, even if that didn't match. */ if (bDefaultGuess) { /* TODO: this is rather ugly, instead of looping over different * guess values and doing a Newton goal seek for each we could * first insert the values into the RATE equation to obtain a set * of y values and then do a bisecting goal seek, possibly using * different algorithms. */ double fX = fOrigGuess; for (int nStep = 2; nStep <= 10 && !bValid; ++nStep) { fGuess = fX * nStep; bValid = RateIteration( fNper, fPayment, fPv, fFv, fPayType, fGuess); if (!bValid) { fGuess = fX / nStep; bValid = RateIteration( fNper, fPayment, fPv, fFv, fPayType, fGuess); } } } if (!bValid) SetError(errNoConvergence); } PushDouble(fGuess); } double ScInterpreter::ScGetZinsZ(double fZins, double fZr, double fZzr, double fBw, double fZw, double fF, double& fRmz) { fRmz = ScGetRmz(fZins, fZzr, fBw, fZw, fF); // fuer kapz auch bei fZr == 1 double fZinsZ; nFuncFmtType = NUMBERFORMAT_CURRENCY; if (fZr == 1.0) { if (fF > 0.0) fZinsZ = 0.0; else fZinsZ = -fBw; } else { if (fF > 0.0) fZinsZ = ScGetZw(fZins, fZr-2.0, fRmz, fBw, 1.0) - fRmz; else fZinsZ = ScGetZw(fZins, fZr-1.0, fRmz, fBw, 0.0); } return fZinsZ * fZins; } void ScInterpreter::ScZinsZ() { double nZins, nZr, nZzr, nBw, nZw = 0, nFlag = 0; nFuncFmtType = NUMBERFORMAT_CURRENCY; sal_uInt8 nParamCount = GetByte(); if ( !MustHaveParamCount( nParamCount, 4, 6 ) ) return; if (nParamCount == 6) nFlag = GetDouble(); if (nParamCount >= 5) nZw = GetDouble(); nBw = GetDouble(); nZzr = GetDouble(); nZr = GetDouble(); nZins = GetDouble(); if (nZr < 1.0 || nZr > nZzr) PushIllegalArgument(); else { double nRmz; PushDouble(ScGetZinsZ(nZins, nZr, nZzr, nBw, nZw, nFlag, nRmz)); } } void ScInterpreter::ScKapz() { double nZins, nZr, nZzr, nBw, nZw = 0, nFlag = 0; nFuncFmtType = NUMBERFORMAT_CURRENCY; sal_uInt8 nParamCount = GetByte(); if ( !MustHaveParamCount( nParamCount, 4, 6 ) ) return; if (nParamCount == 6) nFlag = GetDouble(); if (nParamCount >= 5) nZw = GetDouble(); nBw = GetDouble(); nZzr = GetDouble(); nZr = GetDouble(); nZins = GetDouble(); if (nZr < 1.0 || nZr > nZzr) PushIllegalArgument(); else { double nRmz; double nZinsz = ScGetZinsZ(nZins, nZr, nZzr, nBw, nZw, nFlag, nRmz); PushDouble(nRmz - nZinsz); } } void ScInterpreter::ScKumZinsZ() { nFuncFmtType = NUMBERFORMAT_CURRENCY; if ( MustHaveParamCount( GetByte(), 6 ) ) { double fZins, fZzr, fBw, fAnfang, fEnde, fF; fF = GetDouble(); fEnde = ::rtl::math::approxFloor(GetDouble()); fAnfang = ::rtl::math::approxFloor(GetDouble()); fBw = GetDouble(); fZzr = GetDouble(); fZins = GetDouble(); if (fAnfang < 1.0 || fEnde < fAnfang || fZins <= 0.0 || fEnde > fZzr || fZzr <= 0.0 || fBw <= 0.0) PushIllegalArgument(); else { sal_uLong nAnfang = (sal_uLong) fAnfang; sal_uLong nEnde = (sal_uLong) fEnde ; double fRmz = ScGetRmz(fZins, fZzr, fBw, 0.0, fF); double fZinsZ = 0.0; if (nAnfang == 1) { if (fF <= 0.0) fZinsZ = -fBw; nAnfang++; } for (sal_uLong i = nAnfang; i <= nEnde; i++) { if (fF > 0.0) fZinsZ += ScGetZw(fZins, (double)(i-2), fRmz, fBw, 1.0) - fRmz; else fZinsZ += ScGetZw(fZins, (double)(i-1), fRmz, fBw, 0.0); } fZinsZ *= fZins; PushDouble(fZinsZ); } } } void ScInterpreter::ScKumKapZ() { nFuncFmtType = NUMBERFORMAT_CURRENCY; if ( MustHaveParamCount( GetByte(), 6 ) ) { double fZins, fZzr, fBw, fAnfang, fEnde, fF; fF = GetDouble(); fEnde = ::rtl::math::approxFloor(GetDouble()); fAnfang = ::rtl::math::approxFloor(GetDouble()); fBw = GetDouble(); fZzr = GetDouble(); fZins = GetDouble(); if (fAnfang < 1.0 || fEnde < fAnfang || fZins <= 0.0 || fEnde > fZzr || fZzr <= 0.0 || fBw <= 0.0) PushIllegalArgument(); else { double fRmz = ScGetRmz(fZins, fZzr, fBw, 0.0, fF); double fKapZ = 0.0; sal_uLong nAnfang = (sal_uLong) fAnfang; sal_uLong nEnde = (sal_uLong) fEnde; if (nAnfang == 1) { if (fF <= 0.0) fKapZ = fRmz + fBw * fZins; else fKapZ = fRmz; nAnfang++; } for (sal_uLong i = nAnfang; i <= nEnde; i++) { if (fF > 0.0) fKapZ += fRmz - (ScGetZw(fZins, (double)(i-2), fRmz, fBw, 1.0) - fRmz) * fZins; else fKapZ += fRmz - ScGetZw(fZins, (double)(i-1), fRmz, fBw, 0.0) * fZins; } PushDouble(fKapZ); } } } void ScInterpreter::ScEffektiv() { nFuncFmtType = NUMBERFORMAT_PERCENT; if ( MustHaveParamCount( GetByte(), 2 ) ) { double fPerioden = GetDouble(); double fNominal = GetDouble(); if (fPerioden < 1.0 || fNominal <= 0.0) PushIllegalArgument(); else { fPerioden = ::rtl::math::approxFloor(fPerioden); PushDouble(pow(1.0 + fNominal/fPerioden, fPerioden) - 1.0); } } } void ScInterpreter::ScNominal() { nFuncFmtType = NUMBERFORMAT_PERCENT; if ( MustHaveParamCount( GetByte(), 2 ) ) { double fPerioden = GetDouble(); double fEffektiv = GetDouble(); if (fPerioden < 1.0 || fEffektiv <= 0.0) PushIllegalArgument(); else { fPerioden = ::rtl::math::approxFloor(fPerioden); PushDouble( (pow(fEffektiv + 1.0, 1.0 / fPerioden) - 1.0) * fPerioden ); } } } void ScInterpreter::ScMod() { if ( MustHaveParamCount( GetByte(), 2 ) ) { double fVal2 = GetDouble(); // Denominator double fVal1 = GetDouble(); // Numerator if (fVal2 == floor(fVal2)) // a pure integral number stored in double { double fResult = fmod(fVal1,fVal2); if ( (fResult != 0.0) && ((fVal1 > 0.0 && fVal2 < 0.0) || (fVal1 < 0.0 && fVal2 > 0.0))) fResult += fVal2 ; PushDouble( fResult ); } else { PushDouble( ::rtl::math::approxSub( fVal1, ::rtl::math::approxFloor(fVal1 / fVal2) * fVal2)); } } } void ScInterpreter::ScIntersect() { formula::FormulaTokenRef p2nd = PopToken(); formula::FormulaTokenRef p1st = PopToken(); if (nGlobalError || !p2nd || !p1st) { PushIllegalArgument(); return; } StackVar sv1 = p1st->GetType(); StackVar sv2 = p2nd->GetType(); if ((sv1 != svSingleRef && sv1 != svDoubleRef && sv1 != svRefList) || (sv2 != svSingleRef && sv2 != svDoubleRef && sv2 != svRefList)) { PushIllegalArgument(); return; } ScToken* x1 = static_cast(p1st.get()); ScToken* x2 = static_cast(p2nd.get()); if (sv1 == svRefList || sv2 == svRefList) { // Now this is a bit nasty but it simplifies things, and having // intersections with lists isn't too common, if at all.. // Convert a reference to list. ScToken* xt[2] = { x1, x2 }; StackVar sv[2] = { sv1, sv2 }; for (size_t i=0; i<2; ++i) { if (sv[i] == svSingleRef) { ScComplexRefData aRef; aRef.Ref1 = aRef.Ref2 = xt[i]->GetSingleRef(); xt[i] = new ScRefListToken; xt[i]->GetRefList()->push_back( aRef); } else if (sv[i] == svDoubleRef) { ScComplexRefData aRef = xt[i]->GetDoubleRef(); xt[i] = new ScRefListToken; xt[i]->GetRefList()->push_back( aRef); } } x1 = xt[0], x2 = xt[1]; ScTokenRef xRes = new ScRefListToken; ScRefList* pRefList = xRes->GetRefList(); ScRefList::const_iterator end1( x1->GetRefList()->end()); ScRefList::const_iterator end2( x2->GetRefList()->end()); for (ScRefList::const_iterator it1( x1->GetRefList()->begin()); it1 != end1; ++it1) { const ScAddress& r11 = (*it1).Ref1.toAbs(aPos); const ScAddress& r12 = (*it1).Ref2.toAbs(aPos); for (ScRefList::const_iterator it2( x2->GetRefList()->begin()); it2 != end2; ++it2) { const ScAddress& r21 = (*it2).Ref1.toAbs(aPos); const ScAddress& r22 = (*it2).Ref2.toAbs(aPos); SCCOL nCol1 = ::std::max( r11.Col(), r21.Col()); SCROW nRow1 = ::std::max( r11.Row(), r21.Row()); SCTAB nTab1 = ::std::max( r11.Tab(), r21.Tab()); SCCOL nCol2 = ::std::min( r12.Col(), r22.Col()); SCROW nRow2 = ::std::min( r12.Row(), r22.Row()); SCTAB nTab2 = ::std::min( r12.Tab(), r22.Tab()); if (nCol2 < nCol1 || nRow2 < nRow1 || nTab2 < nTab1) ; // nothing else { ScComplexRefData aRef; aRef.InitRange( nCol1, nRow1, nTab1, nCol2, nRow2, nTab2); pRefList->push_back( aRef); } } } size_t n = pRefList->size(); if (!n) PushError( errNoRef); else if (n == 1) { const ScComplexRefData& rRef = (*pRefList)[0]; if (rRef.Ref1 == rRef.Ref2) PushTempToken( new ScSingleRefToken( rRef.Ref1)); else PushTempToken( new ScDoubleRefToken( rRef)); } else PushTempToken( xRes.get()); } else { ScToken* pt[2] = { x1, x2 }; StackVar sv[2] = { sv1, sv2 }; SCCOL nC1[2], nC2[2]; SCROW nR1[2], nR2[2]; SCTAB nT1[2], nT2[2]; for (size_t i=0; i<2; ++i) { switch (sv[i]) { case svSingleRef: case svDoubleRef: { { const ScAddress& r = pt[i]->GetSingleRef().toAbs(aPos); nC1[i] = r.Col(); nR1[i] = r.Row(); nT1[i] = r.Tab(); } if (sv[i] == svDoubleRef) { const ScAddress& r = pt[i]->GetSingleRef2().toAbs(aPos); nC2[i] = r.Col(); nR2[i] = r.Row(); nT2[i] = r.Tab(); } else { nC2[i] = nC1[i]; nR2[i] = nR1[i]; nT2[i] = nT1[i]; } } break; default: ; // nothing, prevent compiler warning } } SCCOL nCol1 = ::std::max( nC1[0], nC1[1]); SCROW nRow1 = ::std::max( nR1[0], nR1[1]); SCTAB nTab1 = ::std::max( nT1[0], nT1[1]); SCCOL nCol2 = ::std::min( nC2[0], nC2[1]); SCROW nRow2 = ::std::min( nR2[0], nR2[1]); SCTAB nTab2 = ::std::min( nT2[0], nT2[1]); if (nCol2 < nCol1 || nRow2 < nRow1 || nTab2 < nTab1) PushError( errNoRef); else if (nCol2 == nCol1 && nRow2 == nRow1 && nTab2 == nTab1) PushSingleRef( nCol1, nRow1, nTab1); else PushDoubleRef( nCol1, nRow1, nTab1, nCol2, nRow2, nTab2); } } void ScInterpreter::ScRangeFunc() { formula::FormulaTokenRef x2 = PopToken(); formula::FormulaTokenRef x1 = PopToken(); if (nGlobalError || !x2 || !x1) { PushIllegalArgument(); return; } FormulaTokenRef xRes = ScToken::ExtendRangeReference( *x1, *x2, aPos, false); if (!xRes) PushIllegalArgument(); else PushTempToken( xRes.get()); } void ScInterpreter::ScUnionFunc() { formula::FormulaTokenRef p2nd = PopToken(); formula::FormulaTokenRef p1st = PopToken(); if (nGlobalError || !p2nd || !p1st) { PushIllegalArgument(); return; } StackVar sv1 = p1st->GetType(); StackVar sv2 = p2nd->GetType(); if ((sv1 != svSingleRef && sv1 != svDoubleRef && sv1 != svRefList) || (sv2 != svSingleRef && sv2 != svDoubleRef && sv2 != svRefList)) { PushIllegalArgument(); return; } ScToken* x1 = static_cast(p1st.get()); ScToken* x2 = static_cast(p2nd.get()); ScTokenRef xRes; // Append to an existing RefList if there is one. if (sv1 == svRefList) { xRes = x1; sv1 = svUnknown; // mark as handled } else if (sv2 == svRefList) { xRes = x2; sv2 = svUnknown; // mark as handled } else xRes = new ScRefListToken; ScRefList* pRes = xRes->GetRefList(); ScToken* pt[2] = { x1, x2 }; StackVar sv[2] = { sv1, sv2 }; for (size_t i=0; i<2; ++i) { if (pt[i] == xRes) continue; switch (sv[i]) { case svSingleRef: { ScComplexRefData aRef; aRef.Ref1 = aRef.Ref2 = pt[i]->GetSingleRef(); pRes->push_back( aRef); } break; case svDoubleRef: pRes->push_back( pt[i]->GetDoubleRef()); break; case svRefList: { const ScRefList* p = pt[i]->GetRefList(); ScRefList::const_iterator it( p->begin()); ScRefList::const_iterator end( p->end()); for ( ; it != end; ++it) { pRes->push_back( *it); } } break; default: ; // nothing, prevent compiler warning } } ValidateRef( *pRes); // set #REF! if needed PushTempToken( xRes.get()); } void ScInterpreter::ScCurrent() { FormulaTokenRef xTok( PopToken()); if (xTok) { PushTempToken( xTok.get()); PushTempToken( xTok.get()); } else PushError( errUnknownStackVariable); } void ScInterpreter::ScStyle() { sal_uInt8 nParamCount = GetByte(); if (nParamCount >= 1 && nParamCount <= 3) { OUString aStyle2; // Vorlage nach Timer if (nParamCount >= 3) aStyle2 = GetString().getString(); long nTimeOut = 0; // Timeout if (nParamCount >= 2) nTimeOut = (long)(GetDouble()*1000.0); OUString aStyle1 = GetString().getString(); // Vorlage fuer sofort if (nTimeOut < 0) nTimeOut = 0; // Request ausfuehren, um Vorlage anzuwenden if ( !pDok->IsClipOrUndo() ) { SfxObjectShell* pShell = pDok->GetDocumentShell(); if (pShell) { //! notify object shell directly ScRange aRange(aPos); ScAutoStyleHint aHint( aRange, aStyle1, nTimeOut, aStyle2 ); pShell->Broadcast( aHint ); } } PushDouble(0.0); } else PushIllegalParameter(); } static ScDdeLink* lcl_GetDdeLink( sfx2::LinkManager* pLinkMgr, const OUString& rA, const OUString& rT, const OUString& rI, sal_uInt8 nM ) { size_t nCount = pLinkMgr->GetLinks().size(); for (size_t i=0; iGetLinks()[i]; if (pBase->ISA(ScDdeLink)) { ScDdeLink* pLink = static_cast(pBase); if ( pLink->GetAppl() == rA && pLink->GetTopic() == rT && pLink->GetItem() == rI && pLink->GetMode() == nM ) return pLink; } } return NULL; } void ScInterpreter::ScDde() { // Applikation, Datei, Bereich // Application, Topic, Item sal_uInt8 nParamCount = GetByte(); if ( MustHaveParamCount( nParamCount, 3, 4 ) ) { sal_uInt8 nMode = SC_DDE_DEFAULT; if (nParamCount == 4) nMode = (sal_uInt8) ::rtl::math::approxFloor(GetDouble()); OUString aItem = GetString().getString(); OUString aTopic = GetString().getString(); OUString aAppl = GetString().getString(); if (nMode > SC_DDE_TEXT) nMode = SC_DDE_DEFAULT; // temporary documents (ScFunctionAccess) have no DocShell // and no LinkManager -> abort sfx2::LinkManager* pLinkMgr = pDok->GetLinkManager(); if (!pLinkMgr) { PushNoValue(); return; } // Nach dem Laden muss neu interpretiert werden (Verknuepfungen aufbauen) if ( rArr.IsRecalcModeNormal() ) rArr.SetExclusiveRecalcModeOnLoad(); // solange der Link nicht ausgewertet ist, Idle abklemmen // (um zirkulaere Referenzen zu vermeiden) bool bOldEnabled = pDok->IsIdleEnabled(); pDok->EnableIdle(false); // Link-Objekt holen / anlegen ScDdeLink* pLink = lcl_GetDdeLink( pLinkMgr, aAppl, aTopic, aItem, nMode ); //! Dde-Links (zusaetzlich) effizienter am Dokument speichern !!!!! // ScDdeLink* pLink = pDok->GetDdeLink( aAppl, aTopic, aItem ); bool bWasError = ( pMyFormulaCell && pMyFormulaCell->GetRawError() != 0 ); if (!pLink) { pLink = new ScDdeLink( pDok, aAppl, aTopic, aItem, nMode ); pLinkMgr->InsertDDELink( pLink, aAppl, aTopic, aItem ); if ( pLinkMgr->GetLinks().size() == 1 ) // erster ? { SfxBindings* pBindings = pDok->GetViewBindings(); if (pBindings) pBindings->Invalidate( SID_LINKS ); // Link-Manager enablen } //! asynchron auswerten ??? pLink->TryUpdate(); // TryUpdate ruft Update nicht mehrfach auf if (pMyFormulaCell) { // StartListening erst nach dem Update, sonst circular reference pMyFormulaCell->StartListening( *pLink ); } } else { if (pMyFormulaCell) pMyFormulaCell->StartListening( *pLink ); } // Wenn aus dem Reschedule beim Ausfuehren des Links ein Fehler // (z.B. zirkulaere Referenz) entstanden ist, der vorher nicht da war, // das Fehler-Flag zuruecksetzen: if ( pMyFormulaCell && pMyFormulaCell->GetRawError() && !bWasError ) pMyFormulaCell->SetErrCode(0); // Wert abfragen const ScMatrix* pLinkMat = pLink->GetResult(); if (pLinkMat) { SCSIZE nC, nR; pLinkMat->GetDimensions(nC, nR); ScMatrixRef pNewMat = GetNewMat( nC, nR); if (pNewMat) { pLinkMat->MatCopy(*pNewMat); // kopieren PushMatrix( pNewMat ); } else PushIllegalArgument(); } else PushNA(); pDok->EnableIdle(bOldEnabled); pLinkMgr->CloseCachedComps(); } } void ScInterpreter::ScBase() { // Value, Base [, MinLen] sal_uInt8 nParamCount = GetByte(); if ( MustHaveParamCount( nParamCount, 2, 3 ) ) { static const sal_Unicode pDigits[] = { '0','1','2','3','4','5','6','7','8','9', 'A','B','C','D','E','F','G','H','I','J','K','L','M', 'N','O','P','Q','R','S','T','U','V','W','X','Y','Z', 0 }; static const int nDigits = (sizeof (pDigits)/sizeof(pDigits[0]))-1; sal_Int32 nMinLen; if ( nParamCount == 3 ) { double fLen = ::rtl::math::approxFloor( GetDouble() ); if ( 1.0 <= fLen && fLen < SAL_MAX_UINT16 ) nMinLen = (sal_Int32) fLen; else if ( fLen == 0.0 ) nMinLen = 1; else nMinLen = 0; // Error } else nMinLen = 1; double fBase = ::rtl::math::approxFloor( GetDouble() ); double fVal = ::rtl::math::approxFloor( GetDouble() ); double fChars = ((fVal > 0.0 && fBase > 0.0) ? (ceil( log( fVal ) / log( fBase ) ) + 2.0) : 2.0); if ( fChars >= SAL_MAX_UINT16 ) nMinLen = 0; // Error if ( !nGlobalError && nMinLen && 2 <= fBase && fBase <= nDigits && 0 <= fVal ) { const sal_Int32 nConstBuf = 128; sal_Unicode aBuf[nConstBuf]; sal_Int32 nBuf = std::max( fChars, nMinLen + 1 ); sal_Unicode* pBuf = (nBuf <= nConstBuf ? aBuf : new sal_Unicode[nBuf]); for ( sal_Int32 j = 0; j < nBuf; ++j ) { pBuf[j] = '0'; } sal_Unicode* p = pBuf + nBuf - 1; *p = 0; if ( fVal <= (sal_uLong)(~0) ) { sal_uLong nVal = (sal_uLong) fVal; sal_uLong nBase = (sal_uLong) fBase; while ( nVal && p > pBuf ) { *--p = pDigits[ nVal % nBase ]; nVal /= nBase; } fVal = (double) nVal; } else { bool bDirt = false; while ( fVal && p > pBuf ) { //! mit fmod Rundungsfehler ab 2**48 // double fDig = ::rtl::math::approxFloor( fmod( fVal, fBase ) ); // so ist es etwas besser double fInt = ::rtl::math::approxFloor( fVal / fBase ); double fMult = fInt * fBase; #if OSL_DEBUG_LEVEL > 1 // =BASIS(1e308;36) => GPF mit // nDig = (size_t) ::rtl::math::approxFloor( fVal - fMult ); // trotz vorheriger Pruefung ob fVal >= fMult double fDebug1 = fVal - fMult; // fVal := 7,5975311883090e+290 // fMult := 7,5975311883090e+290 // fDebug1 := 1,3848924157003e+275 <- RoundOff-Error // fVal != fMult, aber: ::rtl::math::approxEqual( fVal, fMult ) == TRUE double fDebug2 = ::rtl::math::approxSub( fVal, fMult ); // und ::rtl::math::approxSub( fVal, fMult ) == 0 double fDebug3 = ( fInt ? fVal / fInt : 0.0 ); // Nach dem strange fDebug1 und fVal < fMult ist eigentlich // fDebug2 == fBase, trotzdem wird das mit einem Vergleich // nicht erkannt, dann schlaegt bDirt zu und alles wird wieder gut.. // prevent compiler warnings (void)fDebug1; (void)fDebug2; (void)fDebug3; #endif size_t nDig; if ( fVal < fMult ) { // da ist was gekippt bDirt = true; nDig = 0; } else { double fDig = ::rtl::math::approxFloor( ::rtl::math::approxSub( fVal, fMult ) ); if ( bDirt ) { bDirt = false; --fDig; } if ( fDig <= 0.0 ) nDig = 0; else if ( fDig >= fBase ) nDig = ((size_t) fBase) - 1; else nDig = (size_t) fDig; } *--p = pDigits[ nDig ]; fVal = fInt; } } if ( fVal ) PushError( errStringOverflow ); else { if ( nBuf - (p - pBuf) <= nMinLen ) p = pBuf + nBuf - 1 - nMinLen; PushStringBuffer( p ); } if ( pBuf != aBuf ) delete [] pBuf; } else PushIllegalArgument(); } } void ScInterpreter::ScDecimal() { // Text, Base if ( MustHaveParamCount( GetByte(), 2 ) ) { double fBase = ::rtl::math::approxFloor( GetDouble() ); OUString aStr = GetString().getString(); if ( !nGlobalError && 2 <= fBase && fBase <= 36 ) { double fVal = 0.0; int nBase = (int) fBase; const sal_Unicode* p = aStr.getStr(); while ( *p == ' ' || *p == '\t' ) p++; // strip leading white space if ( nBase == 16 ) { // evtl. hex-prefix strippen if ( *p == 'x' || *p == 'X' ) p++; else if ( *p == '0' && (*(p+1) == 'x' || *(p+1) == 'X') ) p += 2; } while ( *p ) { int n; if ( '0' <= *p && *p <= '9' ) n = *p - '0'; else if ( 'A' <= *p && *p <= 'Z' ) n = 10 + (*p - 'A'); else if ( 'a' <= *p && *p <= 'z' ) n = 10 + (*p - 'a'); else n = nBase; if ( nBase <= n ) { if ( *(p+1) == 0 && ( (nBase == 2 && (*p == 'b' || *p == 'B')) ||(nBase == 16 && (*p == 'h' || *p == 'H')) ) ) ; // 101b und F00Dh sind ok else { PushIllegalArgument(); return ; } } else fVal = fVal * fBase + n; p++; } PushDouble( fVal ); } else PushIllegalArgument(); } } void ScInterpreter::ScConvert() { // Value, FromUnit, ToUnit if ( MustHaveParamCount( GetByte(), 3 ) ) { OUString aToUnit = GetString().getString(); OUString aFromUnit = GetString().getString(); double fVal = GetDouble(); if ( nGlobalError ) PushError( nGlobalError); else { // erst die angegebene Reihenfolge suchen, wenn nicht gefunden den Kehrwert double fConv; if ( ScGlobal::GetUnitConverter()->GetValue( fConv, aFromUnit, aToUnit ) ) PushDouble( fVal * fConv ); else if ( ScGlobal::GetUnitConverter()->GetValue( fConv, aToUnit, aFromUnit ) ) PushDouble( fVal / fConv ); else PushNA(); } } } void ScInterpreter::ScRoman() { // Value [Mode] sal_uInt8 nParamCount = GetByte(); if( MustHaveParamCount( nParamCount, 1, 2 ) ) { double fMode = (nParamCount == 2) ? ::rtl::math::approxFloor( GetDouble() ) : 0.0; double fVal = ::rtl::math::approxFloor( GetDouble() ); if( nGlobalError ) PushError( nGlobalError); else if( (fMode >= 0.0) && (fMode < 5.0) && (fVal >= 0.0) && (fVal < 4000.0) ) { static const sal_Unicode pChars[] = { 'M', 'D', 'C', 'L', 'X', 'V', 'I' }; static const sal_uInt16 pValues[] = { 1000, 500, 100, 50, 10, 5, 1 }; static const sal_uInt16 nMaxIndex = (sal_uInt16)((sizeof(pValues)/sizeof(pValues[0])) - 1); OUString aRoman; sal_uInt16 nVal = (sal_uInt16) fVal; sal_uInt16 nMode = (sal_uInt16) fMode; for( sal_uInt16 i = 0; i <= nMaxIndex / 2; i++ ) { sal_uInt16 nIndex = 2 * i; sal_uInt16 nDigit = nVal / pValues[ nIndex ]; if( (nDigit % 5) == 4 ) { // assert can't happen with nVal<4000 precondition assert( ((nDigit == 4) ? (nIndex >= 1) : (nIndex >= 2))); sal_uInt16 nIndex2 = (nDigit == 4) ? nIndex - 1 : nIndex - 2; sal_uInt16 nSteps = 0; while( (nSteps < nMode) && (nIndex < nMaxIndex) ) { nSteps++; if( pValues[ nIndex2 ] - pValues[ nIndex + 1 ] <= nVal ) nIndex++; else nSteps = nMode; } aRoman += OUString( pChars[ nIndex ] ); aRoman += OUString( pChars[ nIndex2 ] ); nVal = sal::static_int_cast( nVal + pValues[ nIndex ] ); nVal = sal::static_int_cast( nVal - pValues[ nIndex2 ] ); } else { if( nDigit > 4 ) { // assert can't happen with nVal<4000 precondition assert( nIndex >= 1 ); aRoman += OUString( pChars[ nIndex - 1 ] ); } sal_Int32 nPad = nDigit % 5; if (nPad) { OUStringBuffer aBuf(aRoman); comphelper::string::padToLength(aBuf, aBuf.getLength() + nPad, pChars[nIndex]); aRoman = aBuf.makeStringAndClear(); } nVal %= pValues[ nIndex ]; } } PushString( aRoman ); } else PushIllegalArgument(); } } static bool lcl_GetArabicValue( sal_Unicode cChar, sal_uInt16& rnValue, bool& rbIsDec ) { switch( cChar ) { case 'M': rnValue = 1000; rbIsDec = true; break; case 'D': rnValue = 500; rbIsDec = false; break; case 'C': rnValue = 100; rbIsDec = true; break; case 'L': rnValue = 50; rbIsDec = false; break; case 'X': rnValue = 10; rbIsDec = true; break; case 'V': rnValue = 5; rbIsDec = false; break; case 'I': rnValue = 1; rbIsDec = true; break; default: return false; } return true; } void ScInterpreter::ScArabic() { OUString aRoman = GetString().getString(); if( nGlobalError ) PushError( nGlobalError); else { aRoman = aRoman.toAsciiUpperCase(); sal_uInt16 nValue = 0; sal_uInt16 nValidRest = 3999; sal_Int32 nCharIndex = 0; sal_Int32 nCharCount = aRoman.getLength(); bool bValid = true; while( bValid && (nCharIndex < nCharCount) ) { sal_uInt16 nDigit1 = 0; sal_uInt16 nDigit2 = 0; bool bIsDec1 = false; bValid = lcl_GetArabicValue( aRoman[nCharIndex], nDigit1, bIsDec1 ); if( bValid && (nCharIndex + 1 < nCharCount) ) { bool bIsDec2 = false; bValid = lcl_GetArabicValue( aRoman[nCharIndex + 1], nDigit2, bIsDec2 ); } if( bValid ) { if( nDigit1 >= nDigit2 ) { nValue = sal::static_int_cast( nValue + nDigit1 ); nValidRest %= (nDigit1 * (bIsDec1 ? 5 : 2)); bValid = (nValidRest >= nDigit1); if( bValid ) nValidRest = sal::static_int_cast( nValidRest - nDigit1 ); nCharIndex++; } else if( nDigit1 * 2 != nDigit2 ) { sal_uInt16 nDiff = nDigit2 - nDigit1; nValue = sal::static_int_cast( nValue + nDiff ); bValid = (nValidRest >= nDiff); if( bValid ) nValidRest = nDigit1 - 1; nCharIndex += 2; } else bValid = false; } } if( bValid ) PushInt( nValue ); else PushIllegalArgument(); } } void ScInterpreter::ScHyperLink() { sal_uInt8 nParamCount = GetByte(); if ( MustHaveParamCount( nParamCount, 1, 2 ) ) { double fVal = 0.0; svl::SharedString aStr; ScMatValType nResultType = SC_MATVAL_STRING; if ( nParamCount == 2 ) { switch ( GetStackType() ) { case svDouble: fVal = GetDouble(); nResultType = SC_MATVAL_VALUE; break; case svString: aStr = GetString(); break; case svSingleRef: case svDoubleRef: { ScAddress aAdr; if ( !PopDoubleRefOrSingleRef( aAdr ) ) break; ScRefCellValue aCell; aCell.assign(*pDok, aAdr); if (aCell.hasEmptyValue()) nResultType = SC_MATVAL_EMPTY; else { sal_uInt16 nErr = GetCellErrCode(aCell); if (nErr) SetError( nErr); else if (aCell.hasNumeric()) { fVal = GetCellValue(aAdr, aCell); nResultType = SC_MATVAL_VALUE; } else GetCellString(aStr, aCell); } } break; case svMatrix: nResultType = GetDoubleOrStringFromMatrix( fVal, aStr); break; case svMissing: case svEmptyCell: Pop(); // mimic xcl fVal = 0.0; nResultType = SC_MATVAL_VALUE; break; default: PopError(); SetError( errIllegalArgument); } } svl::SharedString aUrl = GetString(); ScMatrixRef pResMat = GetNewMat( 1, 2); if (nGlobalError) { fVal = CreateDoubleError( nGlobalError); nResultType = SC_MATVAL_VALUE; } if (nParamCount == 2 || nGlobalError) { if (ScMatrix::IsValueType( nResultType)) pResMat->PutDouble( fVal, 0); else if (ScMatrix::IsRealStringType( nResultType)) pResMat->PutString(aStr, 0); else // EmptyType, EmptyPathType, mimic xcl pResMat->PutDouble( 0.0, 0 ); } else pResMat->PutString(aUrl, 0); pResMat->PutString(aUrl, 1); bMatrixFormula = true; PushMatrix(pResMat); } } /** Resources at the website of the European Commission: http://ec.europa.eu/economy_finance/euro/adoption/conversion/ http://ec.europa.eu/economy_finance/euro/countries/ */ static bool lclConvertMoney( const OUString& aSearchUnit, double& rfRate, int& rnDec ) { struct ConvertInfo { const sal_Char* pCurrText; double fRate; int nDec; }; static const ConvertInfo aConvertTable[] = { { "EUR", 1.0, 2 }, { "ATS", 13.7603, 2 }, { "BEF", 40.3399, 0 }, { "DEM", 1.95583, 2 }, { "ESP", 166.386, 0 }, { "FIM", 5.94573, 2 }, { "FRF", 6.55957, 2 }, { "IEP", 0.787564, 2 }, { "ITL", 1936.27, 0 }, { "LUF", 40.3399, 0 }, { "NLG", 2.20371, 2 }, { "PTE", 200.482, 2 }, { "GRD", 340.750, 2 }, { "SIT", 239.640, 2 }, { "MTL", 0.429300, 2 }, { "CYP", 0.585274, 2 }, { "SKK", 30.1260, 2 }, { "EEK", 15.6466, 2 }, { "LVL", 0.702804, 2 } }; static const size_t nConversionCount = sizeof( aConvertTable ) / sizeof( aConvertTable[0] ); for ( size_t i = 0; i < nConversionCount; ++i ) if ( aSearchUnit.equalsIgnoreAsciiCaseAscii( aConvertTable[i].pCurrText ) ) { rfRate = aConvertTable[i].fRate; rnDec = aConvertTable[i].nDec; return true; } return false; } void ScInterpreter::ScEuroConvert() { //Value, FromUnit, ToUnit[, FullPrecision, [TriangulationPrecision]] sal_uInt8 nParamCount = GetByte(); if ( MustHaveParamCount( nParamCount, 3, 5 ) ) { double nPrecision = 0.0; if ( nParamCount == 5 ) { nPrecision = ::rtl::math::approxFloor(GetDouble()); if ( nPrecision < 3 ) { PushIllegalArgument(); return; } } bool bFullPrecision = false; if ( nParamCount >= 4 ) bFullPrecision = GetBool(); OUString aToUnit = GetString().getString(); OUString aFromUnit = GetString().getString(); double fVal = GetDouble(); if ( nGlobalError ) PushError( nGlobalError); else { double fFromRate; double fToRate; int nFromDec; int nToDec; OUString aEur( "EUR"); if ( lclConvertMoney( aFromUnit, fFromRate, nFromDec ) && lclConvertMoney( aToUnit, fToRate, nToDec ) ) { double fRes; if ( aFromUnit.equalsIgnoreAsciiCase( aToUnit ) ) fRes = fVal; else { if ( aFromUnit.equalsIgnoreAsciiCase( aEur ) ) fRes = fVal * fToRate; else { double fIntermediate = fVal / fFromRate; if ( nPrecision ) fIntermediate = ::rtl::math::round( fIntermediate, (int) nPrecision ); fRes = fIntermediate * fToRate; } if ( !bFullPrecision ) fRes = ::rtl::math::round( fRes, nToDec ); } PushDouble( fRes ); } else PushIllegalArgument(); } } } // BAHTTEXT #define UTF8_TH_0 "\340\270\250\340\270\271\340\270\231\340\270\242\340\271\214" #define UTF8_TH_1 "\340\270\253\340\270\231\340\270\266\340\271\210\340\270\207" #define UTF8_TH_2 "\340\270\252\340\270\255\340\270\207" #define UTF8_TH_3 "\340\270\252\340\270\262\340\270\241" #define UTF8_TH_4 "\340\270\252\340\270\265\340\271\210" #define UTF8_TH_5 "\340\270\253\340\271\211\340\270\262" #define UTF8_TH_6 "\340\270\253\340\270\201" #define UTF8_TH_7 "\340\271\200\340\270\210\340\271\207\340\270\224" #define UTF8_TH_8 "\340\271\201\340\270\233\340\270\224" #define UTF8_TH_9 "\340\271\200\340\270\201\340\271\211\340\270\262" #define UTF8_TH_10 "\340\270\252\340\270\264\340\270\232" #define UTF8_TH_11 "\340\271\200\340\270\255\340\271\207\340\270\224" #define UTF8_TH_20 "\340\270\242\340\270\265\340\271\210" #define UTF8_TH_1E2 "\340\270\243\340\271\211\340\270\255\340\270\242" #define UTF8_TH_1E3 "\340\270\236\340\270\261\340\270\231" #define UTF8_TH_1E4 "\340\270\253\340\270\241\340\270\267\340\271\210\340\270\231" #define UTF8_TH_1E5 "\340\271\201\340\270\252\340\270\231" #define UTF8_TH_1E6 "\340\270\245\340\271\211\340\270\262\340\270\231" #define UTF8_TH_DOT0 "\340\270\226\340\271\211\340\270\247\340\270\231" #define UTF8_TH_BAHT "\340\270\232\340\270\262\340\270\227" #define UTF8_TH_SATANG "\340\270\252\340\270\225\340\270\262\340\270\207\340\270\204\340\271\214" #define UTF8_TH_MINUS "\340\270\245\340\270\232" // local functions namespace { inline void lclSplitBlock( double& rfInt, sal_Int32& rnBlock, double fValue, double fSize ) { rnBlock = static_cast< sal_Int32 >( modf( (fValue + 0.1) / fSize, &rfInt ) * fSize + 0.1 ); } /** Appends a digit (0 to 9) to the passed string. */ void lclAppendDigit( OStringBuffer& rText, sal_Int32 nDigit ) { switch( nDigit ) { case 0: rText.append( UTF8_TH_0 ); break; case 1: rText.append( UTF8_TH_1 ); break; case 2: rText.append( UTF8_TH_2 ); break; case 3: rText.append( UTF8_TH_3 ); break; case 4: rText.append( UTF8_TH_4 ); break; case 5: rText.append( UTF8_TH_5 ); break; case 6: rText.append( UTF8_TH_6 ); break; case 7: rText.append( UTF8_TH_7 ); break; case 8: rText.append( UTF8_TH_8 ); break; case 9: rText.append( UTF8_TH_9 ); break; default: OSL_FAIL( "lclAppendDigit - illegal digit" ); } } /** Appends a value raised to a power of 10: nDigit*10^nPow10. @param nDigit A digit in the range from 1 to 9. @param nPow10 A value in the range from 2 to 5. */ void lclAppendPow10( OStringBuffer& rText, sal_Int32 nDigit, sal_Int32 nPow10 ) { OSL_ENSURE( (1 <= nDigit) && (nDigit <= 9), "lclAppendPow10 - illegal digit" ); lclAppendDigit( rText, nDigit ); switch( nPow10 ) { case 2: rText.append( UTF8_TH_1E2 ); break; case 3: rText.append( UTF8_TH_1E3 ); break; case 4: rText.append( UTF8_TH_1E4 ); break; case 5: rText.append( UTF8_TH_1E5 ); break; default: OSL_FAIL( "lclAppendPow10 - illegal power" ); } } /** Appends a block of 6 digits (value from 1 to 999,999) to the passed string. */ void lclAppendBlock( OStringBuffer& rText, sal_Int32 nValue ) { OSL_ENSURE( (1 <= nValue) && (nValue <= 999999), "lclAppendBlock - illegal value" ); if( nValue >= 100000 ) { lclAppendPow10( rText, nValue / 100000, 5 ); nValue %= 100000; } if( nValue >= 10000 ) { lclAppendPow10( rText, nValue / 10000, 4 ); nValue %= 10000; } if( nValue >= 1000 ) { lclAppendPow10( rText, nValue / 1000, 3 ); nValue %= 1000; } if( nValue >= 100 ) { lclAppendPow10( rText, nValue / 100, 2 ); nValue %= 100; } if( nValue > 0 ) { sal_Int32 nTen = nValue / 10; sal_Int32 nOne = nValue % 10; if( nTen >= 1 ) { if( nTen >= 3 ) lclAppendDigit( rText, nTen ); else if( nTen == 2 ) rText.append( UTF8_TH_20 ); rText.append( UTF8_TH_10 ); } if( (nTen > 0) && (nOne == 1) ) rText.append( UTF8_TH_11 ); else if( nOne > 0 ) lclAppendDigit( rText, nOne ); } } } // namespace void ScInterpreter::ScBahtText() { sal_uInt8 nParamCount = GetByte(); if ( MustHaveParamCount( nParamCount, 1 ) ) { double fValue = GetDouble(); if( nGlobalError ) { PushError( nGlobalError); return; } // sign bool bMinus = fValue < 0.0; fValue = fabs( fValue ); // round to 2 digits after decimal point, fValue contains Satang as integer fValue = ::rtl::math::approxFloor( fValue * 100.0 + 0.5 ); // split Baht and Satang double fBaht = 0.0; sal_Int32 nSatang = 0; lclSplitBlock( fBaht, nSatang, fValue, 100.0 ); OStringBuffer aText; // generate text for Baht value if( fBaht == 0.0 ) { if( nSatang == 0 ) aText.append( UTF8_TH_0 ); } else while( fBaht > 0.0 ) { OStringBuffer aBlock; sal_Int32 nBlock = 0; lclSplitBlock( fBaht, nBlock, fBaht, 1.0e6 ); if( nBlock > 0 ) lclAppendBlock( aBlock, nBlock ); // add leading "million", if there will come more blocks if( fBaht > 0.0 ) aBlock.insert( 0, OString(UTF8_TH_1E6 ) ); aText.insert(0, aBlock.makeStringAndClear()); } if (!aText.isEmpty()) aText.append( UTF8_TH_BAHT ); // generate text for Satang value if( nSatang == 0 ) { aText.append( UTF8_TH_DOT0 ); } else { lclAppendBlock( aText, nSatang ); aText.append( UTF8_TH_SATANG ); } // add the minus sign if( bMinus ) aText.insert( 0, OString( UTF8_TH_MINUS ) ); PushString( OStringToOUString(aText.makeStringAndClear(), RTL_TEXTENCODING_UTF8) ); } } void ScInterpreter::ScGetPivotData() { sal_uInt8 nParamCount = GetByte(); if (!MustHaveParamCount(nParamCount, 2, 30) || (nParamCount % 2) == 1) { PushError(errNoRef); return; } bool bOldSyntax = false; if (nParamCount == 2) { // if the first parameter is a ref, assume old syntax StackVar eFirstType = GetStackType(2); if (eFirstType == svSingleRef || eFirstType == svDoubleRef) bOldSyntax = true; } std::vector aFilters; OUString aDataFieldName; ScRange aBlock; if (bOldSyntax) { aDataFieldName = GetString().getString(); switch (GetStackType()) { case svDoubleRef : PopDoubleRef(aBlock); break; case svSingleRef : { ScAddress aAddr; PopSingleRef(aAddr); aBlock = aAddr; } break; default: PushError(errNoRef); return; } } else { // Standard syntax: separate name/value pairs sal_uInt16 nFilterCount = nParamCount / 2 - 1; aFilters.resize(nFilterCount); sal_uInt16 i = nFilterCount; while (i-- > 0) { //! should allow numeric constraint values aFilters[i].MatchValue = GetString().getString(); aFilters[i].FieldName = GetString().getString(); } switch (GetStackType()) { case svDoubleRef : PopDoubleRef(aBlock); break; case svSingleRef : { ScAddress aAddr; PopSingleRef(aAddr); aBlock = aAddr; } break; default: PushError(errNoRef); return; } aDataFieldName = GetString().getString(); // First parameter is data field name. } // NOTE : MS Excel docs claim to use the 'most recent' which is not // exactly the same as what we do in ScDocument::GetDPAtBlock // However we do need to use GetDPABlock ScDPObject* pDPObj = pDok->GetDPAtBlock(aBlock); if (!pDPObj) { PushError(errNoRef); return; } if (bOldSyntax) { OUString aFilterStr = aDataFieldName; std::vector aFilterFuncs; if (!pDPObj->ParseFilters(aDataFieldName, aFilters, aFilterFuncs, aFilterStr)) { PushError(errNoRef); return; } // TODO : For now, we ignore filter functions since we couldn't find a // live example of how they are supposed to be used. We'll support // this again once we come across a real-world example. } double fVal = pDPObj->GetPivotData(aDataFieldName, aFilters); if (rtl::math::isNan(fVal)) { PushError(errNoRef); return; } PushDouble(fVal); } /* vim:set shiftwidth=4 softtabstop=4 expandtab: */