/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include #include #include #include #include #include using namespace com::sun::star; using namespace com::sun::star::io; using namespace com::sun::star::uno; using namespace com::sun::star::packages; using namespace com::sun::star::packages::zip; using namespace com::sun::star::packages::zip::ZipConstants; /** This class is used to write Zip files */ ZipOutputStream::ZipOutputStream( const uno::Reference< uno::XComponentContext >& rxContext, const uno::Reference < XOutputStream > &xOStream ) : m_xContext( rxContext ) , xStream(xOStream) , m_aDeflateBuffer(n_ConstBufferSize) , aDeflater(DEFAULT_COMPRESSION, true) , aChucker(xOStream) , pCurrentEntry(NULL) , nMethod(DEFLATED) , nLevel(0) , mnDigested(0) , bFinished(false) , bEncryptCurrentEntry(false) , m_pCurrentStream(NULL) { } ZipOutputStream::~ZipOutputStream( void ) { for (sal_Int32 i = 0, nEnd = aZipList.size(); i < nEnd; i++) delete aZipList[i]; } void SAL_CALL ZipOutputStream::setMethod( sal_Int32 nNewMethod ) throw(RuntimeException) { nMethod = static_cast < sal_Int16 > (nNewMethod); } void SAL_CALL ZipOutputStream::setLevel( sal_Int32 nNewLevel ) throw(RuntimeException) { aDeflater.setLevel( nNewLevel); } void SAL_CALL ZipOutputStream::putNextEntry( ZipEntry& rEntry, ZipPackageStream* pStream, bool bEncrypt) throw(IOException, RuntimeException) { if (pCurrentEntry != NULL) closeEntry(); if (rEntry.nTime == -1) rEntry.nTime = getCurrentDosTime(); if (rEntry.nMethod == -1) rEntry.nMethod = nMethod; rEntry.nVersion = 20; rEntry.nFlag = 1 << 11; if (rEntry.nSize == -1 || rEntry.nCompressedSize == -1 || rEntry.nCrc == -1) { rEntry.nSize = rEntry.nCompressedSize = 0; rEntry.nFlag |= 8; } if (bEncrypt) { bEncryptCurrentEntry = true; m_xCipherContext = ZipFile::StaticGetCipher( m_xContext, pStream->GetEncryptionData(), true ); m_xDigestContext = ZipFile::StaticGetDigestContextForChecksum( m_xContext, pStream->GetEncryptionData() ); mnDigested = 0; rEntry.nFlag |= 1 << 4; m_pCurrentStream = pStream; } sal_Int32 nLOCLength = writeLOC(rEntry); rEntry.nOffset = aChucker.GetPosition() - nLOCLength; aZipList.push_back( &rEntry ); pCurrentEntry = &rEntry; } void SAL_CALL ZipOutputStream::closeEntry( ) throw(IOException, RuntimeException) { ZipEntry *pEntry = pCurrentEntry; if (pEntry) { switch (pEntry->nMethod) { case DEFLATED: aDeflater.finish(); while (!aDeflater.finished()) doDeflate(); if ((pEntry->nFlag & 8) == 0) { if (pEntry->nSize != aDeflater.getTotalIn()) { OSL_FAIL("Invalid entry size"); } if (pEntry->nCompressedSize != aDeflater.getTotalOut()) { // Different compression strategies make the merit of this // test somewhat dubious pEntry->nCompressedSize = aDeflater.getTotalOut(); } if (pEntry->nCrc != aCRC.getValue()) { OSL_FAIL("Invalid entry CRC-32"); } } else { if ( !bEncryptCurrentEntry ) { pEntry->nSize = aDeflater.getTotalIn(); pEntry->nCompressedSize = aDeflater.getTotalOut(); } pEntry->nCrc = aCRC.getValue(); writeEXT(*pEntry); } aDeflater.reset(); aCRC.reset(); break; case STORED: if (!((pEntry->nFlag & 8) == 0)) OSL_FAIL( "Serious error, one of compressed size, size or CRC was -1 in a STORED stream"); break; default: OSL_FAIL("Invalid compression method"); break; } if (bEncryptCurrentEntry) { bEncryptCurrentEntry = false; m_xCipherContext.clear(); uno::Sequence< sal_Int8 > aDigestSeq; if ( m_xDigestContext.is() ) { aDigestSeq = m_xDigestContext->finalizeDigestAndDispose(); m_xDigestContext.clear(); } if ( m_pCurrentStream ) m_pCurrentStream->setDigest( aDigestSeq ); } pCurrentEntry = NULL; m_pCurrentStream = NULL; } } void SAL_CALL ZipOutputStream::write( const Sequence< sal_Int8 >& rBuffer, sal_Int32 nNewOffset, sal_Int32 nNewLength ) throw(IOException, RuntimeException) { switch (pCurrentEntry->nMethod) { case DEFLATED: if (!aDeflater.finished()) { aDeflater.setInputSegment(rBuffer, nNewOffset, nNewLength); while (!aDeflater.needsInput()) doDeflate(); if (!bEncryptCurrentEntry) aCRC.updateSegment(rBuffer, nNewOffset, nNewLength); } break; case STORED: { Sequence < sal_Int8 > aTmpBuffer ( rBuffer.getConstArray(), nNewLength ); aChucker.WriteBytes( aTmpBuffer ); } break; } } void SAL_CALL ZipOutputStream::rawWrite( Sequence< sal_Int8 >& rBuffer, sal_Int32 /*nNewOffset*/, sal_Int32 nNewLength ) throw(IOException, RuntimeException) { Sequence < sal_Int8 > aTmpBuffer ( rBuffer.getConstArray(), nNewLength ); aChucker.WriteBytes( aTmpBuffer ); } void SAL_CALL ZipOutputStream::rawCloseEntry( ) throw(IOException, RuntimeException) { if ( pCurrentEntry->nMethod == DEFLATED && ( pCurrentEntry->nFlag & 8 ) ) writeEXT(*pCurrentEntry); pCurrentEntry = NULL; } void SAL_CALL ZipOutputStream::finish( ) throw(IOException, RuntimeException) { if (bFinished) return; if (pCurrentEntry != NULL) closeEntry(); if (aZipList.size() < 1) OSL_FAIL("Zip file must have at least one entry!\n"); sal_Int32 nOffset= static_cast < sal_Int32 > (aChucker.GetPosition()); for (sal_Int32 i =0, nEnd = aZipList.size(); i < nEnd; i++) writeCEN( *aZipList[i] ); writeEND( nOffset, static_cast < sal_Int32 > (aChucker.GetPosition()) - nOffset); bFinished = true; xStream->flush(); } void ZipOutputStream::doDeflate() { sal_Int32 nLength = aDeflater.doDeflateSegment(m_aDeflateBuffer, 0, m_aDeflateBuffer.getLength()); if ( nLength > 0 ) { uno::Sequence< sal_Int8 > aTmpBuffer( m_aDeflateBuffer.getConstArray(), nLength ); if ( bEncryptCurrentEntry && m_xDigestContext.is() && m_xCipherContext.is() ) { // Need to update our digest before encryption... sal_Int32 nDiff = n_ConstDigestLength - mnDigested; if ( nDiff ) { sal_Int32 nEat = ::std::min( nLength, nDiff ); uno::Sequence< sal_Int8 > aTmpSeq( aTmpBuffer.getConstArray(), nEat ); m_xDigestContext->updateDigest( aTmpSeq ); mnDigested = mnDigested + static_cast< sal_Int16 >( nEat ); } // FIXME64: uno::Sequence not 64bit safe. uno::Sequence< sal_Int8 > aEncryptionBuffer = m_xCipherContext->convertWithCipherContext( aTmpBuffer ); aChucker.WriteBytes( aEncryptionBuffer ); // the sizes as well as checksum for encrypted streams is calculated here pCurrentEntry->nCompressedSize += aEncryptionBuffer.getLength(); pCurrentEntry->nSize = pCurrentEntry->nCompressedSize; aCRC.update( aEncryptionBuffer ); } else { aChucker.WriteBytes ( aTmpBuffer ); } } if ( aDeflater.finished() && bEncryptCurrentEntry && m_xDigestContext.is() && m_xCipherContext.is() ) { // FIXME64: sequence not 64bit safe. uno::Sequence< sal_Int8 > aEncryptionBuffer = m_xCipherContext->finalizeCipherContextAndDispose(); if ( aEncryptionBuffer.getLength() ) { aChucker.WriteBytes( aEncryptionBuffer ); // the sizes as well as checksum for encrypted streams is calculated hier pCurrentEntry->nCompressedSize += aEncryptionBuffer.getLength(); pCurrentEntry->nSize = pCurrentEntry->nCompressedSize; aCRC.update( aEncryptionBuffer ); } } } void ZipOutputStream::writeEND(sal_uInt32 nOffset, sal_uInt32 nLength) throw(IOException, RuntimeException) { aChucker << ENDSIG; aChucker << static_cast < sal_Int16 > ( 0 ); aChucker << static_cast < sal_Int16 > ( 0 ); aChucker << static_cast < sal_Int16 > ( aZipList.size() ); aChucker << static_cast < sal_Int16 > ( aZipList.size() ); aChucker << nLength; aChucker << nOffset; aChucker << static_cast < sal_Int16 > ( 0 ); } static sal_uInt32 getTruncated( sal_Int64 nNum, bool *pIsTruncated ) { if( nNum >= 0xffffffff ) { *pIsTruncated = true; return 0xffffffff; } else return static_cast< sal_uInt32 >( nNum ); } void ZipOutputStream::writeCEN( const ZipEntry &rEntry ) throw(IOException, RuntimeException) { if ( !::comphelper::OStorageHelper::IsValidZipEntryFileName( rEntry.sPath, true ) ) throw IOException("Unexpected character is used in file name." ); OString sUTF8Name = OUStringToOString( rEntry.sPath, RTL_TEXTENCODING_UTF8 ); sal_Int16 nNameLength = static_cast < sal_Int16 > ( sUTF8Name.getLength() ); aChucker << CENSIG; aChucker << rEntry.nVersion; aChucker << rEntry.nVersion; if (rEntry.nFlag & (1 << 4) ) { // If it's an encrypted entry, we pretend its stored plain text ZipEntry *pEntry = const_cast < ZipEntry * > ( &rEntry ); pEntry->nFlag &= ~(1 <<4 ); aChucker << rEntry.nFlag; aChucker << static_cast < sal_Int16 > ( STORED ); } else { aChucker << rEntry.nFlag; aChucker << rEntry.nMethod; } bool bWrite64Header = false; aChucker << static_cast < sal_uInt32> ( rEntry.nTime ); aChucker << static_cast < sal_uInt32> ( rEntry.nCrc ); aChucker << getTruncated( rEntry.nCompressedSize, &bWrite64Header ); aChucker << getTruncated( rEntry.nSize, &bWrite64Header ); aChucker << nNameLength; aChucker << static_cast < sal_Int16> (0); aChucker << static_cast < sal_Int16> (0); aChucker << static_cast < sal_Int16> (0); aChucker << static_cast < sal_Int16> (0); aChucker << static_cast < sal_Int32> (0); aChucker << getTruncated( rEntry.nOffset, &bWrite64Header ); if( bWrite64Header ) { // FIXME64: need to append a ZIP64 header instead of throwing // We're about to silently lose people's data - which they are // unlikely to appreciate so fail instead: throw IOException( "File contains streams that are too large." ); } Sequence < sal_Int8 > aSequence( (sal_Int8*)sUTF8Name.getStr(), sUTF8Name.getLength() ); aChucker.WriteBytes( aSequence ); } void ZipOutputStream::writeEXT( const ZipEntry &rEntry ) throw(IOException, RuntimeException) { bool bWrite64Header = false; aChucker << EXTSIG; aChucker << static_cast < sal_uInt32> ( rEntry.nCrc ); aChucker << getTruncated( rEntry.nCompressedSize, &bWrite64Header ); aChucker << getTruncated( rEntry.nSize, &bWrite64Header ); if( bWrite64Header ) { // FIXME64: need to append a ZIP64 header instead of throwing // We're about to silently lose people's data - which they are // unlikely to appreciate so fail instead: throw IOException( "File contains streams that are too large." ); } } sal_Int32 ZipOutputStream::writeLOC( const ZipEntry &rEntry ) throw(IOException, RuntimeException) { if ( !::comphelper::OStorageHelper::IsValidZipEntryFileName( rEntry.sPath, true ) ) throw IOException("Unexpected character is used in file name." ); OString sUTF8Name = OUStringToOString( rEntry.sPath, RTL_TEXTENCODING_UTF8 ); sal_Int16 nNameLength = static_cast < sal_Int16 > ( sUTF8Name.getLength() ); aChucker << LOCSIG; aChucker << rEntry.nVersion; if (rEntry.nFlag & (1 << 4) ) { // If it's an encrypted entry, we pretend its stored plain text sal_Int16 nTmpFlag = rEntry.nFlag; nTmpFlag &= ~(1 <<4 ); aChucker << nTmpFlag; aChucker << static_cast < sal_Int16 > ( STORED ); } else { aChucker << rEntry.nFlag; aChucker << rEntry.nMethod; } bool bWrite64Header = false; aChucker << static_cast < sal_uInt32 > (rEntry.nTime); if ((rEntry.nFlag & 8) == 8 ) { aChucker << static_cast < sal_Int32 > (0); aChucker << static_cast < sal_Int32 > (0); aChucker << static_cast < sal_Int32 > (0); } else { aChucker << static_cast < sal_uInt32 > (rEntry.nCrc); aChucker << getTruncated( rEntry.nCompressedSize, &bWrite64Header ); aChucker << getTruncated( rEntry.nSize, &bWrite64Header ); } aChucker << nNameLength; aChucker << static_cast < sal_Int16 > (0); if( bWrite64Header ) { // FIXME64: need to append a ZIP64 header instead of throwing // We're about to silently lose people's data - which they are // unlikely to appreciate so fail instead: throw IOException( "File contains streams that are too large." ); } Sequence < sal_Int8 > aSequence( (sal_Int8*)sUTF8Name.getStr(), sUTF8Name.getLength() ); aChucker.WriteBytes( aSequence ); return LOCHDR + nNameLength; } sal_uInt32 ZipOutputStream::getCurrentDosTime( ) { oslDateTime aDateTime; TimeValue aTimeValue; osl_getSystemTime ( &aTimeValue ); osl_getDateTimeFromTimeValue( &aTimeValue, &aDateTime); // at year 2108, there is an overflow // -> some decision needs to be made // how to handle the ZIP file format (just overflow?) // if the current system time is before 1980, // then the time traveller will have to make a decision // how to handle the ZIP file format before it is invented // (just underflow?) assert(aDateTime.Year > 1980 && aDateTime.Year < 2108); sal_uInt32 nYear = static_cast (aDateTime.Year); if (nYear>=1980) nYear-=1980; else if (nYear>=80) { nYear-=80; } sal_uInt32 nResult = static_cast < sal_uInt32>( ( ( ( aDateTime.Day) + ( 32 * (aDateTime.Month)) + ( 512 * nYear ) ) << 16) | ( ( aDateTime.Seconds/2) + ( 32 * aDateTime.Minutes) + ( 2048 * static_cast (aDateTime.Hours) ) ) ); return nResult; } /* This is actually never used, so I removed it, but thought that the implementation details may be useful in the future...mtg 20010307 I stopped using the time library and used the OSL version instead, but it might still be useful to have this code here.. void ZipOutputStream::dosDateToTMDate ( tm &rTime, sal_uInt32 nDosDate) { sal_uInt32 nDate = static_cast < sal_uInt32 > (nDosDate >> 16); rTime.tm_mday = static_cast < sal_uInt32 > ( nDate & 0x1F); rTime.tm_mon = static_cast < sal_uInt32 > ( ( ( (nDate) & 0x1E0)/0x20)-1); rTime.tm_year = static_cast < sal_uInt32 > ( ( (nDate & 0x0FE00)/0x0200)+1980); rTime.tm_hour = static_cast < sal_uInt32 > ( (nDosDate & 0xF800)/0x800); rTime.tm_min = static_cast < sal_uInt32 > ( (nDosDate & 0x7E0)/0x20); rTime.tm_sec = static_cast < sal_uInt32 > ( 2 * (nDosDate & 0x1F) ); } */ /* vim:set shiftwidth=4 softtabstop=4 expandtab: */