/************************************************************************* * * $RCSfile: ZipOutputStream.cxx,v $ * * $Revision: 1.35 $ * * last change: $Author: mtg $ $Date: 2001-11-29 13:49:35 $ * * The Contents of this file are made available subject to the terms of * either of the following licenses * * - GNU Lesser General Public License Version 2.1 * - Sun Industry Standards Source License Version 1.1 * * Sun Microsystems Inc., October, 2000 * * GNU Lesser General Public License Version 2.1 * ============================================= * Copyright 2000 by Sun Microsystems, Inc. * 901 San Antonio Road, Palo Alto, CA 94303, USA * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License version 2.1, as published by the Free Software Foundation. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA * * * Sun Industry Standards Source License Version 1.1 * ================================================= * The contents of this file are subject to the Sun Industry Standards * Source License Version 1.1 (the "License"); You may not use this file * except in compliance with the License. You may obtain a copy of the * License at http://www.openoffice.org/license.html. * * Software provided under this License is provided on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, * WITHOUT LIMITATION, WARRANTIES THAT THE SOFTWARE IS FREE OF DEFECTS, * MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE, OR NON-INFRINGING. * See the License for the specific provisions governing your rights and * obligations concerning the Software. * * The Initial Developer of the Original Code is: Sun Microsystems, Inc. * * Copyright: 2000 by Sun Microsystems, Inc. * * All Rights Reserved. * * Contributor(s): Martin Gallwey (gallwey@sun.com) * * ************************************************************************/ #ifndef _ZIP_OUTPUT_STREAM_HXX #include #endif #ifndef _VOS_DIAGNOSE_H_ #include #endif #ifndef _COM_SUN_STAR_PACKAGES_ZIP_ZIPCONSTANTS_HPP_ #include #endif #ifndef _OSL_TIME_H_ #include #endif #ifndef _ENCRYPTION_DATA_HXX_ #include #endif #ifndef _IMPL_VALID_CHARACTERS_HXX_ #include #endif #ifndef _PACKAGE_CONSTANTS_HXX_ #include #endif #ifndef _ZIP_ENTRY_HXX_ #include #endif #ifndef _VOS_REF_H_ #include #endif #ifndef _COM_SUN_STAR_IO_XOUTPUTSTREAM_HPP_ #include #endif using namespace rtl; using namespace com::sun::star::io; using namespace com::sun::star::uno; using namespace com::sun::star::packages; using namespace com::sun::star::packages::zip; using namespace com::sun::star::packages::zip::ZipConstants; /** This class is used to write Zip files */ ZipOutputStream::ZipOutputStream( Reference < XOutputStream > &xOStream ) : xStream(xOStream) , aChucker(xOStream) , nMethod(DEFLATED) , pCurrentEntry(NULL) , bFinished(sal_False) , bEncryptCurrentEntry(sal_False) , aBuffer(n_ConstBufferSize) , aDeflater(DEFAULT_COMPRESSION, sal_True) { } ZipOutputStream::~ZipOutputStream( void ) { for (sal_Int32 i = 0, nEnd = aZipList.size(); i < nEnd; i++) delete aZipList[i]; } void SAL_CALL ZipOutputStream::setComment( const ::rtl::OUString& rComment ) throw(RuntimeException) { sComment = rComment; } void SAL_CALL ZipOutputStream::setMethod( sal_Int32 nNewMethod ) throw(RuntimeException) { nMethod = static_cast < sal_Int16 > (nNewMethod); } void SAL_CALL ZipOutputStream::setLevel( sal_Int32 nNewLevel ) throw(RuntimeException) { aDeflater.setLevel( nNewLevel); } void SAL_CALL ZipOutputStream::putNextEntry( ZipEntry& rEntry, vos::ORef < EncryptionData > &xEncryptData, sal_Bool bEncrypt) throw(IOException, RuntimeException) { if (pCurrentEntry != NULL) closeEntry(); if (rEntry.nTime == -1) rEntry.nTime = getCurrentDosTime(); if (rEntry.nMethod == -1) rEntry.nMethod = nMethod; rEntry.nVersion = 20; if (rEntry.nSize == -1 || rEntry.nCompressedSize == -1 || rEntry.nCrc == -1) rEntry.nFlag = 8; else if (rEntry.nSize != -1 && rEntry.nCompressedSize != -1 && rEntry.nCrc != -1) rEntry.nFlag = 0; if (bEncrypt) { bEncryptCurrentEntry = sal_True; rtlCipherError aResult; aCipher = rtl_cipher_create ( rtl_Cipher_AlgorithmBF, rtl_Cipher_ModeStream); aResult = rtl_cipher_init( aCipher, rtl_Cipher_DirectionEncode, reinterpret_cast < const sal_uInt8 * > (xEncryptData->aKey.getConstArray() ), xEncryptData->aKey.getLength(), reinterpret_cast < const sal_uInt8 * > ( xEncryptData->aInitVector.getConstArray() ), xEncryptData->aInitVector.getLength()); OSL_ASSERT( aResult == rtl_Cipher_E_None ); aDigest = rtl_digest_createSHA1(); mnDigested = 0; rEntry.nFlag |= 1 << 4; pCurrentEncryptData = xEncryptData.getBodyPtr(); } sal_Int32 nLOCLength = writeLOC(rEntry); rEntry.nOffset = static_cast < sal_Int32 > (aChucker.getPosition()) - nLOCLength; aZipList.push_back( &rEntry ); pCurrentEntry = &rEntry; } void SAL_CALL ZipOutputStream::close( ) throw(IOException, RuntimeException) { finish(); } void SAL_CALL ZipOutputStream::closeEntry( ) throw(IOException, RuntimeException) { ZipEntry *pEntry = pCurrentEntry; if (pEntry) { switch (pEntry->nMethod) { case DEFLATED: aDeflater.finish(); while (!aDeflater.finished()) doDeflate(); if ((pEntry->nFlag & 8) == 0) { if (pEntry->nSize != aDeflater.getTotalIn()) { VOS_DEBUG_ONLY("Invalid entry size"); } if (pEntry->nCompressedSize != aDeflater.getTotalOut()) { //VOS_DEBUG_ONLY("Invalid entry compressed size"); // Different compression strategies make the merit of this // test somewhat dubious pEntry->nCompressedSize = aDeflater.getTotalOut(); } if (pEntry->nCrc != aCRC.getValue()) { VOS_DEBUG_ONLY("Invalid entry CRC-32"); } } else { pEntry->nSize = aDeflater.getTotalIn(); pEntry->nCompressedSize = aDeflater.getTotalOut(); pEntry->nCrc = aCRC.getValue(); if ( bEncryptCurrentEntry ) pEntry->nSize = pEntry->nCompressedSize; writeEXT(*pEntry); } aDeflater.reset(); aCRC.reset(); break; case STORED: if (!((pEntry->nFlag & 8) == 0)) VOS_ENSURE ( 0, "Serious error, one of compressed size, size or CRC was -1 in a STORED stream"); break; default: VOS_DEBUG_ONLY("Invalid compression method"); break; } if (bEncryptCurrentEntry) { rtlDigestError aDigestResult; aEncryptionBuffer.realloc ( 0 ); bEncryptCurrentEntry = sal_False; rtl_cipher_destroy ( aCipher ); pCurrentEncryptData->aDigest.realloc ( RTL_DIGEST_LENGTH_SHA1 ); aDigestResult = rtl_digest_getSHA1 ( aDigest, reinterpret_cast < sal_uInt8 * > ( pCurrentEncryptData->aDigest.getArray() ), RTL_DIGEST_LENGTH_SHA1 ); OSL_ASSERT( aDigestResult == rtl_Digest_E_None ); rtl_digest_destroySHA1 ( aDigest ); } pCurrentEntry = NULL; } } void SAL_CALL ZipOutputStream::write( const Sequence< sal_Int8 >& rBuffer, sal_Int32 nNewOffset, sal_Int32 nNewLength ) throw(IOException, RuntimeException) { switch (pCurrentEntry->nMethod) { case DEFLATED: if (!aDeflater.finished()) { aDeflater.setInputSegment(rBuffer, nNewOffset, nNewLength); while (!aDeflater.needsInput()) doDeflate(); if (!bEncryptCurrentEntry) aCRC.updateSegment(rBuffer, nNewOffset, nNewLength); } break; case STORED: { Sequence < sal_Int8 > aTmpBuffer ( rBuffer.getConstArray(), nNewLength ); aChucker.writeBytes( aTmpBuffer ); } break; } } void SAL_CALL ZipOutputStream::rawWrite( Sequence< sal_Int8 >& rBuffer, sal_Int32 nNewOffset, sal_Int32 nNewLength ) throw(IOException, RuntimeException) { Sequence < sal_Int8 > aTmpBuffer ( rBuffer.getConstArray(), nNewLength ); aChucker.writeBytes( aTmpBuffer ); } void SAL_CALL ZipOutputStream::rawCloseEntry( ) throw(IOException, RuntimeException) { if ( pCurrentEntry->nMethod == DEFLATED ) writeEXT(*pCurrentEntry); pCurrentEntry = NULL; } void SAL_CALL ZipOutputStream::finish( ) throw(IOException, RuntimeException) { if (bFinished) return; if (pCurrentEntry != NULL) closeEntry(); if (aZipList.size() < 1) VOS_DEBUG_ONLY("Zip file must have at least one entry!\n"); sal_Int32 nOffset= static_cast < sal_Int32 > (aChucker.getPosition()); for (sal_Int32 i =0, nEnd = aZipList.size(); i < nEnd; i++) writeCEN( *aZipList[i] ); writeEND( nOffset, static_cast < sal_Int32 > (aChucker.getPosition()) - nOffset); bFinished = sal_True; xStream->flush(); } void ZipOutputStream::doDeflate() { sal_Int32 nLength = aDeflater.doDeflateSegment(aBuffer, 0, aBuffer.getLength()); sal_Int32 nOldLength = aBuffer.getLength(); if ( nLength > 0 ) { Sequence < sal_Int8 > aTmpBuffer ( aBuffer.getConstArray(), nLength ); const void *pTmpBuffer = static_cast < const void * > ( aTmpBuffer.getConstArray() ); if (bEncryptCurrentEntry) { // Need to update our digest before encryption... rtlDigestError aDigestResult = rtl_Digest_E_None; sal_Int16 nDiff = n_ConstDigestLength - mnDigested; if ( nDiff ) { sal_Int16 nEat = static_cast < sal_Int16 > ( nDiff > nLength ? nLength : nDiff ); aDigestResult = rtl_digest_updateSHA1 ( aDigest, pTmpBuffer, nEat ); mnDigested += nEat; } OSL_ASSERT( aDigestResult == rtl_Digest_E_None ); aEncryptionBuffer.realloc ( nLength ); rtlCipherError aCipherResult; aCipherResult = rtl_cipher_encode ( aCipher, pTmpBuffer, nLength, reinterpret_cast < sal_uInt8 * > (aEncryptionBuffer.getArray()), nLength ); OSL_ASSERT( aCipherResult == rtl_Cipher_E_None ); aChucker.writeBytes ( aEncryptionBuffer ); aCRC.update ( aEncryptionBuffer ); aEncryptionBuffer.realloc ( nOldLength ); } else aChucker.writeBytes ( aTmpBuffer ); } } void ZipOutputStream::writeEND(sal_uInt32 nOffset, sal_uInt32 nLength) throw(IOException, RuntimeException) { aChucker << ENDSIG; aChucker << static_cast < sal_Int16 > ( 0 ); aChucker << static_cast < sal_Int16 > ( 0 ); aChucker << static_cast < sal_Int16 > ( aZipList.size() ); aChucker << static_cast < sal_Int16 > ( aZipList.size() ); aChucker << nLength; aChucker << nOffset; aChucker << static_cast < sal_Int16 > ( 0 ); } void ZipOutputStream::writeCEN( const ZipEntry &rEntry ) throw(IOException, RuntimeException) { sal_Int16 nNameLength = static_cast < sal_Int16 > ( rEntry.sName.getLength() ); aChucker << CENSIG; aChucker << rEntry.nVersion; aChucker << rEntry.nVersion; if (rEntry.nFlag & (1 << 4) ) { // If it's an encrypted entry, we pretend its stored plain text ZipEntry *pEntry = const_cast < ZipEntry * > ( &rEntry ); pEntry->nFlag &= ~(1 <<4 ); aChucker << rEntry.nFlag; aChucker << static_cast < sal_Int16 > ( STORED ); } else { aChucker << rEntry.nFlag; aChucker << rEntry.nMethod; } aChucker << static_cast < sal_uInt32> ( rEntry.nTime ); aChucker << static_cast < sal_uInt32> ( rEntry.nCrc ); aChucker << rEntry.nCompressedSize; aChucker << rEntry.nSize; aChucker << nNameLength; aChucker << static_cast < sal_Int16> (0); aChucker << static_cast < sal_Int16> (0); aChucker << static_cast < sal_Int16> (0); aChucker << static_cast < sal_Int16> (0); aChucker << static_cast < sal_Int32> (0); aChucker << rEntry.nOffset; const sal_Unicode *pChar = rEntry.sName.getStr(); Sequence < sal_Int8 > aSequence (nNameLength); sal_Int8 *pArray = aSequence.getArray(); VOS_ENSURE ( Impl_IsValidChar ( pChar, nNameLength, sal_True ), "Non US ASCII character in zipentry name!"); for ( sal_Int16 i = 0; i < nNameLength; i++) pArray[i] = static_cast < const sal_Int8 > (pChar[i]); aChucker.writeBytes( aSequence, nNameLength, pArray ); } void ZipOutputStream::writeEXT( const ZipEntry &rEntry ) throw(IOException, RuntimeException) { aChucker << EXTSIG; aChucker << static_cast < sal_uInt32> ( rEntry.nCrc ); aChucker << rEntry.nCompressedSize; aChucker << rEntry.nSize; } sal_Int32 ZipOutputStream::writeLOC( const ZipEntry &rEntry ) throw(IOException, RuntimeException) { sal_Int16 nNameLength = static_cast < sal_Int16 > (rEntry.sName.getLength()); Sequence < sal_Int8 > aSequence(nNameLength); sal_Int8 *pArray = aSequence.getArray(); aChucker << LOCSIG; aChucker << rEntry.nVersion; if (rEntry.nFlag & (1 << 4) ) { // If it's an encrypted entry, we pretend its stored plain text sal_Int16 nTmpFlag = rEntry.nFlag; nTmpFlag &= ~(1 <<4 ); aChucker << nTmpFlag; aChucker << static_cast < sal_Int16 > ( STORED ); } else { aChucker << rEntry.nFlag; aChucker << rEntry.nMethod; } aChucker << static_cast < sal_uInt32 > (rEntry.nTime); if ((rEntry.nFlag & 8) == 8 ) { aChucker << static_cast < sal_Int32 > (0); aChucker << static_cast < sal_Int32 > (0); aChucker << static_cast < sal_Int32 > (0); } else { aChucker << static_cast < sal_uInt32 > (rEntry.nCrc); aChucker << rEntry.nCompressedSize; aChucker << rEntry.nSize; } aChucker << nNameLength; aChucker << static_cast < sal_Int16 > (0); const sal_Unicode *pChar = rEntry.sName.getStr(); VOS_ENSURE ( Impl_IsValidChar ( pChar, nNameLength, sal_True ), "Non US ASCII character in zipentry name!"); for ( sal_Int16 i = 0; i < nNameLength; i++) pArray[i] = static_cast < const sal_Int8 > (pChar[i]); aChucker.writeBytes( aSequence, nNameLength, pArray ); return LOCHDR + nNameLength; } sal_uInt32 ZipOutputStream::getCurrentDosTime( ) { oslDateTime aDateTime; TimeValue aTimeValue; osl_getSystemTime ( &aTimeValue ); osl_getDateTimeFromTimeValue( &aTimeValue, &aDateTime); sal_uInt32 nYear = static_cast (aDateTime.Year); if (nYear>1980) nYear-=1980; else if (nYear>80) nYear-=80; sal_uInt32 nResult = static_cast < sal_uInt32>( ( ( ( aDateTime.Day) + ( 32 * (aDateTime.Month)) + ( 512 * nYear ) ) << 16) | ( ( aDateTime.Seconds/2) + ( 32 * aDateTime.Minutes) + ( 2048 * static_cast (aDateTime.Hours) ) ) ); return nResult; } /* This is actually never used, so I removed it, but thought that the implementation details may be useful in the future...mtg 20010307 I stopped using the time library and used the OSL version instead, but it might still be useful to have this code here.. void ZipOutputStream::dosDateToTMDate ( tm &rTime, sal_uInt32 nDosDate) { sal_uInt32 nDate = static_cast < sal_uInt32 > (nDosDate >> 16); rTime.tm_mday = static_cast < sal_uInt32 > ( nDate & 0x1F); rTime.tm_mon = static_cast < sal_uInt32 > ( ( ( (nDate) & 0x1E0)/0x20)-1); rTime.tm_year = static_cast < sal_uInt32 > ( ( (nDate & 0x0FE00)/0x0200)+1980); rTime.tm_hour = static_cast < sal_uInt32 > ( (nDosDate & 0xF800)/0x800); rTime.tm_min = static_cast < sal_uInt32 > ( (nDosDate & 0x7E0)/0x20); rTime.tm_sec = static_cast < sal_uInt32 > ( 2 * (nDosDate & 0x1F) ); } */