/************************************************************************* * * $RCSfile: ZipFile.cxx,v $ * * $Revision: 1.42 $ * * last change: $Author: obo $ $Date: 2005-03-15 11:50:19 $ * * The Contents of this file are made available subject to the terms of * either of the following licenses * * - GNU Lesser General Public License Version 2.1 * - Sun Industry Standards Source License Version 1.1 * * Sun Microsystems Inc., October, 2000 * * GNU Lesser General Public License Version 2.1 * ============================================= * Copyright 2000 by Sun Microsystems, Inc. * 901 San Antonio Road, Palo Alto, CA 94303, USA * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License version 2.1, as published by the Free Software Foundation. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA * * * Sun Industry Standards Source License Version 1.1 * ================================================= * The contents of this file are subject to the Sun Industry Standards * Source License Version 1.1 (the "License"); You may not use this file * except in compliance with the License. You may obtain a copy of the * License at http://www.openoffice.org/license.html. * * Software provided under this License is provided on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, * WITHOUT LIMITATION, WARRANTIES THAT THE SOFTWARE IS FREE OF DEFECTS, * MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE, OR NON-INFRINGING. * See the License for the specific provisions governing your rights and * obligations concerning the Software. * * The Initial Developer of the Original Code is: Sun Microsystems, Inc. * * Copyright: 2000 by Sun Microsystems, Inc. * * All Rights Reserved. * * Contributor(s): Martin Gallwey (gallwey@sun.com) * * ************************************************************************/ #ifndef _ZIP_FILE_HXX #include #endif #ifndef _ZIP_ENUMERATION_HXX #include #endif #ifndef _COM_SUN_STAR_PACKAGES_ZIP_ZIPCONSTANTS_HPP_ #include #endif #ifndef _RTL_CIPHER_H_ #include #endif #ifndef _RTL_DIGEST_H_ #include #endif /* #ifndef _XMEMORY_STREAM_HXX #include #endif #ifndef _XFILE_STREAM_HXX #include #endif */ #ifndef _XUNBUFFERED_STREAM_HXX #include #endif #ifndef _PACKAGE_CONSTANTS_HXX_ #include #endif #ifndef _ENCRYPTED_DATA_HEADER_HXX_ #include #endif #ifndef _ENCRYPTION_DATA_HXX_ #include #endif #ifndef _MEMORY_BYTE_GRABBER_HXX_ #include #endif #ifndef _COM_SUN_STAR_LANG_XMULTISERVICEFACTORY_HPP_ #include #endif #ifndef _COM_SUN_STAR_UCB_XPROGRESSHANDLER_HPP_ #include #endif #ifndef _CRC32_HXX_ #include #endif #include // for memcpy #include using namespace vos; using namespace rtl; using namespace com::sun::star; using namespace com::sun::star::io; using namespace com::sun::star::uno; using namespace com::sun::star::ucb; using namespace com::sun::star::lang; using namespace com::sun::star::packages; using namespace com::sun::star::packages::zip; using namespace com::sun::star::packages::zip::ZipConstants; /** This class is used to read entries from a zip file */ ZipFile::ZipFile( Reference < XInputStream > &xInput, const Reference < XMultiServiceFactory > &xNewFactory, sal_Bool bInitialise ) throw(IOException, ZipException, RuntimeException) : xStream(xInput) , xSeek(xInput, UNO_QUERY) , aGrabber(xInput) , aInflater (sal_True) , xFactory ( xNewFactory ) , bRecoveryMode( sal_False ) { if (bInitialise) { if ( readCEN() == -1 ) { aEntries.clear(); throw ZipException( OUString( RTL_CONSTASCII_USTRINGPARAM ( "stream data looks to be broken" ) ), Reference < XInterface > () ); } } } ZipFile::ZipFile( Reference < XInputStream > &xInput, const Reference < XMultiServiceFactory > &xNewFactory, sal_Bool bInitialise, sal_Bool bForceRecovery, Reference < XProgressHandler > xProgress ) throw(IOException, ZipException, RuntimeException) : xStream(xInput) , xSeek(xInput, UNO_QUERY) , aGrabber(xInput) , aInflater (sal_True) , xFactory ( xNewFactory ) , xProgressHandler( xProgress ) , bRecoveryMode( bForceRecovery ) { if (bInitialise) { if ( bForceRecovery ) { recover(); } else if ( readCEN() == -1 ) { aEntries.clear(); throw ZipException( OUString( RTL_CONSTASCII_USTRINGPARAM ( "stream data looks to be broken" ) ), Reference < XInterface > () ); } } } ZipFile::~ZipFile() { aEntries.clear(); } void ZipFile::setInputStream ( Reference < XInputStream > xNewStream ) { xStream = xNewStream; xSeek = Reference < XSeekable > ( xStream, UNO_QUERY ); aGrabber.setInputStream ( xStream ); } void ZipFile::StaticGetCipher ( const ORef < EncryptionData > & xEncryptionData, rtlCipher &rCipher ) { if ( ! xEncryptionData.isEmpty() ) { Sequence < sal_uInt8 > aDerivedKey (16); rtlCipherError aResult; Sequence < sal_Int8 > aDecryptBuffer; // Get the key rtl_digest_PBKDF2 ( aDerivedKey.getArray(), 16, reinterpret_cast < const sal_uInt8 * > (xEncryptionData->aKey.getConstArray() ), xEncryptionData->aKey.getLength(), reinterpret_cast < const sal_uInt8 * > ( xEncryptionData->aSalt.getConstArray() ), xEncryptionData->aSalt.getLength(), xEncryptionData->nIterationCount ); rCipher = rtl_cipher_create (rtl_Cipher_AlgorithmBF, rtl_Cipher_ModeStream); aResult = rtl_cipher_init( rCipher, rtl_Cipher_DirectionDecode, aDerivedKey.getConstArray(), aDerivedKey.getLength(), reinterpret_cast < const sal_uInt8 * > ( xEncryptionData->aInitVector.getConstArray() ), xEncryptionData->aInitVector.getLength()); OSL_ASSERT (aResult == rtl_Cipher_E_None); } } void ZipFile::StaticFillHeader ( const ORef < EncryptionData > & rData, sal_Int32 nSize, const ::rtl::OUString& aMediaType, sal_Int8 * & pHeader ) { // I think it's safe to restrict vector and salt length to 2 bytes ! sal_Int16 nIVLength = static_cast < sal_Int16 > ( rData->aInitVector.getLength() ); sal_Int16 nSaltLength = static_cast < sal_Int16 > ( rData->aSalt.getLength() ); sal_Int16 nDigestLength = static_cast < sal_Int16 > ( rData->aDigest.getLength() ); sal_Int16 nMediaTypeLength = static_cast < sal_Int16 > ( aMediaType.getLength() * sizeof( sal_Unicode ) ); // First the header *(pHeader++) = ( n_ConstHeader >> 0 ) & 0xFF; *(pHeader++) = ( n_ConstHeader >> 8 ) & 0xFF; *(pHeader++) = ( n_ConstHeader >> 16 ) & 0xFF; *(pHeader++) = ( n_ConstHeader >> 24 ) & 0xFF; // Then the version *(pHeader++) = ( n_ConstCurrentVersion >> 0 ) & 0xFF; *(pHeader++) = ( n_ConstCurrentVersion >> 8 ) & 0xFF; // Then the iteration Count sal_Int32 nIterationCount = rData->nIterationCount; *(pHeader++) = ( nIterationCount >> 0 ) & 0xFF; *(pHeader++) = ( nIterationCount >> 8 ) & 0xFF; *(pHeader++) = ( nIterationCount >> 16 ) & 0xFF; *(pHeader++) = ( nIterationCount >> 24 ) & 0xFF; // Then the size *(pHeader++) = ( nSize >> 0 ) & 0xFF; *(pHeader++) = ( nSize >> 8 ) & 0xFF; *(pHeader++) = ( nSize >> 16 ) & 0xFF; *(pHeader++) = ( nSize >> 24 ) & 0xFF; // Then the salt length *(pHeader++) = ( nSaltLength >> 0 ) & 0xFF; *(pHeader++) = ( nSaltLength >> 8 ) & 0xFF; // Then the IV length *(pHeader++) = ( nIVLength >> 0 ) & 0xFF; *(pHeader++) = ( nIVLength >> 8 ) & 0xFF; // Then the digest length *(pHeader++) = ( nDigestLength >> 0 ) & 0xFF; *(pHeader++) = ( nDigestLength >> 8 ) & 0xFF; // Then the mediatype length *(pHeader++) = ( nMediaTypeLength >> 0 ) & 0xFF; *(pHeader++) = ( nMediaTypeLength >> 8 ) & 0xFF; // Then the salt content memcpy ( pHeader, rData->aSalt.getConstArray(), nSaltLength ); pHeader += nSaltLength; // Then the IV content memcpy ( pHeader, rData->aInitVector.getConstArray(), nIVLength ); pHeader += nIVLength; // Then the digest content memcpy ( pHeader, rData->aDigest.getConstArray(), nDigestLength ); pHeader += nDigestLength; // Then the mediatype itself memcpy ( pHeader, aMediaType.getStr(), nMediaTypeLength ); pHeader += nMediaTypeLength; } sal_Bool ZipFile::StaticFillData ( ORef < EncryptionData > & rData, sal_Int32 &rSize, ::rtl::OUString& aMediaType, Reference < XInputStream > &rStream ) { sal_Bool bOk = sal_False; const sal_Int32 nHeaderSize = n_ConstHeaderSize - 4; Sequence < sal_Int8 > aBuffer ( nHeaderSize ); if ( nHeaderSize == rStream->readBytes ( aBuffer, nHeaderSize ) ) { sal_Int16 nPos = 0; sal_Int8 *pBuffer = aBuffer.getArray(); sal_Int16 nVersion = pBuffer[nPos++] & 0xFF; nVersion |= ( pBuffer[nPos++] & 0xFF ) << 8; if ( nVersion == n_ConstCurrentVersion ) { sal_Int32 nCount = pBuffer[nPos++] & 0xFF; nCount |= ( pBuffer[nPos++] & 0xFF ) << 8; nCount |= ( pBuffer[nPos++] & 0xFF ) << 16; nCount |= ( pBuffer[nPos++] & 0xFF ) << 24; rData->nIterationCount = nCount; rSize = pBuffer[nPos++] & 0xFF; rSize |= ( pBuffer[nPos++] & 0xFF ) << 8; rSize |= ( pBuffer[nPos++] & 0xFF ) << 16; rSize |= ( pBuffer[nPos++] & 0xFF ) << 24; sal_Int16 nSaltLength = pBuffer[nPos++] & 0xFF; nSaltLength |= ( pBuffer[nPos++] & 0xFF ) << 8; sal_Int16 nIVLength = ( pBuffer[nPos++] & 0xFF ); nIVLength |= ( pBuffer[nPos++] & 0xFF ) << 8; sal_Int16 nDigestLength = pBuffer[nPos++] & 0xFF; nDigestLength |= ( pBuffer[nPos++] & 0xFF ) << 8; sal_Int16 nMediaTypeLength = pBuffer[nPos++] & 0xFF; nMediaTypeLength |= ( pBuffer[nPos++] & 0xFF ) << 8; if ( nSaltLength == rStream->readBytes ( aBuffer, nSaltLength ) ) { rData->aSalt.realloc ( nSaltLength ); memcpy ( rData->aSalt.getArray(), aBuffer.getConstArray(), nSaltLength ); if ( nIVLength == rStream->readBytes ( aBuffer, nIVLength ) ) { rData->aInitVector.realloc ( nIVLength ); memcpy ( rData->aInitVector.getArray(), aBuffer.getConstArray(), nIVLength ); if ( nDigestLength == rStream->readBytes ( aBuffer, nDigestLength ) ) { rData->aDigest.realloc ( nDigestLength ); memcpy ( rData->aDigest.getArray(), aBuffer.getConstArray(), nDigestLength ); if ( nMediaTypeLength == rStream->readBytes ( aBuffer, nMediaTypeLength ) ) { aMediaType = ::rtl::OUString( (sal_Unicode*)aBuffer.getConstArray(), nMediaTypeLength / sizeof( sal_Unicode ) ); bOk = sal_True; } } } } } } return bOk; } Reference< XInputStream > ZipFile::StaticGetDataFromRawStream( const Reference< XInputStream >& xStream, const ORef < EncryptionData > &rData ) throw ( packages::WrongPasswordException, ZipIOException, RuntimeException ) { if ( rData.isEmpty() ) throw ZipIOException( OUString::createFromAscii( "Encrypted stream without encryption data!\n" ), Reference< XInterface >() ); if ( !rData->aKey.getLength() ) throw packages::WrongPasswordException(); Reference< XSeekable > xSeek( xStream, UNO_QUERY ); if ( !xSeek.is() ) throw ZipIOException( OUString::createFromAscii( "The stream must be seekable!\n" ), Reference< XInterface >() ); // if we have a digest, then this file is an encrypted one and we should // check if we can decrypt it or not OSL_ENSURE( rData->aDigest.getLength(), "Can't detect password correctness without digest!\n" ); if ( rData->aDigest.getLength() ) { sal_Int32 nSize = xSeek->getLength(); nSize = nSize > n_ConstDigestLength ? n_ConstDigestLength : nSize; // skip header xSeek->seek( n_ConstHeaderSize + rData->aInitVector.getLength() + rData->aSalt.getLength() + rData->aDigest.getLength() ); // Only want to read enough to verify the digest Sequence < sal_Int8 > aReadBuffer ( nSize ); xStream->readBytes( aReadBuffer, nSize ); if ( !StaticHasValidPassword( aReadBuffer, rData ) ) throw packages::WrongPasswordException(); } return new XUnbufferedStream ( xStream, rData ); } sal_Bool ZipFile::StaticHasValidPassword( const Sequence< sal_Int8 > &aReadBuffer, const ORef < EncryptionData > &rData ) { if ( !rData.isValid() || !rData->aKey.getLength() ) return sal_False; sal_Bool bRet = sal_False; sal_Int32 nSize = aReadBuffer.getLength(); // make a temporary cipher rtlCipher aCipher; StaticGetCipher ( rData, aCipher ); Sequence < sal_Int8 > aDecryptBuffer ( nSize ); rtlDigest aDigest = rtl_digest_createSHA1(); rtlDigestError aDigestResult; Sequence < sal_uInt8 > aDigestSeq ( RTL_DIGEST_LENGTH_SHA1 ); rtlCipherError aResult = rtl_cipher_decode ( aCipher, aReadBuffer.getConstArray(), nSize, reinterpret_cast < sal_uInt8 * > (aDecryptBuffer.getArray()), nSize); OSL_ASSERT (aResult == rtl_Cipher_E_None); aDigestResult = rtl_digest_updateSHA1 ( aDigest, static_cast < const void * > ( aDecryptBuffer.getConstArray() ), nSize ); OSL_ASSERT ( aDigestResult == rtl_Digest_E_None ); aDigestResult = rtl_digest_getSHA1 ( aDigest, aDigestSeq.getArray(), RTL_DIGEST_LENGTH_SHA1 ); OSL_ASSERT ( aDigestResult == rtl_Digest_E_None ); // If we don't have a digest, then we have to assume that the password is correct if ( rData->aDigest.getLength() != 0 && ( aDigestSeq.getLength() != rData->aDigest.getLength() || 0 != rtl_compareMemory ( aDigestSeq.getConstArray(), rData->aDigest.getConstArray(), aDigestSeq.getLength() ) ) ) { // We should probably tell the user that the password they entered was wrong } else bRet = sal_True; rtl_digest_destroySHA1 ( aDigest ); return bRet; } sal_Bool ZipFile::hasValidPassword ( ZipEntry & rEntry, const ORef < EncryptionData > &rData ) { sal_Bool bRet = sal_False; if ( rData->aKey.getLength() ) { xSeek->seek( rEntry.nOffset ); sal_Int32 nSize = rEntry.nMethod == DEFLATED ? rEntry.nCompressedSize : rEntry.nSize; // Only want to read enough to verify the digest nSize = nSize > n_ConstDigestLength ? n_ConstDigestLength : nSize; Sequence < sal_Int8 > aReadBuffer ( nSize ); xStream->readBytes( aReadBuffer, nSize ); bRet = StaticHasValidPassword( aReadBuffer, rData ); } return bRet; } #if 0 Reference < XInputStream > ZipFile::createFileStream( ZipEntry & rEntry, const ORef < EncryptionData > &rData, sal_Bool bRawStream, sal_Bool bIsEncrypted ) { static OUString sServiceName ( RTL_CONSTASCII_USTRINGPARAM ( "com.sun.star.io.TempFile" ) ); Reference < XInputStream > xTempStream = Reference < XInputStream > ( xFactory->createInstance ( sServiceName ), UNO_QUERY ); return new XFileStream ( rEntry, xStream, xTempStream, rData, bRawStream, bIsEncrypted ); } Reference < XInputStream > ZipFile::createMemoryStream( ZipEntry & rEntry, const ORef < EncryptionData > &rData, sal_Bool bRawStream, sal_Bool bIsEncrypted ) { sal_Int32 nUncompressedSize, nEnd; if (bRawStream) { nUncompressedSize = rEntry.nMethod == DEFLATED ? rEntry.nCompressedSize : rEntry.nSize; nEnd = rEntry.nOffset + nUncompressedSize; } else { nUncompressedSize = rEntry.nSize; nEnd = rEntry.nMethod == DEFLATED ? rEntry.nOffset + rEntry.nCompressedSize : rEntry.nOffset + rEntry.nSize; } sal_Int32 nSize = rEntry.nMethod == DEFLATED ? rEntry.nCompressedSize : rEntry.nSize; Sequence < sal_Int8 > aReadBuffer ( nSize ), aDecryptBuffer, aWriteBuffer; rtlCipher aCipher; // If the encryption key is zero, we need to return the raw stream. First check if // we have the salt. If we have the salt, then check if we have the encryption key // if not, return rawStream instead. sal_Bool bHaveEncryptData = ( !rData.isEmpty() && rData->aSalt.getLength() && rData->aInitVector.getLength() && rData->nIterationCount != 0 ) ? sal_True : sal_False; sal_Bool bMustDecrypt = ( !bRawStream && bHaveEncryptData && bIsEncrypted ) ? sal_True : sal_False; if ( bMustDecrypt ) { StaticGetCipher ( rData, aCipher ); aDecryptBuffer.realloc ( nSize ); } if ( nSize <0 ) throw IOException ( ); xSeek->seek( rEntry.nOffset ); xStream->readBytes( aReadBuffer, nSize ); // Now it holds the raw stuff from disk if ( bMustDecrypt ) { rtlCipherError aResult = rtl_cipher_decode ( aCipher, aReadBuffer.getConstArray(), nSize, reinterpret_cast < sal_uInt8 * > (aDecryptBuffer.getArray()), nSize); OSL_ASSERT (aResult == rtl_Cipher_E_None); aReadBuffer = aDecryptBuffer; // Now it holds the decrypted data } if (bRawStream || rEntry.nMethod == STORED) aWriteBuffer = aReadBuffer; // bRawStream means the caller doesn't want it decompressed else { aInflater.setInputSegment( aReadBuffer, 0, nSize ); aWriteBuffer.realloc( nUncompressedSize ); aInflater.doInflate( aWriteBuffer ); aInflater.reset(); } if ( bHaveEncryptData && !bMustDecrypt && bIsEncrypted ) { // if we have the data needed to decrypt it, but didn't want it decrypted (or // we couldn't decrypt it due to wrong password), then we prepend this // data to the stream // Make a buffer big enough to hold both the header and the data itself Sequence < sal_Int8 > aEncryptedDataHeader ( n_ConstHeaderSize + rData->aInitVector.getLength() + rData->aSalt.getLength() + rData->aDigest.getLength() + aWriteBuffer.getLength() ); sal_Int8 * pHeader = aEncryptedDataHeader.getArray(); StaticFillHeader ( rData, rEntry.nSize, pHeader ); memcpy ( pHeader, aWriteBuffer.getConstArray(), aWriteBuffer.getLength() ); // dump old buffer and point aWriteBuffer to the new one with the header aWriteBuffer = aEncryptedDataHeader; } return Reference < XInputStream > ( new XMemoryStream ( aWriteBuffer ) ); } #endif Reference < XInputStream > ZipFile::createUnbufferedStream( ZipEntry & rEntry, const ORef < EncryptionData > &rData, sal_Int8 nStreamMode, sal_Bool bIsEncrypted, ::rtl::OUString aMediaType ) { return new XUnbufferedStream ( rEntry, xStream, rData, nStreamMode, bIsEncrypted, aMediaType, bRecoveryMode ); } ZipEnumeration * SAL_CALL ZipFile::entries( ) { return new ZipEnumeration ( aEntries ); } ::rtl::OUString SAL_CALL ZipFile::getName( ) throw(RuntimeException) { return sName; } sal_Int32 SAL_CALL ZipFile::getSize( ) throw(RuntimeException) { return aEntries.size(); } Reference< XInputStream > SAL_CALL ZipFile::getInputStream( ZipEntry& rEntry, const vos::ORef < EncryptionData > &rData, sal_Bool bIsEncrypted ) throw(IOException, ZipException, RuntimeException) { if ( rEntry.nOffset <= 0 ) readLOC( rEntry ); // We want to return a rawStream if we either don't have a key or if the // key is wrong sal_Bool bNeedRawStream = rEntry.nMethod == STORED; // if we have a digest, then this file is an encrypted one and we should // check if we can decrypt it or not if ( bIsEncrypted && !rData.isEmpty() && rData->aDigest.getLength() ) bNeedRawStream = !hasValidPassword ( rEntry, rData ); return createUnbufferedStream ( rEntry, rData, bNeedRawStream ? UNBUFF_STREAM_RAW : UNBUFF_STREAM_DATA, bIsEncrypted ); } Reference< XInputStream > SAL_CALL ZipFile::getDataStream( ZipEntry& rEntry, const vos::ORef < EncryptionData > &rData, sal_Bool bIsEncrypted ) throw ( packages::WrongPasswordException, IOException, ZipException, RuntimeException ) { if ( rEntry.nOffset <= 0 ) readLOC( rEntry ); // An exception must be thrown in case stream is encrypted and // there is no key or the key is wrong sal_Bool bNeedRawStream = sal_False; if ( bIsEncrypted ) { // in case no digest is provided there is no way // to detect password correctness if ( rData.isEmpty() ) throw ZipException( OUString::createFromAscii( "Encrypted stream without encryption data!\n" ), Reference< XInterface >() ); // if we have a digest, then this file is an encrypted one and we should // check if we can decrypt it or not OSL_ENSURE( rData->aDigest.getLength(), "Can't detect password correctness without digest!\n" ); if ( rData->aDigest.getLength() && !hasValidPassword ( rEntry, rData ) ) throw packages::WrongPasswordException(); } else bNeedRawStream = ( rEntry.nMethod == STORED ); return createUnbufferedStream ( rEntry, rData, bNeedRawStream ? UNBUFF_STREAM_RAW : UNBUFF_STREAM_DATA, bIsEncrypted ); } Reference< XInputStream > SAL_CALL ZipFile::getRawData( ZipEntry& rEntry, const vos::ORef < EncryptionData > &rData, sal_Bool bIsEncrypted ) throw(IOException, ZipException, RuntimeException) { if ( rEntry.nOffset <= 0 ) readLOC( rEntry ); return createUnbufferedStream ( rEntry, rData, UNBUFF_STREAM_RAW, bIsEncrypted ); } Reference< XInputStream > SAL_CALL ZipFile::getWrappedRawStream( ZipEntry& rEntry, const vos::ORef < EncryptionData > &rData, const ::rtl::OUString& aMediaType ) throw ( packages::NoEncryptionException, IOException, ZipException, RuntimeException ) { if ( rData.isEmpty() ) throw packages::NoEncryptionException(); if ( rEntry.nOffset <= 0 ) readLOC( rEntry ); return createUnbufferedStream ( rEntry, rData, UNBUFF_STREAM_WRAPPEDRAW, sal_True, aMediaType ); } sal_Bool ZipFile::readLOC( ZipEntry &rEntry ) throw(IOException, ZipException, RuntimeException) { sal_Int32 nTestSig, nTime, nCRC, nSize, nCompressedSize; sal_Int16 nVersion, nFlag, nHow, nNameLen, nExtraLen; sal_Int32 nPos = -rEntry.nOffset; aGrabber.seek(nPos); aGrabber >> nTestSig; if (nTestSig != LOCSIG) throw ZipIOException( OUString( RTL_CONSTASCII_USTRINGPARAM ( "Invalid LOC header (bad signature") ), Reference < XInterface > () ); aGrabber >> nVersion; aGrabber >> nFlag; aGrabber >> nHow; aGrabber >> nTime; aGrabber >> nCRC; aGrabber >> nCompressedSize; aGrabber >> nSize; aGrabber >> nNameLen; aGrabber >> nExtraLen; rEntry.nOffset = static_cast < sal_Int32 > (aGrabber.getPosition()) + nNameLen + nExtraLen; if ( rEntry.nNameLen == -1 ) // the file was created rEntry.nNameLen = nNameLen; // the method can be reset for internal use so it is not checked sal_Bool bBroken = rEntry.nVersion != nVersion || rEntry.nFlag != nFlag || rEntry.nTime != nTime || rEntry.nNameLen != nNameLen; if ( bBroken && !bRecoveryMode ) throw ZipIOException( OUString( RTL_CONSTASCII_USTRINGPARAM( "The stream seems to be broken!" ) ), Reference< XInterface >() ); return sal_True; } sal_Int32 ZipFile::findEND( ) throw(IOException, ZipException, RuntimeException) { sal_Int32 nLength, nPos, nEnd; Sequence < sal_Int8 > aBuffer; try { nLength = static_cast (aGrabber.getLength()); if (nLength == 0 || nLength < ENDHDR) return -1; nPos = nLength - ENDHDR - ZIP_MAXNAMELEN; nEnd = nPos >= 0 ? nPos : 0 ; aGrabber.seek( nEnd ); aGrabber.readBytes ( aBuffer, nLength - nEnd ); const sal_Int8 *pBuffer = aBuffer.getConstArray(); nPos = nLength - nEnd - ENDHDR; while ( nPos >= 0 ) { if (pBuffer[nPos] == 'P' && pBuffer[nPos+1] == 'K' && pBuffer[nPos+2] == 5 && pBuffer[nPos+3] == 6 ) return nPos + nEnd; nPos--; } } catch ( IllegalArgumentException& ) { throw ZipException( OUString( RTL_CONSTASCII_USTRINGPARAM ( "Zip END signature not found!") ), Reference < XInterface > () ); } catch ( NotConnectedException& ) { throw ZipException( OUString( RTL_CONSTASCII_USTRINGPARAM ( "Zip END signature not found!") ), Reference < XInterface > () ); } catch ( BufferSizeExceededException& ) { throw ZipException( OUString( RTL_CONSTASCII_USTRINGPARAM ( "Zip END signature not found!") ), Reference < XInterface > () ); } throw ZipException( OUString( RTL_CONSTASCII_USTRINGPARAM ( "Zip END signature not found!") ), Reference < XInterface > () ); } sal_Int32 ZipFile::readCEN() throw(IOException, ZipException, RuntimeException) { sal_Int32 nCenLen, nCenPos = -1, nCenOff, nEndPos, nLocPos; sal_uInt16 nCount, nTotal; try { nEndPos = findEND(); if (nEndPos == -1) return -1; aGrabber.seek(nEndPos + ENDTOT); aGrabber >> nTotal; aGrabber >> nCenLen; aGrabber >> nCenOff; if ( nTotal * CENHDR > nCenLen ) throw ZipException(OUString( RTL_CONSTASCII_USTRINGPARAM ( "invalid END header (bad entry count)") ), Reference < XInterface > () ); if ( nTotal > ZIP_MAXENTRIES ) throw ZipException(OUString( RTL_CONSTASCII_USTRINGPARAM ( "too many entries in ZIP File") ), Reference < XInterface > () ); if ( nCenLen < 0 || nCenLen > nEndPos ) throw ZipException(OUString( RTL_CONSTASCII_USTRINGPARAM ( "Invalid END header (bad central directory size)") ), Reference < XInterface > () ); nCenPos = nEndPos - nCenLen; if ( nCenOff < 0 || nCenOff > nCenPos ) throw ZipException(OUString( RTL_CONSTASCII_USTRINGPARAM ( "Invalid END header (bad central directory size)") ), Reference < XInterface > () ); nLocPos = nCenPos - nCenOff; aGrabber.seek( nCenPos ); Sequence < sal_Int8 > aCENBuffer ( nCenLen ); sal_Int64 nRead = aGrabber.readBytes ( aCENBuffer, nCenLen ); if ( static_cast < sal_Int64 > ( nCenLen ) != nRead ) throw ZipException ( OUString ( RTL_CONSTASCII_USTRINGPARAM ( "Error reading CEN into memory buffer!") ), Reference < XInterface > () ); MemoryByteGrabber aMemGrabber ( aCENBuffer ); ZipEntry aEntry; sal_Int32 nTestSig; sal_Int16 nCommentLen; for (nCount = 0 ; nCount < nTotal; nCount++) { aMemGrabber >> nTestSig; if ( nTestSig != CENSIG ) throw ZipException(OUString( RTL_CONSTASCII_USTRINGPARAM ( "Invalid CEN header (bad signature)") ), Reference < XInterface > () ); aMemGrabber.skipBytes ( 2 ); aMemGrabber >> aEntry.nVersion; if ( ( aEntry.nVersion & 1 ) == 1 ) throw ZipException(OUString( RTL_CONSTASCII_USTRINGPARAM ( "Invalid CEN header (encrypted entry)") ), Reference < XInterface > () ); aMemGrabber >> aEntry.nFlag; aMemGrabber >> aEntry.nMethod; if ( aEntry.nMethod != STORED && aEntry.nMethod != DEFLATED) throw ZipException(OUString( RTL_CONSTASCII_USTRINGPARAM ( "Invalid CEN header (bad compression method)") ), Reference < XInterface > () ); aMemGrabber >> aEntry.nTime; aMemGrabber >> aEntry.nCrc; aMemGrabber >> aEntry.nCompressedSize; aMemGrabber >> aEntry.nSize; aMemGrabber >> aEntry.nNameLen; aMemGrabber >> aEntry.nExtraLen; aMemGrabber >> nCommentLen; aMemGrabber.skipBytes ( 8 ); aMemGrabber >> aEntry.nOffset; aEntry.nOffset += nLocPos; aEntry.nOffset *= -1; if ( aEntry.nNameLen > ZIP_MAXNAMELEN ) throw ZipException( OUString( RTL_CONSTASCII_USTRINGPARAM ( "name length exceeds ZIP_MAXNAMELEN bytes" ) ), Reference < XInterface > () ); if ( nCommentLen > ZIP_MAXNAMELEN ) throw ZipException( OUString( RTL_CONSTASCII_USTRINGPARAM ( "comment length exceeds ZIP_MAXNAMELEN bytes" ) ), Reference < XInterface > () ); if ( aEntry.nExtraLen > ZIP_MAXEXTRA ) throw ZipException( OUString( RTL_CONSTASCII_USTRINGPARAM ( "extra header info exceeds ZIP_MAXEXTRA bytes") ), Reference < XInterface > () ); aEntry.sName = OUString ( (sal_Char *) aMemGrabber.getCurrentPos(), aEntry.nNameLen, RTL_TEXTENCODING_ASCII_US); aMemGrabber.skipBytes( aEntry.nNameLen + aEntry.nExtraLen + nCommentLen ); aEntries[aEntry.sName] = aEntry; } if (nCount != nTotal) throw ZipException(OUString( RTL_CONSTASCII_USTRINGPARAM ( "Count != Total") ), Reference < XInterface > () ); } catch ( IllegalArgumentException & ) { // seek can throw this... nCenPos = -1; // make sure we return -1 to indicate an error } return nCenPos; } sal_Int32 ZipFile::recover() throw(IOException, ZipException, RuntimeException) { sal_Int32 nLength; Sequence < sal_Int8 > aBuffer; Sequence < sal_Int32 > aHeaderOffsets; sal_Int32 nNumOfHeaders = 0; try { nLength = static_cast (aGrabber.getLength()); if (nLength == 0 || nLength < ENDHDR) return -1; aGrabber.seek( 0 ); for( sal_Int32 nGenPos = 0; aGrabber.readBytes( aBuffer, 32000 ) && aBuffer.getLength() > 30; ) { const sal_Int8 *pBuffer = aBuffer.getConstArray(); sal_Int32 nBufSize = aBuffer.getLength(); sal_Int32 nPos = 0; while( nPos < nBufSize - 16 ) { if ( nPos < nBufSize - 30 && pBuffer[nPos] == 'P' && pBuffer[nPos+1] == 'K' && pBuffer[nPos+2] == 3 && pBuffer[nPos+3] == 4 ) { ZipEntry aEntry; MemoryByteGrabber aMemGrabber ( Sequence< sal_Int8 >( ((sal_Int8*)(&(pBuffer[nPos+4]))), 26 ) ); aMemGrabber >> aEntry.nVersion; if ( ( aEntry.nVersion & 1 ) != 1 ) { aMemGrabber >> aEntry.nFlag; aMemGrabber >> aEntry.nMethod; if ( aEntry.nMethod == STORED || aEntry.nMethod == DEFLATED ) { aMemGrabber >> aEntry.nTime; aMemGrabber >> aEntry.nCrc; aMemGrabber >> aEntry.nCompressedSize; aMemGrabber >> aEntry.nSize; aMemGrabber >> aEntry.nNameLen; aMemGrabber >> aEntry.nExtraLen; sal_Int32 nDescrLength = ( aEntry.nMethod == DEFLATED && ( aEntry.nFlag & 8 ) ) ? 16 : 0; // This is a quick fix for OOo1.1RC // For OOo2.0 the whole package must be switched to unsigned values if ( aEntry.nCompressedSize < 0 ) aEntry.nCompressedSize = 0x7FFFFFFF; if ( aEntry.nSize < 0 ) aEntry.nSize = 0x7FFFFFFF; if ( aEntry.nNameLen < 0 ) aEntry.nNameLen = 0x7FFF; if ( aEntry.nExtraLen < 0 ) aEntry.nExtraLen = 0x7FFF; // End of quick fix sal_Int32 nBlockLength = aEntry.nSize + aEntry.nNameLen + aEntry.nExtraLen + 30 + nDescrLength; if ( aEntry.nNameLen <= ZIP_MAXNAMELEN && aEntry.nExtraLen < ZIP_MAXEXTRA && ( nGenPos + nPos + nBlockLength ) <= nLength ) { if( nPos + 30 + aEntry.nNameLen <= nBufSize ) aEntry.sName = OUString ( (sal_Char *) &pBuffer[nPos + 30], aEntry.nNameLen, RTL_TEXTENCODING_ASCII_US); else { Sequence < sal_Int8 > aFileName; aGrabber.seek( nGenPos + nPos + 30 ); aGrabber.readBytes( aFileName, aEntry.nNameLen ); aEntry.sName = OUString ( (sal_Char *) aFileName.getArray(), aFileName.getLength(), RTL_TEXTENCODING_ASCII_US); aEntry.nNameLen = aFileName.getLength(); } aEntry.nOffset = nGenPos + nPos + 30 + aEntry.nNameLen + aEntry.nExtraLen; if ( ( aEntry.nSize || aEntry.nCompressedSize ) && !checkSizeAndCRC( aEntry ) ) { aEntry.nCrc = 0; aEntry.nCompressedSize = 0; aEntry.nSize = 0; } if ( aEntries.find( aEntry.sName ) == aEntries.end() ) aEntries[aEntry.sName] = aEntry; } } } nPos += 4; } else if (pBuffer[nPos] == 'P' && pBuffer[nPos+1] == 'K' && pBuffer[nPos+2] == 7 && pBuffer[nPos+3] == 8 ) { sal_Int32 nCompressedSize, nSize, nCRC32; MemoryByteGrabber aMemGrabber ( Sequence< sal_Int8 >( ((sal_Int8*)(&(pBuffer[nPos+4]))), 12 ) ); aMemGrabber >> nCRC32; aMemGrabber >> nCompressedSize; aMemGrabber >> nSize; for( EntryHash::iterator aIter = aEntries.begin(); aIter != aEntries.end(); aIter++ ) { ZipEntry aTmp = (*aIter).second; if( (*aIter).second.nMethod == DEFLATED && (*aIter).second.nFlag & 8 ) { sal_Int32 nStreamOffset = nGenPos + nPos - nCompressedSize; sal_Int32 nTmp1 = (*aIter).second.nOffset; if ( nStreamOffset == (*aIter).second.nOffset && nCompressedSize > (*aIter).second.nCompressedSize ) { sal_Int32 nRealSize = 0, nRealCRC = 0; getSizeAndCRC( nStreamOffset, nCompressedSize, &nRealSize, &nRealCRC ); if ( nRealSize == nSize && nRealCRC == nCRC32 ) { (*aIter).second.nCrc = nCRC32; (*aIter).second.nCompressedSize = nCompressedSize; (*aIter).second.nSize = nSize; } } #if 0 // for now ignore clearly broken streams else if( !(*aIter).second.nCompressedSize ) { (*aIter).second.nCrc = nCRC32; sal_Int32 nRealStreamSize = nGenPos + nPos - (*aIter).second.nOffset; (*aIter).second.nCompressedSize = nGenPos + nPos - (*aIter).second.nOffset; (*aIter).second.nSize = nSize; } #endif } } nPos += 4; } else nPos++; } nGenPos += nPos; aGrabber.seek( nGenPos ); } return 0; } catch ( IllegalArgumentException& ) { throw ZipException( OUString( RTL_CONSTASCII_USTRINGPARAM ( "Zip END signature not found!") ), Reference < XInterface > () ); } catch ( NotConnectedException& ) { throw ZipException( OUString( RTL_CONSTASCII_USTRINGPARAM ( "Zip END signature not found!") ), Reference < XInterface > () ); } catch ( BufferSizeExceededException& ) { throw ZipException( OUString( RTL_CONSTASCII_USTRINGPARAM ( "Zip END signature not found!") ), Reference < XInterface > () ); } throw ZipException( OUString( RTL_CONSTASCII_USTRINGPARAM ( "Zip END signature not found!") ), Reference < XInterface > () ); } sal_Bool ZipFile::checkSizeAndCRC( const ZipEntry& aEntry ) { sal_Int32 nSize = 0, nCRC = 0; if( aEntry.nMethod == STORED ) return ( getCRC( aEntry.nOffset, aEntry.nSize ) == aEntry.nCrc ); getSizeAndCRC( aEntry.nOffset, aEntry.nCompressedSize, &nSize, &nCRC ); return ( aEntry.nSize == nSize && aEntry.nCrc == nCRC ); } sal_Int32 ZipFile::getCRC( sal_Int32 nOffset, sal_Int32 nSize ) { Sequence < sal_Int8 > aBuffer; CRC32 aCRC; sal_Int32 nBlockSize = ::std::min( nSize, static_cast< sal_Int32 >( 32000 ) ); aGrabber.seek( nOffset ); for ( int ind = 0; aGrabber.readBytes( aBuffer, nBlockSize ) && ind * nBlockSize < nSize; ind++ ) { aCRC.updateSegment( aBuffer, 0, ::std::min( nBlockSize, nSize - ind * nBlockSize ) ); } return aCRC.getValue(); } void ZipFile::getSizeAndCRC( sal_Int32 nOffset, sal_Int32 nCompressedSize, sal_Int32 *nSize, sal_Int32 *nCRC ) { Sequence < sal_Int8 > aBuffer; CRC32 aCRC; sal_Int32 nRealSize = 0; Inflater aInflater( sal_True ); sal_Int32 nBlockSize = ::std::min( nCompressedSize, static_cast< sal_Int32 >( 32000 ) ); aGrabber.seek( nOffset ); for ( int ind = 0; !aInflater.finished() && aGrabber.readBytes( aBuffer, nBlockSize ) && ind * nBlockSize < nCompressedSize; ind++ ) { Sequence < sal_Int8 > aData( nBlockSize ); sal_Int32 nLastInflated = 0; sal_Int32 nInBlock = 0; aInflater.setInput( aBuffer ); do { nLastInflated = aInflater.doInflateSegment( aData, 0, nBlockSize ); aCRC.updateSegment( aData, 0, nLastInflated ); nInBlock += nLastInflated; } while( !aInflater.finished() && nLastInflated ); nRealSize += nInBlock; } if( aInflater.finished() ) { *nSize = nRealSize; *nCRC = aCRC.getValue(); } else *nSize = *nCRC = 0; }