/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /************************************************************************* * * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * Copyright 2000, 2010 Oracle and/or its affiliates. * * OpenOffice.org - a multi-platform office productivity suite * * This file is part of OpenOffice.org. * * OpenOffice.org is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License version 3 * only, as published by the Free Software Foundation. * * OpenOffice.org is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License version 3 for more details * (a copy is included in the LICENSE file that accompanied this code). * * You should have received a copy of the GNU Lesser General Public License * version 3 along with OpenOffice.org. If not, see * * for a copy of the LGPLv3 License. * ************************************************************************/ #include "oox/core/binarycodec.hxx" #include #include #include "oox/helper/attributelist.hxx" namespace oox { namespace core { // ============================================================================ namespace { /** Rotates rnValue left by nBits bits. */ template< typename Type > inline void lclRotateLeft( Type& rnValue, size_t nBits ) { OSL_ENSURE( nBits < sizeof( Type ) * 8, "lclRotateLeft - rotation count overflow" ); rnValue = static_cast< Type >( (rnValue << nBits) | (rnValue >> (sizeof( Type ) * 8 - nBits)) ); } /** Rotates the lower nWidth bits of rnValue left by nBits bits. */ template< typename Type > inline void lclRotateLeft( Type& rnValue, size_t nBits, size_t nWidth ) { OSL_ENSURE( (nBits < nWidth) && (nWidth < sizeof( Type ) * 8), "lclRotateLeft - rotation count overflow" ); Type nMask = static_cast< Type >( (1UL << nWidth) - 1 ); rnValue = static_cast< Type >( ((rnValue << nBits) | ((rnValue & nMask) >> (nWidth - nBits))) & nMask ); } sal_Int32 lclGetLen( const sal_uInt8* pnPassData, sal_Int32 nBufferSize ) { sal_Int32 nLen = 0; while( (nLen < nBufferSize) && pnPassData[ nLen ] ) ++nLen; return nLen; } sal_uInt16 lclGetKey( const sal_uInt8* pnPassData, sal_Int32 nBufferSize ) { sal_Int32 nLen = lclGetLen( pnPassData, nBufferSize ); if( nLen <= 0 ) return 0; sal_uInt16 nKey = 0; sal_uInt16 nKeyBase = 0x8000; sal_uInt16 nKeyEnd = 0xFFFF; const sal_uInt8* pnChar = pnPassData + nLen - 1; for( sal_Int32 nIndex = 0; nIndex < nLen; ++nIndex, --pnChar ) { sal_uInt8 cChar = *pnChar & 0x7F; for( size_t nBit = 0; nBit < 8; ++nBit ) { lclRotateLeft( nKeyBase, 1 ); if( nKeyBase & 1 ) nKeyBase ^= 0x1020; if( cChar & 1 ) nKey ^= nKeyBase; cChar >>= 1; lclRotateLeft( nKeyEnd, 1 ); if( nKeyEnd & 1 ) nKeyEnd ^= 0x1020; } } return nKey ^ nKeyEnd; } sal_uInt16 lclGetHash( const sal_uInt8* pnPassData, sal_Int32 nBufferSize ) { sal_Int32 nLen = lclGetLen( pnPassData, nBufferSize ); sal_uInt16 nHash = static_cast< sal_uInt16 >( nLen ); if( nLen > 0 ) nHash ^= 0xCE4B; const sal_uInt8* pnChar = pnPassData; for( sal_Int32 nIndex = 0; nIndex < nLen; ++nIndex, ++pnChar ) { sal_uInt16 cChar = *pnChar; size_t nRot = static_cast< size_t >( (nIndex + 1) % 15 ); lclRotateLeft( cChar, nRot, 15 ); nHash ^= cChar; } return nHash; } } // namespace // ============================================================================ /*static*/ sal_uInt16 CodecHelper::getPasswordHash( const AttributeList& rAttribs, sal_Int32 nElement ) { sal_Int32 nPasswordHash = rAttribs.getIntegerHex( nElement, 0 ); OSL_ENSURE( (0 <= nPasswordHash) && (nPasswordHash <= SAL_MAX_UINT16), "CodecHelper::getPasswordHash - invalid password hash" ); return static_cast< sal_uInt16 >( ((0 <= nPasswordHash) && (nPasswordHash <= SAL_MAX_UINT16)) ? nPasswordHash : 0 ); } // ============================================================================ BinaryCodec_XOR::BinaryCodec_XOR( CodecType eCodecType ) : meCodecType( eCodecType ), mnOffset( 0 ), mnBaseKey( 0 ), mnHash( 0 ) { (void)memset( mpnKey, 0, sizeof( mpnKey ) ); } BinaryCodec_XOR::~BinaryCodec_XOR() { (void)memset( mpnKey, 0, sizeof( mpnKey ) ); mnBaseKey = mnHash = 0; } void BinaryCodec_XOR::initKey( const sal_uInt8 pnPassData[ 16 ] ) { // calculate base key and hash from passed password mnBaseKey = lclGetKey( pnPassData, 16 ); mnHash = lclGetHash( pnPassData, 16 ); static const sal_uInt8 spnFillChars[] = { 0xBB, 0xFF, 0xFF, 0xBA, 0xFF, 0xFF, 0xB9, 0x80, 0x00, 0xBE, 0x0F, 0x00, 0xBF, 0x0F, 0x00 }; (void)memcpy( mpnKey, pnPassData, 16 ); sal_Int32 nIndex; sal_Int32 nLen = lclGetLen( pnPassData, 16 ); const sal_uInt8* pnFillChar = spnFillChars; for( nIndex = nLen; nIndex < static_cast< sal_Int32 >( sizeof( mpnKey ) ); ++nIndex, ++pnFillChar ) mpnKey[ nIndex ] = *pnFillChar; // rotation of key values is application dependent size_t nRotateSize = 0; switch( meCodecType ) { case CODEC_WORD: nRotateSize = 7; break; case CODEC_EXCEL: nRotateSize = 2; break; // compiler will warn, if new codec type is introduced and not handled here } // use little-endian base key to create key array sal_uInt8 pnBaseKeyLE[ 2 ]; pnBaseKeyLE[ 0 ] = static_cast< sal_uInt8 >( mnBaseKey ); pnBaseKeyLE[ 1 ] = static_cast< sal_uInt8 >( mnBaseKey >> 8 ); sal_uInt8* pnKeyChar = mpnKey; for( nIndex = 0; nIndex < static_cast< sal_Int32 >( sizeof( mpnKey ) ); ++nIndex, ++pnKeyChar ) { *pnKeyChar ^= pnBaseKeyLE[ nIndex & 1 ]; lclRotateLeft( *pnKeyChar, nRotateSize ); } } bool BinaryCodec_XOR::verifyKey( sal_uInt16 nKey, sal_uInt16 nHash ) const { return (nKey == mnBaseKey) && (nHash == mnHash); } void BinaryCodec_XOR::startBlock() { mnOffset = 0; } bool BinaryCodec_XOR::decode( sal_uInt8* pnDestData, const sal_uInt8* pnSrcData, sal_Int32 nBytes ) { const sal_uInt8* pnCurrKey = mpnKey + mnOffset; const sal_uInt8* pnKeyLast = mpnKey + 0x0F; // switch/case outside of the for loop (performance) const sal_uInt8* pnSrcDataEnd = pnSrcData + nBytes; switch( meCodecType ) { case CODEC_WORD: { for( ; pnSrcData < pnSrcDataEnd; ++pnSrcData, ++pnDestData ) { sal_uInt8 nData = *pnSrcData ^ *pnCurrKey; if( (*pnSrcData != 0) && (nData != 0) ) *pnDestData = nData; if( pnCurrKey < pnKeyLast ) ++pnCurrKey; else pnCurrKey = mpnKey; } } break; case CODEC_EXCEL: { for( ; pnSrcData < pnSrcDataEnd; ++pnSrcData, ++pnDestData ) { *pnDestData = *pnSrcData; lclRotateLeft( *pnDestData, 3 ); *pnDestData ^= *pnCurrKey; if( pnCurrKey < pnKeyLast ) ++pnCurrKey; else pnCurrKey = mpnKey; } } break; // compiler will warn, if new codec type is introduced and not handled here } // update offset and leave return skip( nBytes ); } bool BinaryCodec_XOR::skip( sal_Int32 nBytes ) { mnOffset = static_cast< sal_Int32 >( (mnOffset + nBytes) & 0x0F ); return true; } sal_uInt16 BinaryCodec_XOR::getHash( const sal_uInt8* pnPassData, sal_Int32 nSize ) { return lclGetHash( pnPassData, nSize ); } // ============================================================================ BinaryCodec_RCF::BinaryCodec_RCF() { mhCipher = rtl_cipher_create( rtl_Cipher_AlgorithmARCFOUR, rtl_Cipher_ModeStream ); OSL_ENSURE( mhCipher != 0, "BinaryCodec_RCF::BinaryCodec_RCF - cannot create cipher" ); mhDigest = rtl_digest_create( rtl_Digest_AlgorithmMD5 ); OSL_ENSURE( mhDigest != 0, "BinaryCodec_RCF::BinaryCodec_RCF - cannot create digest" ); (void)memset( mpnDigestValue, 0, sizeof( mpnDigestValue ) ); } BinaryCodec_RCF::~BinaryCodec_RCF() { (void)memset( mpnDigestValue, 0, sizeof( mpnDigestValue ) ); rtl_digest_destroy( mhDigest ); rtl_cipher_destroy( mhCipher ); } void BinaryCodec_RCF::initKey( const sal_uInt16 pnPassData[ 16 ], const sal_uInt8 pnSalt[ 16 ] ) { // create little-endian key data array from password data sal_uInt8 pnKeyData[ 64 ]; (void)memset( pnKeyData, 0, sizeof( pnKeyData ) ); const sal_uInt16* pnCurrPass = pnPassData; const sal_uInt16* pnPassEnd = pnPassData + 16; sal_uInt8* pnCurrKey = pnKeyData; size_t nPassSize = 0; for( ; (pnCurrPass < pnPassEnd) && (*pnCurrPass != 0); ++pnCurrPass, ++nPassSize ) { *pnCurrKey++ = static_cast< sal_uInt8 >( *pnCurrPass ); *pnCurrKey++ = static_cast< sal_uInt8 >( *pnCurrPass >> 8 ); } pnKeyData[ 2 * nPassSize ] = 0x80; pnKeyData[ 56 ] = static_cast< sal_uInt8 >( nPassSize << 4 ); // fill raw digest of key data into key data (void)rtl_digest_updateMD5( mhDigest, pnKeyData, sizeof( pnKeyData ) ); (void)rtl_digest_rawMD5( mhDigest, pnKeyData, RTL_DIGEST_LENGTH_MD5 ); // update digest with key data and passed salt data for( size_t nIndex = 0; nIndex < 16; ++nIndex ) { rtl_digest_updateMD5( mhDigest, pnKeyData, 5 ); rtl_digest_updateMD5( mhDigest, pnSalt, 16 ); } // update digest with padding pnKeyData[ 16 ] = 0x80; (void)memset( pnKeyData + 17, 0, sizeof( pnKeyData ) - 17 ); pnKeyData[ 56 ] = 0x80; pnKeyData[ 57 ] = 0x0A; rtl_digest_updateMD5( mhDigest, pnKeyData + 16, sizeof( pnKeyData ) - 16 ); // fill raw digest of above updates into digest value rtl_digest_rawMD5( mhDigest, mpnDigestValue, sizeof( mpnDigestValue ) ); // erase key data array and leave (void)memset( pnKeyData, 0, sizeof( pnKeyData ) ); } bool BinaryCodec_RCF::verifyKey( const sal_uInt8 pnVerifier[ 16 ], const sal_uInt8 pnVerifierHash[ 16 ] ) { if( !startBlock( 0 ) ) return false; sal_uInt8 pnDigest[ RTL_DIGEST_LENGTH_MD5 ]; sal_uInt8 pnBuffer[ 64 ]; // decode salt data into buffer rtl_cipher_decode( mhCipher, pnVerifier, 16, pnBuffer, sizeof( pnBuffer ) ); pnBuffer[ 16 ] = 0x80; (void)memset( pnBuffer + 17, 0, sizeof( pnBuffer ) - 17 ); pnBuffer[ 56 ] = 0x80; // fill raw digest of buffer into digest rtl_digest_updateMD5( mhDigest, pnBuffer, sizeof( pnBuffer ) ); rtl_digest_rawMD5( mhDigest, pnDigest, sizeof( pnDigest ) ); // decode original salt digest into buffer rtl_cipher_decode( mhCipher, pnVerifierHash, 16, pnBuffer, sizeof( pnBuffer ) ); // compare buffer with computed digest bool bResult = memcmp( pnBuffer, pnDigest, sizeof( pnDigest ) ) == 0; // erase buffer and digest arrays and leave (void)memset( pnBuffer, 0, sizeof( pnBuffer ) ); (void)memset( pnDigest, 0, sizeof( pnDigest ) ); return bResult; } bool BinaryCodec_RCF::startBlock( sal_Int32 nCounter ) { // initialize key data array sal_uInt8 pnKeyData[ 64 ]; (void)memset( pnKeyData, 0, sizeof( pnKeyData ) ); // fill 40 bit of digest value into [0..4] (void)memcpy( pnKeyData, mpnDigestValue, 5 ); // fill little-endian counter into [5..8], static_cast masks out unneeded bits pnKeyData[ 5 ] = static_cast< sal_uInt8 >( nCounter ); pnKeyData[ 6 ] = static_cast< sal_uInt8 >( nCounter >> 8 ); pnKeyData[ 7 ] = static_cast< sal_uInt8 >( nCounter >> 16 ); pnKeyData[ 8 ] = static_cast< sal_uInt8 >( nCounter >> 24 ); pnKeyData[ 9 ] = 0x80; pnKeyData[ 56 ] = 0x48; // fill raw digest of key data into key data (void)rtl_digest_updateMD5( mhDigest, pnKeyData, sizeof( pnKeyData ) ); (void)rtl_digest_rawMD5( mhDigest, pnKeyData, RTL_DIGEST_LENGTH_MD5 ); // initialize cipher with key data (for decoding) rtlCipherError eResult = rtl_cipher_init( mhCipher, rtl_Cipher_DirectionDecode, pnKeyData, RTL_DIGEST_LENGTH_MD5, 0, 0 ); // rrase key data array and leave (void)memset( pnKeyData, 0, sizeof( pnKeyData ) ); return eResult == rtl_Cipher_E_None; } bool BinaryCodec_RCF::decode( sal_uInt8* pnDestData, const sal_uInt8* pnSrcData, sal_Int32 nBytes ) { rtlCipherError eResult = rtl_cipher_decode( mhCipher, pnSrcData, static_cast< sal_Size >( nBytes ), pnDestData, static_cast< sal_Size >( nBytes ) ); return eResult == rtl_Cipher_E_None; } bool BinaryCodec_RCF::skip( sal_Int32 nBytes ) { // decode dummy data in memory to update internal state of RC4 cipher sal_uInt8 pnDummy[ 1024 ]; sal_Int32 nBytesLeft = nBytes; bool bResult = true; while( bResult && (nBytesLeft > 0) ) { sal_Int32 nBlockLen = ::std::min( nBytesLeft, static_cast< sal_Int32 >( sizeof( pnDummy ) ) ); bResult = decode( pnDummy, pnDummy, nBlockLen ); nBytesLeft -= nBlockLen; } return bResult; } // ============================================================================ } // namespace core } // namespace oox /* vim:set shiftwidth=4 softtabstop=4 expandtab: */