/************************************************************** * * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. * *************************************************************/ #ifndef __com_sun_star_geometry_Matrix2D_idl__ #define __com_sun_star_geometry_Matrix2D_idl__ module com { module sun { module star { module geometry { /** This structure defines a 2 by 2 matrix.

This constitutes a linear mapping of a point in 2D to another point in 2D.

The matrix defined by this structure constitutes a linear mapping of a point in 2D to another point in 2D. In contrast to the com.sun.star.geometry.AffineMatrix2D, this matrix does not include any translational components.

A linear mapping, as performed by this matrix, can be written out as follows, where xs and ys are the source, and xd and yd the corresponding result coordinates: xd = m00*xs + m01*ys; yd = m10*xs + m11*ys;

Thus, in common matrix language, with M being the Matrix2D and vs=[xs,ys]^T, vd=[xd,yd]^T two 2D vectors, the linear mapping is written as vd=M*vs. Concatenation of transformations amounts to multiplication of matrices, i.e. a scaling, given by S, followed by a rotation, given by R, is expressed as vd=R*(S*vs) in the above notation. Since matrix multiplication is associative, this can be shortened to vd=(R*S)*vs=M'*vs. Therefore, a set of consecutive transformations can be accumulated into a single Matrix2D, by multiplying the current transformation with the additional transformation from the left.

Due to this transformational approach, all geometry data types are points in abstract integer or real coordinate spaces, without any physical dimensions attached to them. This physical measurement units are typically only added when using these data types to render something onto a physical output device, like a screen or a printer. Then, the total transformation matrix and the device resolution determine the actual measurement unit.

@since OpenOffice 2.0 */ published struct Matrix2D { /// The top, left matrix entry. double m00; /// The top, right matrix entry. double m01; /// The bottom, left matrix entry. double m10; /// The bottom, right matrix entry. double m11; }; }; }; }; }; #endif