/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /************************************************************************* * * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * Copyright 2000, 2010 Oracle and/or its affiliates. * * OpenOffice.org - a multi-platform office productivity suite * * This file is part of OpenOffice.org. * * OpenOffice.org is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License version 3 * only, as published by the Free Software Foundation. * * OpenOffice.org is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License version 3 for more details * (a copy is included in the LICENSE file that accompanied this code). * * You should have received a copy of the GNU Lesser General Public License * version 3 along with OpenOffice.org. If not, see * * for a copy of the LGPLv3 License. * ************************************************************************/ /** @HTML */ #if !defined INCLUDED_JVMFWK_FRAMEWORK_H #define INCLUDED_JVMFWK_FRAMEWORK_H #include "jvmfwkdllapi.h" #include "rtl/ustring.h" #include "osl/mutex.h" #ifdef SOLAR_JAVA #include "jni.h" #else struct JavaVMOption; struct JavaVM; struct JNIEnv; #endif #ifdef __cplusplus extern "C" { #endif /** @file

This library can operate in two modes, application mode and direct mode.

Application Mode

In application mode the Java related settings are stored in files. There are currently three files which need to be accessed. They are determined by bootstrap parameters:

UNO_JAVA_JFW_VENDOR_SETTINGS
contains vendor and version information about JREs as well as the location of plugin-libraries which are responsible for providing information about these JREs as well as starting the VMs.
UNO_JAVA_JFW_USER_DATA
The file contains settings for a particular user. One can use the macro $SYSUSERCONFIG in the URL which expands to a directory whery the user's data are kept. On UNIX this would be the home directory and on Windows some sub-directory of the "Documents and Settings" folder.The content of this file is an implementation detail and may change in the future.
UNO_JAVA_JFW_SHARED_DATA
The file contains settings valid for all users. If a user changes a setting then it takes precedence over the setting from UNO_JAVA_JFW_SHARED_DATA. The content of this file is an implementation detail and may change in the future.
UNO_JAVA_JFW_INSTALL_DATA
DEPRECATED. Support for this variable will soon be removed.
The file contains settings for all users. A user cannot override these settings. When this parameter is provided then UNO_JAVA_JFW_SHARED_DATA and UNO_JAVA_JFW_USER_DATA are irrelevant. This parameter is intended for use during the setup. For example, to install extensions which contain java components. If there is already a file at this location then it will be overwritten if it is too old. The period of validatity is per default one hour. This value can be overridden by the bootstrap parameter UNO_JAVA_JFW_INSTALL_EXPIRE (DEPRECATED). Setting this variable to 1000 means the settings file is only valid for 1000 seconds.

If one would not use UNO_JAVA_JFW_INSTALL_DATA during setup then most probably a user installation directory would be created in the home directory of root. This is because, java settings are determined and stored on behalf of the current user. In other words UNO_JAVA_JFW_USER_DATA would be used which points into the user installation.

UNO_JAVA_JFW_INSTALL_DATA could point into the shared installation, provided that only people with root rights can install OOo. Then one has to take care that the installer removes this file when uninstalling.

The content of this file is an implementation detail and may change in the future.

The values for these parameters must be file URLs and include the file name, for example:
file:///d:/MyApp/javavendors.xml
All files are XML files and must have the extension .xml.

Modifying the shared settings is currently not supported by the framework. To provide Java settings for all users one can run OOo and change the settings in the options dialog. These settings are made persistent in the UNO_JAVA_JFW_USER_DATA. The file can then be copied into the base installation. Other users will use automatically these data but can override the settings in the options dialog. This mechanism may change in the future.

If shared Java settings are not supported by an application then it is not necessary to specify the bootstrap parameter UNO_JAVA_JFW_SHARED_DATA.

Setting the class path used by a Java VM should not be necesarry. The locations of Jar files should be knows by a class loader. If a jar file depends on another jar file then it can be referenced in the manifest file of the first jar. However, a user may add jars to the class path by using this API. If it becomes necessary to add files to the class path which is to be used by all users then one can use the bootrap parameter UNO_JAVA_JFW_CLASSPATH_URLS. The value contains of file URLs which must be separated by spaces.

Direct Mode

The direct mode is intended for a scenario where no configuration files are available and a Java VM shall be run. That is, the files containing the user and shared settings are not specified by the bootstrap parameters UNO_JAVA_JFW_SHARED_DATA and UNO_JAVA_JFW_USER_DATA. For example, tools, such as regcomp, may use this framework in a build environment. Then one would want to use settings which have been specified by the build environment. The framework would automatically use the current settings when they change in the environment.

Here are examples how regcomp could be invoked using bootstrap parameters:

regcomp -env:UNO_JAVA_JFW_JREHOME=file:///d:/j2re1.4.2 -env:"UNO_JAVA_JFW_CLASSPATH=d:\\solver\\bin\\classes.jar;d:\\solver\\bin\\jurt.jar" -register ....

If UNO_JAVA_JFW_VENDOR_SETTINGS is not set then a plugin library must be specified. For example:

regcomp -env:UNO_JAVA_JFW_JREHOME=file:///d:/j2re1.4.2 -env:"UNO_JAVA_JFW_CLASSPATH=d:\\solver\\bin\\classes.jar;d:\\solver\\bin\\jurt.jar" -env:UNO_JAVA_JFW_PLUGIN=file:\\solver\\bin\\libsunjavaplugin.dll -register ....

Additionall parameters for the Java VM can be provided. For every parameter a seperate bootstrap parameter must be specified. The names are UNO_JAVA_JFW_PARAMETER_X, where X is 1,2, .. n. For example:

regcomp -env:UNO_JAVA_JFW_PARAMETER_1=-Xdebug -env:UNO_JAVA_JFW_PARAMETER_2=-Xrunjdwp:transport=dt_socket,server=y,address=8100 -env:UNO_JAVA_JFW_JREHOME=file:///d:/j2re1.4.2 -env:"UNO_JAVA_JFW_CLASSPATH=d:\\solver\\bin\\classes.jar;d:\\solver\\bin\\jurt.jar" -register ....

Here is a complete list of the bootstrap parameter for the direct mode:

UNO_JAVA_JFW_JREHOME
Specifies a file URL to a JRE installation.It must ALWAYS be specified in direct mode
UNO_JAVA_JFW_ENV_JREHOME
Setting this parameter, for example to "1" or "true", causes the framework to use the environment variable JAVA_HOME. It is expected that JAVA_HOME contains a system path rather than a file URL. This parameter and UNO_JAVA_JFW_JREHOME are mutually exclusive
UNO_JAVA_JFW_CLASSPATH
Contains the class path which is to be used by the VM. Special character, such as '\','{','}','$' must be preceded with '\'. See documentation about the bootstrap parameter.
UNO_JAVA_JFW_ENV_CLASSPATH
Setting this parameter,for example to "1" or "true", causes the framework to use the environment variable CLASSPATH. If this variable and UNO_JAVA_JFW_CLASSPATH are set then the class path is composed from UNO_JAVA_JFW_CLASSPATH and the environment variable CLASSPATH.
UNO_JAVA_JFW_PLUGIN
Specified a file URL to a plugin library. If this variable is provided then a javavendors.xml is ignored. It must be provided if no javavendors.xml is available.
UNO_JAVA_JFW_PARAMETER_X
Specifies a parameter for the Java VM. The X is replaced by non-negative natural numbers starting with 1.

A note about bootstrap parameters. The implementation of the bootstrap parameter mechanism interprets the characters '\', '$', '{', '}' as escape characters. Thats why the Windows path contain double back-slashes. One should also take into account that a console may have also special escape characters.

What mode is used

The default mode is application mode. If at least one bootstrap parameter for the direct mode is provided then direct mode is used.

All settings made by this API are done for the current user if not mentioned differently.

Other bootstrap variables

JFW_PLUGIN_DO_NOT_CHECK_ACCESSIBILITY
This is a unofficial variable which was introduced to workaround external issues. It may be removed in the future. By setting it to 1, the framework will not try to find out if the system is configured to use accessibility tools or if a JRE has an accessibiliy bridge installed
*/ /** indicates that a JRE has an accessibility bridge installed.

The flag is used with JavaInfo::nFeatures.

*/ #define JFW_FEATURE_ACCESSBRIDGE 0x1l /** indicates that there must be an environment set up before the Java process runs.

Therefore, when a Java is selected in OO then the office must be restarted, so that the changes can take effect.

*/ #define JFW_REQUIRE_NEEDRESTART 0x1l /** error codes which are returned by functions of this API. */ typedef enum _javaFrameworkError { JFW_E_NONE, JFW_E_ERROR, JFW_E_INVALID_ARG, JFW_E_NO_SELECT, JFW_E_INVALID_SETTINGS, JFW_E_NEED_RESTART, JFW_E_RUNNING_JVM, JFW_E_JAVA_DISABLED, JFW_E_NO_PLUGIN, JFW_E_NOT_RECOGNIZED, JFW_E_FAILED_VERSION, JFW_E_NO_JAVA_FOUND, JFW_E_VM_CREATION_FAILED, JFW_E_CONFIGURATION, JFW_E_DIRECT_MODE } javaFrameworkError; /** an instance of this struct represents an installation of a Java Runtime Environment (JRE).

Instances of this struct are created by the plug-in libraries which are used by this framework (jvmfwk/vendorplugin.h). The memory of the instances is created by rtl_allocateMemory (rtl/alloc.h). Therefore, the memory must be freed by rtl_freeMemory. Also the contained members must be freed particularly. For convenience this API provides the function jfw_freeJavaInfo which frees the objects properly.

*/ struct _JavaInfo { /** contains the vendor.

string must be the same as the one obtained from the Java system property java.vendor.

*/ rtl_uString *sVendor; /** contains the file URL to the installation directory. */ rtl_uString *sLocation; /** contains the version of this Java distribution.

The version string must adhere to the rules about how a version string has to be formed. These rules may be vendor-dependent. Essentially the strings must syntactically equal the Java system property java.version.

*/ rtl_uString *sVersion; /** indicates supported special features.

For example, JFW_FEATURE_ACCESSBRIDGE indicates that assistive technology tools are supported.

*/ sal_uInt64 nFeatures; /** indicates requirments for running the java runtime.

For example, it may be necessary to prepare the environment before the runtime is created. That could mean, setting the LD_LIBRARY_PATH when nRequirements contains the flag JFW_REQUIRE_NEEDRESTART

*/ sal_uInt64 nRequirements; /** contains data needed for the creation of the java runtime.

There is no rule about the format and content of the sequence's values. The plug-in libraries can put all data, necessary for starting the java runtime into this sequence.

*/ sal_Sequence * arVendorData; }; typedef struct _JavaInfo JavaInfo; /** frees the memory of a JavaInfo object. @param pInfo The object which is to be freed. It can be NULL; */ JVMFWK_DLLPUBLIC void SAL_CALL jfw_freeJavaInfo(JavaInfo *pInfo); /** compares two JavaInfo objects for equality.

Two JavaInfo objects are said to be equal if the contained members of the first JavaInfo are equal to their counterparts in the second JavaInfo object. The equality of the rtl_uString members is determined by the respective comparison function (see rtl::OUString::equals). Similiarly the equality of the sal_Sequence is also determined by a comparison function (see rtl::ByteSequence::operator ==).

Both argument pointers must be valid.

@param pInfoA the first argument. @param pInfoB the second argument which is compared with the first. @return sal_True - both object represent the same JRE.
sal_False - the objects represend different JREs */ JVMFWK_DLLPUBLIC sal_Bool SAL_CALL jfw_areEqualJavaInfo( JavaInfo const * pInfoA,JavaInfo const * pInfoB); /** determines if a Java Virtual Machine is already running.

As long as the the office and the JREs only support one Virtual Machine per process the Java settings, particulary the selected Java, are not effective immediatly after changing when a VM has already been running. That is, if a JRE A was used to start a VM and then a JRE B is selected, then JRE B will only be used after a restart of the office.

By determining if a VM is running, the user can be presented a message, that the changed setting may not be effective immediately.

@param bRunning [out] sal_True - a VM is running.
sal_False - no VM is running. @return JFW_E_NONE function ran successfully.
JFW_E_INVALID_ARG the parameter bRunning was NULL. */ JVMFWK_DLLPUBLIC javaFrameworkError SAL_CALL jfw_isVMRunning(sal_Bool *bRunning); /** detects a suitable JRE and configures the framework to use it.

Which JREs can be used is determined by the file javavendors.xml, which contains version requirements, as well as information about available plug-in libraries. Only these libraries are responsible for locating JRE installations.

JREs can be provided by different vendors. In order to find the JREs of a certain vendor a plug-in library must be provided. There must be only one library for one vendor. The names of locations of those libraries have to be put into the javavendors.xml file.
The function uses the plug-in libraries to obtain information about JRE installation and checks if they there is one among them that supports a set of features (currently only accessibilty is possible). If none was found then it also uses a list of paths, which have been registered by jfw_addJRELocation or jfw_setJRELocations to find JREs. Found JREs are examined in the same way.

A JRE installation is only selected if it meets the version requirements. Information about the selected JRE are made persistent so that subsequent calls to jfw_getSelectedJRE returns this information.

While determining a proper JRE this function takes into account if a user requires support for assistive technology tools. If user need that support they have to set up their system accordingly. When support for assistive technology is required, then the lists of JavaInfo objects, which are provided by the getJavaInfo functions of the plug-ins, are examined for a suitable JRE. That is, the JavaInfo objects from the list obtained from the first plug-in, are examined. If no JavaInfo object has the flag JFW_FEATURE_ACCESSBRIDGE in the member nFeatures then the next plug-in is used to obtain a list of JavaInfo objects. This goes on until a JavaInfo object was found which represents a suitable JRE. Or neither plug-in provided such a JavaInfo object. In that case the first JavaInfo object from the first plug-in is used to determine the JRE which is to be used.

If there is no need for the support of assistive technology tools then the first JavaInfo object from the list obtained by the first plug-in is used. If this plug-in does not find any JREs then the next plug-in is used, and so on.

@param ppInfo [out] a JavaInfo pointer, representing the selected JRE. The caller has to free it by calling jfw_freeJavaInfo. The JavaInfo is for informational purposes only. It is not necessary to call jfw_setSelectedJRE afterwards.
ppInfocan be NULL. If *ppInfo is not null, then it is overwritten, without attempting to free *ppInfo. @return JFW_E_NONE function ran successfully.
JFW_E_ERROR an error occurred.
JFW_E_NO_PLUGIN a plug-in library could not be found.
JFW_E_NO_JAVA_FOUND no JRE was found that meets the requirements.
JFW_E_DIRECT_MODE the function cannot be used in this mode.
JFW_E_CONFIGURATION mode was not properly set or their prerequisites were not met. */ JVMFWK_DLLPUBLIC javaFrameworkError SAL_CALL jfw_findAndSelectJRE(JavaInfo **pInfo); /** provides information about all availabe JRE installations.

The function determines dynamically what JREs are available. It uses the plug-in libraries to provide lists of available JavaInfo objects where each object represents a JRE (see vendorplugin.h, getAllJavaInfos). It also uses a list of paths, which have been registered by jfw_addJRELocation or jfw_setJRELocations. It is checked if the path still contains a valid JRE and if so the respective JavaInfo object will be appended to the array unless there is already an equal object.

@param parInfo [out] on returns it contains a pointer to an array of JavaInfo pointers. The caller must free the array with rtl_freeMemory and each element of the array must be freed with jfw_freeJavaInfo. @param pSize [out] on return contains the size of array returned in parInfo. @return JFW_E_NONE function ran successfully.
JFW_E_INVALID_ARG at least on of the parameters was NULL
JFW_E_ERROR an error occurred.
JFW_E_NO_PLUGIN a plug-in library could not be found.
JFW_E_CONFIGURATION mode was not properly set or their prerequisites were not met. */ JVMFWK_DLLPUBLIC javaFrameworkError SAL_CALL jfw_findAllJREs( JavaInfo ***parInfo, sal_Int32 *pSize); /** determines if a path points to a Java installation.

If the path belongs to a JRE installation then it returns the respective JavaInfo object. The function uses the getJavaInfoByPath function of the plug-ins to obtain the JavaInfo object. Only if the JRE found at the specified location meets the version requirements as specified in the javavendors.xml file a JavaInfo object is returned.

The functions only checks if a JRE exists but does not modify any settings. To make the found JRE the "selected JRE" one has to call jfw_setSelectedJRE.

@param pPath [in] a file URL to a directory. @param pInfo [out] the JavaInfo object which represents a JRE found at the location specified by pPath @return JFW_E_NONE function ran successfully.
JFW_E_INVALID_ARG at least on of the parameters was NULL
JFW_E_ERROR an error occurred.
JFW_E_CONFIGURATION mode was not properly set or their prerequisites were not met.
JFW_E_NO_PLUGIN a plug-in library could not be found.
JFW_E_NOT_RECOGNIZED neither plug-in library could detect a JRE.
JFW_E_FAILED_VERSION a JRE was detected but if failed the version requirements as determined by the javavendors.xml */ JVMFWK_DLLPUBLIC javaFrameworkError SAL_CALL jfw_getJavaInfoByPath( rtl_uString *pPath, JavaInfo **ppInfo); /** starts a Java Virtual Machine (JVM).

The function uses the current settings to start a JVM. The actual start-up code, however, is provided by the plug-in libraries. The setting of the "selected Java" contains the information as to what vendor the respective JRE comes from. In the javavendors.xml there is a mapping of vendor names to the respective plug-in libraries.

The function ultimately calls startJavaVirtualMachine from the plug-in library.

The arOptions argument contains start arguments which are passed in JavaVMOption structures to the VM during its creation. These could be things, such as language settings, proxy settings or any other properties which shall be obtainable by java.lang.System.getProperties. One can also pass options which have a certain meaning to the runtime behaviour such as -ea or -X... However, one must be sure that these options can be interpreted by the VM.
The class path cannot be set this way. The class path is internally composed by the paths to archives in a certain directory, which is preconfigured in the internal data store and the respective user setting (see jfw_setUserClassPath.

If a JRE was selected at runtime which was different from the previous setting and that JRE needs a prepared environment, for example an adapted LD_LIBRARY_PATH environment variable, then the VM will not be created and JFW_E_NEED_RESTART error is returned. If a VM is already running then a JFW_E_RUNNING_JVM is returned.

@param arOptions [in] the array containing additional start arguments or NULL. @param nSize [in] the size of the array arOptions. @param ppVM [out] the JavaVM pointer. @param ppEnv [out] the JNIenv pointer. @return JFW_E_NONE function ran successfully.
JFW_E_INVALID_ARG ppVM, ppEnv are NULL or arOptions was NULL but nSize was greater 0.
JFW_E_ERROR an error occurred.
JFW_E_CONFIGURATION mode was not properly set or their prerequisites were not met.
JFW_E_NO_PLUGIN the plug-in library responsible for creating the VM could not be found.
JFW_E_JAVA_DISABLED the use of Java is currently disabled.
JFW_E_NO_SELECT there is no JRE selected yet.
JFW_E_RUNNIN_JVM there is already a VM running.
JFW_E_INVALID_SETTINGS the javavendors.xml has been changed and no JRE has been selected afterwards.
JFW_E_NEED_RESTART in the current process a different JRE has been selected which needs a prepared environment, which has to be done before the office process. Therefore the new JRE may not be used until the office was restarted.
JFW_E_NEED_RESTART is also returned when Java was disabled at the beginning and then the user enabled it. If then the selected JRE has the requirement JFW_REQUIRE_NEEDRESTART then this error is returned.
JFW_E_VM_CREATION_FAILED the creation of the JVM failed. The creation is performed by a plug-in library and not by this API. JFW_E_FAILED_VERSION the "Default Mode" is active. The JRE determined by JAVA_HOMEdoes not meet the version requirements. */ JVMFWK_DLLPUBLIC javaFrameworkError SAL_CALL jfw_startVM(JavaVMOption *arOptions, sal_Int32 nSize, JavaVM **ppVM, JNIEnv **ppEnv); /** determines the JRE that is to be used.

When calling jfw_startVM then a VM is startet from the JRE that is determined by this function.
It is not verified if the JRE represented by the JavaInfo argument meets the requirements as specified by the javavendors.xml file. However, usually one obtains the JavaInfo object from the functions jfw_findAllJREs or jfw_getJavaInfoByPath, which do verify the JREs and pass out only JavaInfo objects which comply with the version requirements.

If pInfo is NULL then the meaning is that no JRE will be selected. jfw_startVM will then return JFW_E_NO_SELECT.

@param pInfo [in] pointer to JavaInfo structure, containing data about a JRE. The caller must still free pInfo. @return JFW_E_NONE function ran successfully.
JFW_E_ERROR An error occurred.
JFW_E_CONFIGURATION mode was not properly set or their prerequisites were not met.
JFW_E_DIRECT_MODE the function cannot be used in this mode. */ JVMFWK_DLLPUBLIC javaFrameworkError SAL_CALL jfw_setSelectedJRE(JavaInfo const *pInfo); /** provides information about the JRE that is to be used.

If no JRE is currently selected then ppInfo will contain NULL on return.
If the value of the element in the javavendors.xml file was changed since the time when the last Java was selected then this function returns JFW_E_INVALID_SETTINGS. This could happen during a product patch. Then new version requirements may be introduced, so that the currently selected JRE may not meet these requirements anymore.

In direct mode the function returns information about a JRE that was set by the bootstrap parameter UNO_JAVA_JFW_JREHOME.

@param ppInfo [out] on return it contains a pointer to a JavaInfo object that represents the currently selected JRE. When *ppInfo is not NULL then the function overwrites the pointer. It is not attempted to free the pointer. @return JFW_E_NONE function ran successfully.
JFW_E_INVALIDARG ppInfo is a NULL.
JFW_E_CONFIGURATION mode was not properly set or their prerequisites were not met.
JFW_E_INVALID_SETTINGS the javavendors.xml has been changed and no JRE has been selected afterwards.
*/ JVMFWK_DLLPUBLIC javaFrameworkError SAL_CALL jfw_getSelectedJRE(JavaInfo **ppInfo); /** determines if Java can be used.

If bEnabled is sal_False then a call to jfw_startVM will result in an error with the errorcode JFW_E_JAVA_DISABLED

@param bEnabled [in] use of Java enabled/disabled. @return JFW_E_NONE function ran successfully.
JFW_E_ERROR An error occurred.
JFW_E_CONFIGURATION mode was not properly set or their prerequisites were not met.
JFW_E_DIRECT_MODE the function cannot be used in this mode. */ JVMFWK_DLLPUBLIC javaFrameworkError SAL_CALL jfw_setEnabled(sal_Bool bEnabled); /** provides the information if Java can be used.

That is if the user enabled or disabled the use of Java.

@return JFW_E_NONE function ran successfully.
JFW_E_INVALIDARG pbEnabled is NULL
JFW_E_ERROR An error occurred.
JFW_E_CONFIGURATION mode was not properly set or their prerequisites were not met.
JFW_E_DIRECT_MODE the function cannot be used in this mode. */ JVMFWK_DLLPUBLIC javaFrameworkError SAL_CALL jfw_getEnabled(sal_Bool *pbEnabled); /** determines parameters which are passed to VM during its creation.

The strings must be exactly as they are passed on the command line. For example, one could pass
-Xdebug
-Xrunjdw:transport=dt_socket,server=y,address=8000
in order to enable debugging support.

@param arParameters [in] contains the arguments. It can be NULL if nSize is 0. @param nSize [i] the size of arArgs @return JFW_E_NONE function ran successfully.
JFW_E_INVALIDARG arArgs is NULL and nSize is not 0 JFW_E_ERROR An error occurred.
JFW_E_CONFIGURATION mode was not properly set or their prerequisites were not met.
JFW_E_DIRECT_MODE the function cannot be used in this mode. */ JVMFWK_DLLPUBLIC javaFrameworkError SAL_CALL jfw_setVMParameters( rtl_uString ** arArgs, sal_Int32 nSize); /** obtains the currently used start parameters.

The caller needs to free the returned array with rtl_freeMemory. The contained strings must be released with rtl_uString_release.

@param parParameters [out] on returns contains a pointer to the array of the start arguments. If *parParameters is not NULL then the value is overwritten. @param pSize [out] on return contains the size of array returned in parParameters @return JFW_E_NONE function ran successfully.
JFW_E_INVALIDARG parParameters or pSize are NULL
JFW_E_ERROR An error occurred.
JFW_E_CONFIGURATION mode was not properly set or their prerequisites were not met.
JFW_E_DIRECT_MODE the function cannot be used in this mode. */ JVMFWK_DLLPUBLIC javaFrameworkError SAL_CALL jfw_getVMParameters( rtl_uString *** parParameters, sal_Int32 * pSize); /** sets the user class path.

When the VM is started then it is passed the class path. The class path also contains the user class path set by this function. The paths contained in pCP must be separated with a system dependent path separator.

@param pCP [in] the user class path. @return JFW_E_NONE function ran successfully.
JFW_E_INVALIDARG pCP is NULL.
JFW_E_ERROR An error occurred.
JFW_E_CONFIGURATION mode was not properly set or their prerequisites were not met.
JFW_E_DIRECT_MODE the function cannot be used in this mode. */ JVMFWK_DLLPUBLIC javaFrameworkError SAL_CALL jfw_setUserClassPath(rtl_uString * pCP); /** provides the value of the current user class path.

The function returns an empty string if no user class path is set.

@param ppCP [out] contains the user class path on return. If *ppCP was not NULL then the value is overwritten. No attempt at freeing that string is made. @return JFW_E_NONE function ran successfully.
JFW_E_INVALIDARG ppCP is NULL.
JFW_E_ERROR An error occurred.
JFW_E_CONFIGURATION mode was not properly set or their prerequisites were not met.
JFW_E_DIRECT_MODE the function cannot be used in this mode. */ JVMFWK_DLLPUBLIC javaFrameworkError SAL_CALL jfw_getUserClassPath(rtl_uString ** ppCP); /** saves the location of a JRE.

When jfw_findAllJREs is called then the paths added by this function are evaluated. If the location still represents a JRE then a JavaInfo object is created which is returned along with all other JavaInfo objects by jfw_findAllJREs. If the location cannot be recognized then the location string is ignored.

A validation if sLocation points to a JRE is not performed. To do that one has to use jfw_getJavaInfoByPath.

Adding a path that is already stored causes no error.

@param sLocation [in] file URL to a directory which contains a JRE. @return JFW_E_NONE function ran successfully.
JFW_E_INVALIDARG sLocation is NULL.
JFW_E_ERROR An error occurred.
JFW_E_CONFIGURATION mode was not properly set or their prerequisites were not met.
JFW_E_DIRECT_MODE the function cannot be used in this mode. @see jfw_setJRELocations */ JVMFWK_DLLPUBLIC javaFrameworkError SAL_CALL jfw_addJRELocation(rtl_uString * sLocation); /** saves the locations of a number of JREs.

The function does not verify if the paths points to JRE. However, it makes sure that every path is unique. That is, if the array contains strings which are the same then only one is stored.

If arLocations is NULL or it has the length null (nSize = 0) then all previously stored paths are deleted. Otherwise, the old values are overwritten.

@param arLocations [in] array of paths to locations of JREs. @param nSize [in] the size of the array arLocations @return JFW_E_NONE function ran successfully.
JFW_E_INVALIDARG arLocation is NULL and nSize is not null.
JFW_E_ERROR An error occurred.
JFW_E_CONFIGURATION mode was not properly set or their prerequisites were not met.
JFW_E_DIRECT_MODE the function cannot be used in this mode. @see jfw_addJRELocations */ JVMFWK_DLLPUBLIC javaFrameworkError SAL_CALL jfw_setJRELocations( rtl_uString ** arLocations, sal_Int32 nSize); /** obtains an array containing paths to JRE installations.

It is not guaranteed that the returned paths represent a valid JRE. One can use jfw_getJavaInfoByPath to check this.

@param parLocations [out] on return it contains the array of paths. @param pSize [out] on return it contains the size of the array parLocations. @return JFW_E_NONE function ran successfully.
JFW_E_INVALIDARG parLocation is NULL or pSize is NULL.
JFW_E_ERROR An error occurred.
JFW_E_CONFIGURATION mode was not properly set or their prerequisites were not met.
JFW_E_DIRECT_MODE the function cannot be used in this mode. */ JVMFWK_DLLPUBLIC javaFrameworkError SAL_CALL jfw_getJRELocations( rtl_uString *** parLocations, sal_Int32 * pSize); /** checks if the installation of the jre still exists. This function checks if the JRE described by pInfo still exists. The check must be very quick because it is called by javaldx (Linux, Solaris) at start up. @param pInfo [in] the JavaInfo object with information about the JRE. @param pp_exist [out] the parameter is set to either sal_True or sal_False. The value is only valid if the function returns JFW_E_NONE. @return JFW_E_NONE the function ran successfully.
JFW_E_ERROR an error occurred during execution.
JFW_E_INVALID_ARG pInfo contains invalid data
JFW_E_NO_PLUGIN a plug-in library could not be found.
*/ JVMFWK_DLLPUBLIC javaFrameworkError SAL_CALL jfw_existJRE(const JavaInfo *pInfo, sal_Bool *exist); /** locks this API so that it cannot be used by other threads.

If a different thread called this function before then the current call is blocked until the other thread has called jfw_unlock(). The function should be called if one needs an exact snapshot of the current settings. Then the settings are retrieved one by one without risk that the settings may be changed by a different thread. Similiary if one needs to make settings which should become effective at the same time then jfw_lock should be called. That is, jfw_startVM which uses the settings cannot be called before all settings have be made.

The only functions which are not effected by jfw_lock are jfw_freeJavaInfo and jfw_areEqualJavaInfo. */ JVMFWK_DLLPUBLIC void SAL_CALL jfw_lock(); /** unlocks this API.

This function is called after jfw_lock. It allows other threads to use this API concurrently.

*/ JVMFWK_DLLPUBLIC void SAL_CALL jfw_unlock(); #ifdef __cplusplus } #endif #endif /* vim:set shiftwidth=4 softtabstop=4 expandtab: */