/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include "sal/config.h" #include #include #include #include #include #include #include #include #include #include "threadpool.hxx" #include "thread.hxx" using namespace ::std; using namespace ::osl; using namespace ::rtl; namespace cppu_threadpool { struct theDisposedCallerAdmin : public rtl::StaticWithInit< DisposedCallerAdminHolder, theDisposedCallerAdmin > { DisposedCallerAdminHolder operator () () { return DisposedCallerAdminHolder(new DisposedCallerAdmin()); } }; DisposedCallerAdminHolder DisposedCallerAdmin::getInstance() { return theDisposedCallerAdmin::get(); } DisposedCallerAdmin::~DisposedCallerAdmin() { #if OSL_DEBUG_LEVEL > 1 if( !m_lst.empty() ) { printf( "DisposedCallerList : %lu left\n" , static_cast(m_lst.size( ))); } #endif } void DisposedCallerAdmin::dispose( sal_Int64 nDisposeId ) { MutexGuard guard( m_mutex ); m_lst.push_back( nDisposeId ); } void DisposedCallerAdmin::destroy( sal_Int64 nDisposeId ) { MutexGuard guard( m_mutex ); for( DisposedCallerList::iterator ii = m_lst.begin() ; ii != m_lst.end() ; ++ ii ) { if( (*ii) == nDisposeId ) { m_lst.erase( ii ); break; } } } bool DisposedCallerAdmin::isDisposed( sal_Int64 nDisposeId ) { MutexGuard guard( m_mutex ); for( DisposedCallerList::iterator ii = m_lst.begin() ; ii != m_lst.end() ; ++ ii ) { if( (*ii) == nDisposeId ) { return true; } } return false; } ThreadPool::ThreadPool() { m_DisposedCallerAdmin = DisposedCallerAdmin::getInstance(); } ThreadPool::~ThreadPool() { #if OSL_DEBUG_LEVEL > 1 if( m_mapQueue.size() ) { printf( "ThreadIdHashMap : %lu left\n" , static_cast(m_mapQueue.size()) ); } #endif } void ThreadPool::dispose( sal_Int64 nDisposeId ) { m_DisposedCallerAdmin->dispose( nDisposeId ); MutexGuard guard( m_mutex ); for( ThreadIdHashMap::iterator ii = m_mapQueue.begin() ; ii != m_mapQueue.end(); ++ii) { if( (*ii).second.first ) { (*ii).second.first->dispose( nDisposeId ); } if( (*ii).second.second ) { (*ii).second.second->dispose( nDisposeId ); } } } void ThreadPool::destroy( sal_Int64 nDisposeId ) { m_DisposedCallerAdmin->destroy( nDisposeId ); } /****************** * This methods lets the thread wait a certain amount of time. If within this timespan * a new request comes in, this thread is reused. This is done only to improve performance, * it is not required for threadpool functionality. ******************/ void ThreadPool::waitInPool( rtl::Reference< ORequestThread > const & pThread ) { struct WaitingThread waitingThread; waitingThread.condition = osl_createCondition(); waitingThread.thread = pThread; { MutexGuard guard( m_mutexWaitingThreadList ); m_lstThreads.push_front( &waitingThread ); } // let the thread wait 2 seconds TimeValue time = { 2 , 0 }; osl_waitCondition( waitingThread.condition , &time ); { MutexGuard guard ( m_mutexWaitingThreadList ); if( waitingThread.thread.is() ) { // thread wasn't reused, remove it from the list WaitingThreadList::iterator ii = find( m_lstThreads.begin(), m_lstThreads.end(), &waitingThread ); OSL_ASSERT( ii != m_lstThreads.end() ); m_lstThreads.erase( ii ); } } osl_destroyCondition( waitingThread.condition ); } void ThreadPool::joinWorkers() { { MutexGuard guard( m_mutexWaitingThreadList ); for( WaitingThreadList::iterator ii = m_lstThreads.begin() ; ii != m_lstThreads.end() ; ++ ii ) { // wake the threads up osl_setCondition( (*ii)->condition ); } } m_aThreadAdmin.join(); } bool ThreadPool::createThread( JobQueue *pQueue , const ByteSequence &aThreadId, bool bAsynchron ) { { // Can a thread be reused ? MutexGuard guard( m_mutexWaitingThreadList ); if( ! m_lstThreads.empty() ) { // inform the thread and let it go struct WaitingThread *pWaitingThread = m_lstThreads.back(); pWaitingThread->thread->setTask( pQueue , aThreadId , bAsynchron ); pWaitingThread->thread = 0; // remove from list m_lstThreads.pop_back(); // let the thread go osl_setCondition( pWaitingThread->condition ); return true; } } rtl::Reference< ORequestThread > pThread( new ORequestThread( this, pQueue , aThreadId, bAsynchron) ); return pThread->launch(); } bool ThreadPool::revokeQueue( const ByteSequence &aThreadId, bool bAsynchron ) { MutexGuard guard( m_mutex ); ThreadIdHashMap::iterator ii = m_mapQueue.find( aThreadId ); OSL_ASSERT( ii != m_mapQueue.end() ); if( bAsynchron ) { if( ! (*ii).second.second->isEmpty() ) { // another thread has put something into the queue return false; } (*ii).second.second = 0; if( (*ii).second.first ) { // all oneway request have been processed, now // synchronus requests may go on (*ii).second.first->resume(); } } else { if( ! (*ii).second.first->isEmpty() ) { // another thread has put something into the queue return false; } (*ii).second.first = 0; } if( 0 == (*ii).second.first && 0 == (*ii).second.second ) { m_mapQueue.erase( ii ); } return true; } bool ThreadPool::addJob( const ByteSequence &aThreadId , bool bAsynchron, void *pThreadSpecificData, RequestFun * doRequest ) { bool bCreateThread = false; JobQueue *pQueue = 0; { MutexGuard guard( m_mutex ); ThreadIdHashMap::iterator ii = m_mapQueue.find( aThreadId ); if( ii == m_mapQueue.end() ) { m_mapQueue[ aThreadId ] = pair < JobQueue * , JobQueue * > ( (JobQueue *)0 , (JobQueue*)0 ); ii = m_mapQueue.find( aThreadId ); OSL_ASSERT( ii != m_mapQueue.end() ); } if( bAsynchron ) { if( ! (*ii).second.second ) { (*ii).second.second = new JobQueue(); bCreateThread = true; } pQueue = (*ii).second.second; } else { if( ! (*ii).second.first ) { (*ii).second.first = new JobQueue(); bCreateThread = true; } pQueue = (*ii).second.first; if( (*ii).second.second && ( (*ii).second.second->isBusy() ) ) { pQueue->suspend(); } } pQueue->add( pThreadSpecificData , doRequest ); } return !bCreateThread || createThread( pQueue , aThreadId , bAsynchron); } void ThreadPool::prepare( const ByteSequence &aThreadId ) { MutexGuard guard( m_mutex ); ThreadIdHashMap::iterator ii = m_mapQueue.find( aThreadId ); if( ii == m_mapQueue.end() ) { JobQueue *p = new JobQueue(); m_mapQueue[ aThreadId ] = pair< JobQueue * , JobQueue * > ( p , (JobQueue*)0 ); } else if( 0 == (*ii).second.first ) { (*ii).second.first = new JobQueue(); } } void * ThreadPool::enter( const ByteSequence & aThreadId , sal_Int64 nDisposeId ) { JobQueue *pQueue = 0; { MutexGuard guard( m_mutex ); ThreadIdHashMap::iterator ii = m_mapQueue.find( aThreadId ); OSL_ASSERT( ii != m_mapQueue.end() ); pQueue = (*ii).second.first; } OSL_ASSERT( pQueue ); void *pReturn = pQueue->enter( nDisposeId ); if( pQueue->isCallstackEmpty() ) { if( revokeQueue( aThreadId , false) ) { // remove queue delete pQueue; } } return pReturn; } } // All uno_ThreadPool handles in g_pThreadpoolHashSet with overlapping life // spans share one ThreadPool instance. When g_pThreadpoolHashSet becomes empty // (within the last uno_threadpool_destroy) all worker threads spawned by that // ThreadPool instance are joined (which implies that uno_threadpool_destroy // must never be called from a worker thread); afterwards, the next call to // uno_threadpool_create (if any) will lead to a new ThreadPool instance. using namespace cppu_threadpool; struct uno_ThreadPool_Equal { bool operator () ( const uno_ThreadPool &a , const uno_ThreadPool &b ) const { return a == b; } }; struct uno_ThreadPool_Hash { sal_Size operator () ( const uno_ThreadPool &a ) const { return reinterpret_cast( a ); } }; typedef ::boost::unordered_map< uno_ThreadPool, ThreadPoolHolder, uno_ThreadPool_Hash, uno_ThreadPool_Equal > ThreadpoolHashSet; static ThreadpoolHashSet *g_pThreadpoolHashSet; struct _uno_ThreadPool { sal_Int32 dummy; }; namespace { ThreadPoolHolder getThreadPool( uno_ThreadPool hPool ) { MutexGuard guard( Mutex::getGlobalMutex() ); assert( g_pThreadpoolHashSet != 0 ); ThreadpoolHashSet::iterator i( g_pThreadpoolHashSet->find(hPool) ); assert( i != g_pThreadpoolHashSet->end() ); return i->second; } } extern "C" uno_ThreadPool SAL_CALL uno_threadpool_create() SAL_THROW_EXTERN_C() { MutexGuard guard( Mutex::getGlobalMutex() ); ThreadPoolHolder p; if( ! g_pThreadpoolHashSet ) { g_pThreadpoolHashSet = new ThreadpoolHashSet(); p = new ThreadPool; } else { assert( !g_pThreadpoolHashSet->empty() ); p = g_pThreadpoolHashSet->begin()->second; } // Just ensure that the handle is unique in the process (via heap) uno_ThreadPool h = new struct _uno_ThreadPool; g_pThreadpoolHashSet->insert( ThreadpoolHashSet::value_type(h, p) ); return h; } extern "C" void SAL_CALL uno_threadpool_attach( uno_ThreadPool hPool ) SAL_THROW_EXTERN_C() { sal_Sequence *pThreadId = 0; uno_getIdOfCurrentThread( &pThreadId ); getThreadPool( hPool )->prepare( pThreadId ); rtl_byte_sequence_release( pThreadId ); uno_releaseIdFromCurrentThread(); } extern "C" void SAL_CALL uno_threadpool_enter( uno_ThreadPool hPool , void **ppJob ) SAL_THROW_EXTERN_C() { sal_Sequence *pThreadId = 0; uno_getIdOfCurrentThread( &pThreadId ); *ppJob = getThreadPool( hPool )->enter( pThreadId, sal::static_int_cast< sal_Int64 >( reinterpret_cast< sal_IntPtr >(hPool)) ); rtl_byte_sequence_release( pThreadId ); uno_releaseIdFromCurrentThread(); } extern "C" void SAL_CALL uno_threadpool_detach(SAL_UNUSED_PARAMETER uno_ThreadPool) SAL_THROW_EXTERN_C() { // we might do here some tiding up in case a thread called attach but never detach } extern "C" void SAL_CALL uno_threadpool_putJob( uno_ThreadPool hPool, sal_Sequence *pThreadId, void *pJob, void ( SAL_CALL * doRequest ) ( void *pThreadSpecificData ), sal_Bool bIsOneway ) SAL_THROW_EXTERN_C() { if (!getThreadPool(hPool)->addJob( pThreadId, bIsOneway, pJob ,doRequest )) { SAL_WARN( "cppu", "uno_threadpool_putJob in parallel with uno_threadpool_destroy"); } } extern "C" void SAL_CALL uno_threadpool_dispose( uno_ThreadPool hPool ) SAL_THROW_EXTERN_C() { getThreadPool(hPool)->dispose( sal::static_int_cast< sal_Int64 >( reinterpret_cast< sal_IntPtr >(hPool)) ); } extern "C" void SAL_CALL uno_threadpool_destroy( uno_ThreadPool hPool ) SAL_THROW_EXTERN_C() { ThreadPoolHolder p( getThreadPool(hPool) ); p->destroy( sal::static_int_cast< sal_Int64 >( reinterpret_cast< sal_IntPtr >(hPool)) ); bool empty; { OSL_ASSERT( g_pThreadpoolHashSet ); MutexGuard guard( Mutex::getGlobalMutex() ); ThreadpoolHashSet::iterator ii = g_pThreadpoolHashSet->find( hPool ); OSL_ASSERT( ii != g_pThreadpoolHashSet->end() ); g_pThreadpoolHashSet->erase( ii ); delete hPool; empty = g_pThreadpoolHashSet->empty(); if( empty ) { delete g_pThreadpoolHashSet; g_pThreadpoolHashSet = 0; } } if( empty ) { p->joinWorkers(); } } /* vim:set shiftwidth=4 softtabstop=4 expandtab: */