/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include #include #include #include #include #include "plugin.hxx" #include "compat.hxx" /** Dump a list of calls to methods, and a list of method definitions. Then we will post-process the 2 lists and find the set of unused methods. Be warned that it produces around 4G of log file. The process goes something like this: $ make check $ make FORCE_COMPILE_ALL=1 COMPILER_PLUGIN_TOOL='unusedmethods' check $ ./compilerplugins/clang/unusedmethods.py unusedmethods.log > result.txt and then $ for dir in *; do make FORCE_COMPILE_ALL=1 UPDATE_FILES=$dir COMPILER_PLUGIN_TOOL='unusedmethodsremove' $dir; done to auto-remove the method declarations Note that the actual process may involve a fair amount of undoing, hand editing, and general messing around to get it to work :-) TODO deal with calls to superclass/member constructors from other constructors, so we can find unused constructors */ namespace { struct MyFuncInfo { std::string returnType; std::string nameAndParams; std::string sourceLocation; bool operator < (const MyFuncInfo &other) const { if (returnType < other.returnType) return true; else if (returnType == other.returnType) return nameAndParams < other.nameAndParams; else return false; } }; // try to limit the voluminous output a little static std::set callSet; static std::set definitionSet; static bool startswith(const std::string& s, const std::string& prefix) { return s.rfind(prefix,0) == 0; } class UnusedMethods: public RecursiveASTVisitor, public loplugin::Plugin { public: explicit UnusedMethods(InstantiationData const & data): Plugin(data) {} virtual void run() override { TraverseDecl(compiler.getASTContext().getTranslationUnitDecl()); // dump all our output in one write call - this is to try and limit IO "crosstalk" between multiple processes // writing to the same logfile std::string output; for (const MyFuncInfo & s : callSet) output += "call:\t" + s.returnType + "\t" + s.nameAndParams + "\n"; for (const MyFuncInfo & s : definitionSet) { //treat all UNO interfaces as having been called, since they are part of our external ABI if (!startswith(s.nameAndParams, "com::sun::star::")) output += "definition:\t" + s.returnType + "\t" + s.nameAndParams + "\t" + s.sourceLocation + "\n"; } ofstream myfile; myfile.open( SRCDIR "/unusedmethods.log", ios::app | ios::out); myfile << output; myfile.close(); } bool shouldVisitTemplateInstantiations () const { return true; } bool VisitCallExpr(CallExpr* ); bool VisitFunctionDecl( const FunctionDecl* decl ); bool VisitDeclRefExpr( const DeclRefExpr* ); bool VisitCXXConstructExpr( const CXXConstructExpr* ); bool VisitVarDecl( const VarDecl* ); bool VisitCXXRecordDecl( CXXRecordDecl* ); private: void logCallToRootMethods(const FunctionDecl* functionDecl); MyFuncInfo niceName(const FunctionDecl* functionDecl); std::string fullyQualifiedName(const FunctionDecl* functionDecl); }; MyFuncInfo UnusedMethods::niceName(const FunctionDecl* functionDecl) { if (functionDecl->getInstantiatedFromMemberFunction()) functionDecl = functionDecl->getInstantiatedFromMemberFunction(); else if (functionDecl->getClassScopeSpecializationPattern()) functionDecl = functionDecl->getClassScopeSpecializationPattern(); // workaround clang-3.5 issue #if __clang_major__ > 3 || ( __clang_major__ == 3 && __clang_minor__ >= 6 ) else if (functionDecl->getTemplateInstantiationPattern()) functionDecl = functionDecl->getTemplateInstantiationPattern(); #endif MyFuncInfo aInfo; aInfo.returnType = compat::getReturnType(*functionDecl).getCanonicalType().getAsString(); if (isa(functionDecl)) { const CXXRecordDecl* recordDecl = dyn_cast(functionDecl)->getParent(); aInfo.nameAndParams += recordDecl->getQualifiedNameAsString(); aInfo.nameAndParams += "::"; } aInfo.nameAndParams += functionDecl->getNameAsString() + "("; bool bFirst = true; for (const ParmVarDecl *pParmVarDecl : functionDecl->params()) { if (bFirst) bFirst = false; else aInfo.nameAndParams += ","; aInfo.nameAndParams += pParmVarDecl->getType().getCanonicalType().getAsString(); } aInfo.nameAndParams += ")"; if (isa(functionDecl) && dyn_cast(functionDecl)->isConst()) { aInfo.nameAndParams += " const"; } SourceLocation expansionLoc = compiler.getSourceManager().getExpansionLoc( functionDecl->getLocation() ); StringRef name = compiler.getSourceManager().getFilename(expansionLoc); aInfo.sourceLocation = std::string(name.substr(strlen(SRCDIR)+1)) + ":" + std::to_string(compiler.getSourceManager().getSpellingLineNumber(expansionLoc)); return aInfo; } std::string UnusedMethods::fullyQualifiedName(const FunctionDecl* functionDecl) { std::string ret = compat::getReturnType(*functionDecl).getCanonicalType().getAsString(); ret += " "; if (isa(functionDecl)) { const CXXRecordDecl* recordDecl = dyn_cast(functionDecl)->getParent(); ret += recordDecl->getQualifiedNameAsString(); ret += "::"; } ret += functionDecl->getNameAsString() + "("; bool bFirst = true; for (const ParmVarDecl *pParmVarDecl : functionDecl->params()) { if (bFirst) bFirst = false; else ret += ","; ret += pParmVarDecl->getType().getCanonicalType().getAsString(); } ret += ")"; if (isa(functionDecl) && dyn_cast(functionDecl)->isConst()) { ret += " const"; } return ret; } void UnusedMethods::logCallToRootMethods(const FunctionDecl* functionDecl) { functionDecl = functionDecl->getCanonicalDecl(); bool bCalledSuperMethod = false; if (isa(functionDecl)) { // For virtual/overriding methods, we need to pretend we called the root method(s), // so that they get marked as used. const CXXMethodDecl* methodDecl = dyn_cast(functionDecl); for(CXXMethodDecl::method_iterator it = methodDecl->begin_overridden_methods(); it != methodDecl->end_overridden_methods(); ++it) { logCallToRootMethods(*it); bCalledSuperMethod = true; } } if (!bCalledSuperMethod) { while (functionDecl->getTemplateInstantiationPattern()) functionDecl = functionDecl->getTemplateInstantiationPattern(); callSet.insert(niceName(functionDecl)); } } // prevent recursive templates from blowing up the stack static std::set traversedFunctionSet; bool UnusedMethods::VisitCallExpr(CallExpr* expr) { // Note that I don't ignore ANYTHING here, because I want to get calls to my code that result // from template instantiation deep inside the STL and other external code FunctionDecl* calleeFunctionDecl = expr->getDirectCallee(); if (calleeFunctionDecl == nullptr) { Expr* callee = expr->getCallee()->IgnoreParenImpCasts(); DeclRefExpr* dr = dyn_cast(callee); if (dr) { calleeFunctionDecl = dyn_cast(dr->getDecl()); if (calleeFunctionDecl) goto gotfunc; } /* // ignore case where we can't determine the target of the call because we're inside a template if (isa(callee)) return true; if (isa(callee)) return true; if (isa(callee)) return true; if (isa(callee)) return true; // ignore this, doesn't really exist (side-effect of template expansion on scalar types) if (isa(callee)) return true; expr->dump(); std::string name = compiler.getSourceManager().getFilename(expansionLoc); std::string sourceLocation = name + ":" + std::to_string(compiler.getSourceManager().getSpellingLineNumber(expansionLoc)); cout << sourceLocation << endl; throw "Cant touch this"; */ return true; } gotfunc: // if we see a call to a function, it may effectively create new code, // if the function is templated. However, if we are inside a template function, // calling another function on the same template, the same problem occurs. // Rather than tracking all of that, just traverse anything we have not already traversed. if (traversedFunctionSet.insert(fullyQualifiedName(calleeFunctionDecl)).second) TraverseFunctionDecl(calleeFunctionDecl); logCallToRootMethods(calleeFunctionDecl); return true; } bool UnusedMethods::VisitCXXConstructExpr(const CXXConstructExpr* expr) { const CXXConstructorDecl *consDecl = expr->getConstructor(); consDecl = consDecl->getCanonicalDecl(); if (consDecl->getTemplatedKind() == FunctionDecl::TemplatedKind::TK_NonTemplate && !consDecl->isFunctionTemplateSpecialization()) { return true; } // if we see a call to a constructor, it may effectively create a whole new class, // if the constructor's class is templated. if (!traversedFunctionSet.insert(fullyQualifiedName(consDecl)).second) return true; const CXXRecordDecl* parent = consDecl->getParent(); for( CXXRecordDecl::ctor_iterator it = parent->ctor_begin(); it != parent->ctor_end(); ++it) TraverseCXXConstructorDecl(*it); for( CXXRecordDecl::method_iterator it = parent->method_begin(); it != parent->method_end(); ++it) TraverseCXXMethodDecl(*it); return true; } bool UnusedMethods::VisitFunctionDecl( const FunctionDecl* functionDecl ) { functionDecl = functionDecl->getCanonicalDecl(); const CXXMethodDecl* methodDecl = dyn_cast_or_null(functionDecl); // ignore method overrides, since the call will show up as being directed to the root method if (methodDecl && (methodDecl->size_overridden_methods() != 0 || methodDecl->hasAttr())) { return true; } // ignore stuff that forms part of the stable URE interface if (isInUnoIncludeFile(compiler.getSourceManager().getSpellingLoc( functionDecl->getCanonicalDecl()->getNameInfo().getLoc()))) { return true; } if (isa(functionDecl)) { return true; } if (isa(functionDecl)) { return true; } if (methodDecl && methodDecl->isDeleted()) { return true; } if( !ignoreLocation( functionDecl )) definitionSet.insert(niceName(functionDecl)); return true; } // this catches places that take the address of a method bool UnusedMethods::VisitDeclRefExpr( const DeclRefExpr* declRefExpr ) { const Decl* functionDecl = declRefExpr->getDecl(); if (!isa(functionDecl)) { return true; } logCallToRootMethods(dyn_cast(functionDecl)->getCanonicalDecl()); return true; } // this is for declarations of static variables that involve a template bool UnusedMethods::VisitVarDecl( const VarDecl* varDecl ) { varDecl = varDecl->getCanonicalDecl(); if (varDecl->getStorageClass() != SC_Static) return true; const CXXRecordDecl* recordDecl = varDecl->getType()->getAsCXXRecordDecl(); if (!recordDecl) return true; // workaround clang-3.5 issue #if __clang_major__ > 3 || ( __clang_major__ == 3 && __clang_minor__ >= 6 ) if (!recordDecl->getTemplateInstantiationPattern()) return true; #endif for( CXXRecordDecl::ctor_iterator it = recordDecl->ctor_begin(); it != recordDecl->ctor_end(); ++it) TraverseCXXConstructorDecl(*it); for( CXXRecordDecl::method_iterator it = recordDecl->method_begin(); it != recordDecl->method_end(); ++it) TraverseCXXMethodDecl(*it); return true; } // Sometimes a class will inherit from something, and in the process invoke a template, // which can create new methods. // bool UnusedMethods::VisitCXXRecordDecl( CXXRecordDecl* recordDecl ) { recordDecl = recordDecl->getCanonicalDecl(); if (!recordDecl->hasDefinition()) return true; // workaround clang-3.5 issue #if __clang_major__ > 3 || ( __clang_major__ == 3 && __clang_minor__ >= 6 ) for(CXXBaseSpecifier* baseSpecifier = recordDecl->bases_begin(); baseSpecifier != recordDecl->bases_end(); ++baseSpecifier) { const Type *baseType = baseSpecifier->getType().getTypePtr(); if (isa(baseSpecifier->getType())) { baseType = dyn_cast(baseType)->desugar().getTypePtr(); } if (isa(baseType)) { const RecordType *baseRecord = dyn_cast(baseType); CXXRecordDecl* baseRecordDecl = dyn_cast(baseRecord->getDecl()); if (baseRecordDecl && baseRecordDecl->getTemplateInstantiationPattern()) { TraverseCXXRecordDecl(baseRecordDecl); } } } #endif return true; } loplugin::Plugin::Registration< UnusedMethods > X("unusedmethods", false); } /* vim:set shiftwidth=4 softtabstop=4 expandtab: */