/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include using namespace ::com::sun::star; namespace chart { LogarithmicRegressionCurveCalculator::LogarithmicRegressionCurveCalculator() : m_fSlope( 0.0 ), m_fIntercept( 0.0 ) { ::rtl::math::setNan( & m_fSlope ); ::rtl::math::setNan( & m_fIntercept ); } LogarithmicRegressionCurveCalculator::~LogarithmicRegressionCurveCalculator() {} // ____ XRegressionCurve ____ void SAL_CALL LogarithmicRegressionCurveCalculator::recalculateRegression( const uno::Sequence< double >& aXValues, const uno::Sequence< double >& aYValues ) { RegressionCalculationHelper::tDoubleVectorPair aValues( RegressionCalculationHelper::cleanup( aXValues, aYValues, RegressionCalculationHelper::isValidAndXPositive())); const size_t nMax = aValues.first.size(); if( nMax <= 1 ) // at least 2 points { ::rtl::math::setNan( & m_fSlope ); ::rtl::math::setNan( & m_fIntercept ); ::rtl::math::setNan( & m_fCorrelationCoefficient ); return; } double fAverageX = 0.0, fAverageY = 0.0; size_t i = 0; for( i = 0; i < nMax; ++i ) { fAverageX += log( aValues.first[i] ); fAverageY += aValues.second[i]; } const double fN = static_cast< double >( nMax ); fAverageX /= fN; fAverageY /= fN; double fQx = 0.0, fQy = 0.0, fQxy = 0.0; for( i = 0; i < nMax; ++i ) { double fDeltaX = log( aValues.first[i] ) - fAverageX; double fDeltaY = aValues.second[i] - fAverageY; fQx += fDeltaX * fDeltaX; fQy += fDeltaY * fDeltaY; fQxy += fDeltaX * fDeltaY; } m_fSlope = fQxy / fQx; m_fIntercept = fAverageY - m_fSlope * fAverageX; m_fCorrelationCoefficient = fQxy / sqrt( fQx * fQy ); } double SAL_CALL LogarithmicRegressionCurveCalculator::getCurveValue( double x ) { double fResult; ::rtl::math::setNan( & fResult ); if( ! ( std::isnan( m_fSlope ) || std::isnan( m_fIntercept ))) { fResult = m_fSlope * log( x ) + m_fIntercept; } return fResult; } uno::Sequence< geometry::RealPoint2D > SAL_CALL LogarithmicRegressionCurveCalculator::getCurveValues( double min, double max, ::sal_Int32 nPointCount, const uno::Reference< chart2::XScaling >& xScalingX, const uno::Reference< chart2::XScaling >& xScalingY, sal_Bool bMaySkipPointsInCalculation ) { if( bMaySkipPointsInCalculation && isLogarithmicScaling( xScalingX ) && isLinearScaling( xScalingY )) { // optimize result uno::Sequence< geometry::RealPoint2D > aResult( 2 ); aResult[0].X = min; aResult[0].Y = getCurveValue( min ); aResult[1].X = max; aResult[1].Y = getCurveValue( max ); return aResult; } return RegressionCurveCalculator::getCurveValues( min, max, nPointCount, xScalingX, xScalingY, bMaySkipPointsInCalculation ); } OUString LogarithmicRegressionCurveCalculator::ImplGetRepresentation( const uno::Reference< util::XNumberFormatter >& xNumFormatter, sal_Int32 nNumberFormatKey, sal_Int32* pFormulaMaxWidth /* = nullptr */ ) const { bool bHasSlope = !rtl::math::approxEqual( fabs( m_fSlope ), 1.0 ); OUStringBuffer aBuf( mYName + " = " ); sal_Int32 nLineLength = aBuf.getLength(); sal_Int32 nValueLength=0; if ( pFormulaMaxWidth && *pFormulaMaxWidth > 0 ) // count nValueLength { sal_Int32 nCharMin = nLineLength + 6 + mXName.getLength(); // 6 = "ln(x)" + 2 extra characters if( m_fSlope < 0.0 ) nCharMin += 2; // "- " if( m_fSlope != 0.0 && m_fIntercept != 0.0 ) { nCharMin += 3; // " + " if ( bHasSlope ) nValueLength = (*pFormulaMaxWidth - nCharMin) / 2; } if ( nValueLength == 0 ) // not yet calculated nValueLength = *pFormulaMaxWidth - nCharMin; if ( nValueLength <= 0 ) nValueLength = 1; } // temporary buffer OUStringBuffer aTmpBuf(""); // if nValueLength not calculated then nullptr sal_Int32* pValueLength = nValueLength ? &nValueLength : nullptr; if( m_fSlope != 0.0 ) // add slope value { if( m_fSlope < 0.0 ) { aTmpBuf.append( OUStringChar(aMinusSign) ).append( " " ); } if( bHasSlope ) { OUString aValueString = getFormattedString( xNumFormatter, nNumberFormatKey, fabs(m_fSlope), pValueLength ); if ( aValueString != "1" ) // aValueString may be rounded to 1 if nValueLength is small { aTmpBuf.append( aValueString ).append( " " ); } } aTmpBuf.append( "ln(" ).append( mXName ).append( ") " ); addStringToEquation( aBuf, nLineLength, aTmpBuf, pFormulaMaxWidth ); aTmpBuf.truncate(); if( m_fIntercept > 0.0 ) aTmpBuf.append( "+ " ); } // add intercept value if( m_fIntercept < 0.0 ) aTmpBuf.append( OUStringChar(aMinusSign) ).append( " " ); OUString aValueString = getFormattedString( xNumFormatter, nNumberFormatKey, fabs(m_fIntercept), pValueLength ); if ( aValueString != "0" ) // aValueString may be rounded to 0 if nValueLength is small { aTmpBuf.append( aValueString ); addStringToEquation( aBuf, nLineLength, aTmpBuf, pFormulaMaxWidth ); } if ( aBuf.toString() == (mYName + " = ") ) aBuf.append( "0" ); return aBuf.makeStringAndClear(); } } // namespace chart /* vim:set shiftwidth=4 softtabstop=4 expandtab: */