/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include "bridges/cpp_uno/shared/bridge.hxx" #include "bridges/cpp_uno/shared/types.hxx" #include "bridges/cpp_uno/shared/unointerfaceproxy.hxx" #include "bridges/cpp_uno/shared/vtables.hxx" #include "share.hxx" //#define BRDEBUG #ifdef BRDEBUG #include #endif #define INSERT_FLOAT_DOUBLE( pSV, nr, pFPR, pDS ) \ if ( nr < MAX_FP_REGS ) \ pFPR[nr++] = *reinterpret_cast( pSV ); \ else \ *pDS++ = *reinterpret_cast( pSV ); // verbatim! #define INSERT_INT64( pSV, nr, pGPR, pDS ) \ if ( nr < MAX_GP_REGS ) \ pGPR[nr++] = *reinterpret_cast( pSV ); \ else \ *pDS++ = *reinterpret_cast( pSV ); #define INSERT_INT32( pSV, nr, pGPR, pDS ) \ if ( nr < MAX_GP_REGS ) \ pGPR[nr++] = *reinterpret_cast( pSV ); \ else \ *pDS++ = *reinterpret_cast( pSV ); #define INSERT_INT16( pSV, nr, pGPR, pDS ) \ if ( nr < MAX_GP_REGS ) \ pGPR[nr++] = *reinterpret_cast( pSV ); \ else \ *pDS++ = *reinterpret_cast( pSV ); #define INSERT_UINT16( pSV, nr, pGPR, pDS ) \ if ( nr < MAX_GP_REGS ) \ pGPR[nr++] = *reinterpret_cast( pSV ); \ else \ *pDS++ = *reinterpret_cast( pSV ); #define INSERT_INT8( pSV, nr, pGPR, pDS ) \ if ( nr < MAX_GP_REGS ) \ pGPR[nr++] = *reinterpret_cast( pSV ); \ else \ *pDS++ = *reinterpret_cast( pSV ); using namespace ::com::sun::star::uno; namespace { bool isReturnInFPR(const typelib_TypeDescription * pTypeDescr, sal_uInt32 & nSize) { const typelib_CompoundTypeDescription *p = reinterpret_cast( pTypeDescr ); for (sal_Int32 i = 0; i < p->nMembers; ++i) { typelib_TypeDescriptionReference *pTypeInStruct = p->ppTypeRefs[ i ]; switch (pTypeInStruct->eTypeClass) { case typelib_TypeClass_STRUCT: case typelib_TypeClass_EXCEPTION: { typelib_TypeDescription * t = 0; TYPELIB_DANGER_GET(&t, pTypeInStruct); bool isFPR = isReturnInFPR(t, nSize); TYPELIB_DANGER_RELEASE(t); if (!isFPR) return false; } break; case typelib_TypeClass_FLOAT: case typelib_TypeClass_DOUBLE: if (nSize >= 16) return false; nSize += 8; break; default: return false; break; } } return true; } void fillReturn(const typelib_TypeDescription * pTypeDescr, sal_Int64 * gret, double * fret, void * pRegisterReturn) { sal_uInt32 nSize = 0; if (isReturnInFPR(pTypeDescr, nSize)) { reinterpret_cast( pRegisterReturn )[0] = fret[0]; reinterpret_cast( pRegisterReturn )[1] = fret[1]; } else { reinterpret_cast( pRegisterReturn )[0] = gret[0]; reinterpret_cast( pRegisterReturn )[1] = gret[1]; } } static void callVirtualMethod( void * pAdjustedThisPtr, sal_Int32 nVtableIndex, void * pRegisterReturn, typelib_TypeDescriptionReference * pReturnTypeRef, bool bSimpleReturn, sal_uInt64 *pStack, sal_uInt32 nStack, sal_uInt64 *pGPR, double *pFPR, sal_uInt32 nREG) { // Should not happen, but... static_assert(MAX_GP_REGS == MAX_FP_REGS, "must be the same size"); if ( nREG > MAX_GP_REGS ) nREG = MAX_GP_REGS; // Get pointer to method sal_uInt64 pMethod = *((sal_uInt64 *)pAdjustedThisPtr); pMethod += 8 * nVtableIndex; void *mfunc = (void *) *((sal_uInt64 *)pMethod); #ifdef BRDEBUG fprintf(stderr, "calling function %p\n", mfunc); #endif // Load parameters to stack, if necessary sal_uInt64* pCallStack = NULL; if ( nStack ) { // 16-bytes aligned sal_uInt32 nStackBytes = ( ( nStack + 1 ) >> 1 ) * 16; pCallStack = (sal_uInt64 *) __builtin_alloca( nStackBytes ); std::memcpy( pCallStack, pStack, nStackBytes ); } sal_Int64 gret[2]; double fret[2]; asm volatile ( ".set push \n\t" ".set mips64 \n\t" // Fill the general purpose registers "ld $4, 0(%[gpr]) \n\t" "ld $5, 8(%[gpr]) \n\t" "ld $6, 16(%[gpr]) \n\t" "ld $7, 24(%[gpr]) \n\t" "ld $8, 32(%[gpr]) \n\t" "ld $9, 40(%[gpr]) \n\t" "ld $10, 48(%[gpr]) \n\t" "ld $11, 56(%[gpr]) \n\t" // Fill the floating pointer registers "ldc1 $f12, 0(%[fpr]) \n\t" "ldc1 $f13, 8(%[fpr]) \n\t" "ldc1 $f14, 16(%[fpr]) \n\t" "ldc1 $f15, 24(%[fpr]) \n\t" "ldc1 $f16, 32(%[fpr]) \n\t" "ldc1 $f17, 40(%[fpr]) \n\t" "ldc1 $f18, 48(%[fpr]) \n\t" "ldc1 $f19, 56(%[fpr]) \n\t" // Perform the call "jalr %[mfunc] \n\t" // Fill the return values "move %[gret1], $2 \n\t" "move %[gret2], $3 \n\t" "mov.d %[fret1], $f0 \n\t" "mov.d %[fret2], $f2 \n\t" ".set pop \n\t" :[gret1]"=r"(gret[0]), [gret2]"=r"(gret[1]), [fret1]"=f"(fret[0]), [fret2]"=f"(fret[1]) :[gpr]"r"(pGPR), [fpr]"r"(pFPR), [mfunc]"c"(mfunc), [stack]"m"(pCallStack) // dummy input to prevent the compiler from optimizing the alloca out :"$2", "$3", "$4", "$5", "$6", "$7", "$8", "$9", "$10", "$11", "$31", "$f0", "$f2", "$f12", "$f13", "$f14", "$f15", "$f16", "$f17", "$f18", "$f19", "memory" ); switch (pReturnTypeRef->eTypeClass) { case typelib_TypeClass_HYPER: case typelib_TypeClass_UNSIGNED_HYPER: case typelib_TypeClass_LONG: case typelib_TypeClass_UNSIGNED_LONG: case typelib_TypeClass_ENUM: case typelib_TypeClass_CHAR: case typelib_TypeClass_SHORT: case typelib_TypeClass_UNSIGNED_SHORT: case typelib_TypeClass_BOOLEAN: case typelib_TypeClass_BYTE: *reinterpret_cast( pRegisterReturn ) = gret[0]; break; case typelib_TypeClass_FLOAT: case typelib_TypeClass_DOUBLE: *reinterpret_cast( pRegisterReturn ) = fret[0]; break; case typelib_TypeClass_STRUCT: case typelib_TypeClass_EXCEPTION: { sal_Int32 const nRetSize = pReturnTypeRef->pType->nSize; if (bSimpleReturn && nRetSize <= 16 && nRetSize > 0) { typelib_TypeDescription * pTypeDescr = 0; TYPELIB_DANGER_GET( &pTypeDescr, pReturnTypeRef ); fillReturn(pTypeDescr, gret, fret, pRegisterReturn); TYPELIB_DANGER_RELEASE( pTypeDescr ); } break; } default: #ifdef BRDEBUG fprintf(stderr,"unhandled return type %u\n", pReturnTypeRef->eTypeClass); #endif break; } } static void cpp_call( bridges::cpp_uno::shared::UnoInterfaceProxy * pThis, bridges::cpp_uno::shared::VtableSlot aVtableSlot, typelib_TypeDescriptionReference * pReturnTypeRef, sal_Int32 nParams, typelib_MethodParameter * pParams, void * pUnoReturn, void * pUnoArgs[], uno_Any ** ppUnoExc ) { // max space for: [complex ret ptr], values|ptr ... sal_uInt64 *pStack = (sal_uInt64 *)__builtin_alloca( ((nParams+3) * sizeof(sal_Int64)) ); sal_uInt64 *pStackStart = pStack; sal_uInt64 pGPR[MAX_GP_REGS]; double pFPR[MAX_FP_REGS]; sal_uInt32 nREG = 0; #ifdef BRDEBUG fprintf(stderr, "in cpp_call\n"); #endif // return typelib_TypeDescription * pReturnTypeDescr = 0; TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef ); assert(pReturnTypeDescr); void * pCppReturn = 0; // if != 0 && != pUnoReturn, needs reconversion bool bSimpleReturn = true; if (pReturnTypeDescr) { if ( CPPU_CURRENT_NAMESPACE::return_in_hidden_param( pReturnTypeRef ) ) { bSimpleReturn = false; // complex return via ptr pCppReturn = bridges::cpp_uno::shared::relatesToInterfaceType( pReturnTypeDescr )? __builtin_alloca( pReturnTypeDescr->nSize ) : pUnoReturn; INSERT_INT64( &pCppReturn, nREG, pGPR, pStack ); } else { pCppReturn = pUnoReturn; // direct way for simple types } } // push this void* pAdjustedThisPtr = reinterpret_cast< void **>( pThis->getCppI() ) + aVtableSlot.offset; INSERT_INT64( &pAdjustedThisPtr, nREG, pGPR, pStack ); // args void ** pCppArgs = (void **)alloca( 3 * sizeof(void *) * nParams ); // indices of values this have to be converted (interface conversion cpp<=>uno) sal_Int32 * pTempIndices = (sal_Int32 *)(pCppArgs + nParams); // type descriptions for reconversions typelib_TypeDescription ** ppTempParamTypeDescr = (typelib_TypeDescription **)(pCppArgs + (2 * nParams)); sal_Int32 nTempIndices = 0; for ( sal_Int32 nPos = 0; nPos < nParams; ++nPos ) { const typelib_MethodParameter & rParam = pParams[nPos]; typelib_TypeDescription * pParamTypeDescr = 0; TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef ); if (!rParam.bOut && bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr )) { uno_copyAndConvertData( pCppArgs[nPos] = alloca( 8 ), pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp() ); switch (pParamTypeDescr->eTypeClass) { case typelib_TypeClass_LONG: case typelib_TypeClass_UNSIGNED_LONG: case typelib_TypeClass_ENUM: INSERT_INT32( pCppArgs[nPos], nREG, pGPR, pStack ); break; case typelib_TypeClass_CHAR: case typelib_TypeClass_SHORT: INSERT_INT16( pCppArgs[nPos], nREG, pGPR, pStack ); break; case typelib_TypeClass_UNSIGNED_SHORT: INSERT_UINT16( pCppArgs[nPos], nREG, pGPR, pStack ); break; case typelib_TypeClass_BOOLEAN: case typelib_TypeClass_BYTE: INSERT_INT8( pCppArgs[nPos], nREG, pGPR, pStack ); break; case typelib_TypeClass_FLOAT: case typelib_TypeClass_DOUBLE: INSERT_FLOAT_DOUBLE( pCppArgs[nPos], nREG, pFPR, pStack ); break; case typelib_TypeClass_HYPER: case typelib_TypeClass_UNSIGNED_HYPER: INSERT_INT64( pCppArgs[nPos], nREG, pGPR, pStack ); break; default: break; } // no longer needed TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } else // ptr to complex value | ref { if (! rParam.bIn) // is pure out { // cpp out is constructed mem, uno out is not! uno_constructData( pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ), pParamTypeDescr ); pTempIndices[nTempIndices] = nPos; // default constructed for cpp call // will be released at reconversion ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr; } // is in/inout else if (bridges::cpp_uno::shared::relatesToInterfaceType( pParamTypeDescr )) { uno_copyAndConvertData( pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ), pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp() ); pTempIndices[nTempIndices] = nPos; // has to be reconverted // will be released at reconversion ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr; } else // direct way { pCppArgs[nPos] = pUnoArgs[nPos]; // no longer needed TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } INSERT_INT64( &(pCppArgs[nPos]), nREG, pGPR, pStack ); } } try { callVirtualMethod( pAdjustedThisPtr, aVtableSlot.index, pCppReturn, pReturnTypeRef, bSimpleReturn, pStackStart, ( pStack - pStackStart ), pGPR, pFPR, nREG); // NO exception occurred... *ppUnoExc = 0; // reconvert temporary params for ( ; nTempIndices--; ) { sal_Int32 nIndex = pTempIndices[nTempIndices]; typelib_TypeDescription * pParamTypeDescr = ppTempParamTypeDescr[nTempIndices]; if (pParams[nIndex].bIn) { if (pParams[nIndex].bOut) // inout { uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, 0 ); // destroy uno value uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr, pThis->getBridge()->getCpp2Uno() ); } } else // pure out { uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr, pThis->getBridge()->getCpp2Uno() ); } // destroy temp cpp param => cpp: every param was constructed uno_destructData( pCppArgs[nIndex], pParamTypeDescr, cpp_release ); TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } // return value if (pCppReturn && pUnoReturn != pCppReturn) { uno_copyAndConvertData( pUnoReturn, pCppReturn, pReturnTypeDescr, pThis->getBridge()->getCpp2Uno() ); uno_destructData( pCppReturn, pReturnTypeDescr, cpp_release ); } } catch (...) { // fill uno exception fillUnoException( CPPU_CURRENT_NAMESPACE::__cxa_get_globals()->caughtExceptions, *ppUnoExc, pThis->getBridge()->getCpp2Uno() ); // temporary params for ( ; nTempIndices--; ) { sal_Int32 nIndex = pTempIndices[nTempIndices]; // destroy temp cpp param => cpp: every param was constructed uno_destructData( pCppArgs[nIndex], ppTempParamTypeDescr[nTempIndices], cpp_release ); TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndices] ); } // return type if (pReturnTypeDescr) TYPELIB_DANGER_RELEASE( pReturnTypeDescr ); } } } namespace bridges { namespace cpp_uno { namespace shared { void unoInterfaceProxyDispatch( uno_Interface * pUnoI, const typelib_TypeDescription * pMemberDescr, void * pReturn, void * pArgs[], uno_Any ** ppException ) { // is my surrogate bridges::cpp_uno::shared::UnoInterfaceProxy * pThis = static_cast< bridges::cpp_uno::shared::UnoInterfaceProxy *> (pUnoI); //typelib_InterfaceTypeDescription * pTypeDescr = pThis->pTypeDescr; #ifdef BRDEBUG fprintf(stderr, "in dispatch\n"); #endif switch (pMemberDescr->eTypeClass) { case typelib_TypeClass_INTERFACE_ATTRIBUTE: { VtableSlot aVtableSlot( getVtableSlot( reinterpret_cast< typelib_InterfaceAttributeTypeDescription const * >( pMemberDescr))); if (pReturn) { // dependent dispatch cpp_call( pThis, aVtableSlot, ((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef, 0, 0, // no params pReturn, pArgs, ppException ); } else { // is SET typelib_MethodParameter aParam; aParam.pTypeRef = ((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef; aParam.bIn = sal_True; aParam.bOut = sal_False; typelib_TypeDescriptionReference * pReturnTypeRef = 0; OUString aVoidName("void"); typelib_typedescriptionreference_new( &pReturnTypeRef, typelib_TypeClass_VOID, aVoidName.pData ); // dependent dispatch aVtableSlot.index += 1; //get then set method cpp_call( pThis, aVtableSlot, pReturnTypeRef, 1, &aParam, pReturn, pArgs, ppException ); typelib_typedescriptionreference_release( pReturnTypeRef ); } break; } case typelib_TypeClass_INTERFACE_METHOD: { VtableSlot aVtableSlot( getVtableSlot( reinterpret_cast< typelib_InterfaceMethodTypeDescription const * >( pMemberDescr))); switch (aVtableSlot.index) { // standard calls case 1: // acquire uno interface (*pUnoI->acquire)( pUnoI ); *ppException = 0; break; case 2: // release uno interface (*pUnoI->release)( pUnoI ); *ppException = 0; break; case 0: // queryInterface() opt { typelib_TypeDescription * pTD = 0; TYPELIB_DANGER_GET( &pTD, reinterpret_cast< Type * >( pArgs[0] )->getTypeLibType() ); if (pTD) { uno_Interface * pInterface = 0; (*pThis->pBridge->getUnoEnv()->getRegisteredInterface)(pThis->pBridge->getUnoEnv(), (void **)&pInterface, pThis->oid.pData, (typelib_InterfaceTypeDescription *)pTD ); if (pInterface) { ::uno_any_construct( reinterpret_cast< uno_Any * >( pReturn ), &pInterface, pTD, 0 ); (*pInterface->release)( pInterface ); TYPELIB_DANGER_RELEASE( pTD ); *ppException = 0; break; } TYPELIB_DANGER_RELEASE( pTD ); } } // else perform queryInterface() default: // dependent dispatch cpp_call( pThis, aVtableSlot, ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pReturnTypeRef, ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->nParams, ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pParams, pReturn, pArgs, ppException ); } break; } default: { ::com::sun::star::uno::RuntimeException aExc( OUString("illegal member type description!"), ::com::sun::star::uno::Reference< ::com::sun::star::uno::XInterface >() ); Type const & rExcType = cppu::UnoType::get(); // binary identical null reference ::uno_type_any_construct( *ppException, &aExc, rExcType.getTypeLibType(), 0 ); } } } }}} /* vim:set shiftwidth=4 softtabstop=4 expandtab: */