/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include "bridges/cpp_uno/shared/bridge.hxx" #include "bridges/cpp_uno/shared/types.hxx" #include "bridges/cpp_uno/shared/unointerfaceproxy.hxx" #include "bridges/cpp_uno/shared/vtables.hxx" #include "share.hxx" #include #include using namespace ::rtl; using namespace ::com::sun::star::uno; void MapReturn(const ia64::RegReturn &rRet, double dret, typelib_TypeDescription * pReturnTypeDescr, bool bSimpleReturn, sal_uInt64 *pRegisterReturn) { switch (pReturnTypeDescr->eTypeClass) { case typelib_TypeClass_HYPER: case typelib_TypeClass_UNSIGNED_HYPER: case typelib_TypeClass_LONG: case typelib_TypeClass_UNSIGNED_LONG: case typelib_TypeClass_ENUM: *pRegisterReturn = rRet.r8; break; case typelib_TypeClass_CHAR: case typelib_TypeClass_SHORT: case typelib_TypeClass_UNSIGNED_SHORT: *pRegisterReturn = (unsigned short)rRet.r8; break; case typelib_TypeClass_BOOLEAN: case typelib_TypeClass_BYTE: *pRegisterReturn = (unsigned char)rRet.r8; break; case typelib_TypeClass_FLOAT: *reinterpret_cast( pRegisterReturn ) = dret; break; case typelib_TypeClass_DOUBLE: *reinterpret_cast( pRegisterReturn ) = dret; break; case typelib_TypeClass_STRUCT: case typelib_TypeClass_EXCEPTION: { sal_uInt32 nRetSize = pReturnTypeDescr->nSize; if (bSimpleReturn && nRetSize <= 32 && nRetSize > 0) memcpy(pRegisterReturn, (void*)&rRet, nRetSize); break; } default: break; } } namespace ia64 { bool is_complex_struct(const typelib_TypeDescription * type) { const typelib_CompoundTypeDescription * p = reinterpret_cast< const typelib_CompoundTypeDescription * >(type); for (sal_Int32 i = 0; i < p->nMembers; ++i) { if (p->ppTypeRefs[i]->eTypeClass == typelib_TypeClass_STRUCT || p->ppTypeRefs[i]->eTypeClass == typelib_TypeClass_EXCEPTION) { typelib_TypeDescription * t = 0; TYPELIB_DANGER_GET(&t, p->ppTypeRefs[i]); bool b = is_complex_struct(t); TYPELIB_DANGER_RELEASE(t); if (b) { return true; } } else if (!bridges::cpp_uno::shared::isSimpleType(p->ppTypeRefs[i]->eTypeClass)) return true; } if (p->pBaseTypeDescription != 0) return is_complex_struct(&p->pBaseTypeDescription->aBase); return false; } bool is_complex_struct( typelib_TypeDescriptionReference *pTypeRef ) { if (pTypeRef->eTypeClass == typelib_TypeClass_STRUCT || pTypeRef->eTypeClass == typelib_TypeClass_EXCEPTION) { typelib_TypeDescription * pTypeDescr = 0; TYPELIB_DANGER_GET( &pTypeDescr, pTypeRef ); bool bRet = is_complex_struct( pTypeDescr ); TYPELIB_DANGER_RELEASE( pTypeDescr ); return bRet; } return false; } bool return_via_r8_buffer( typelib_TypeDescriptionReference *pTypeRef ) { if (pTypeRef->eTypeClass == typelib_TypeClass_STRUCT || pTypeRef->eTypeClass == typelib_TypeClass_EXCEPTION) { if (is_complex_struct( pTypeRef )) return false; typelib_TypeDescription * pTypeDescr = 0; TYPELIB_DANGER_GET( &pTypeDescr, pTypeRef ); /* If the struct is larger than 32 bytes, then there is a buffer at r8 to stick the return value into */ bool bRet = pTypeDescr->nSize > 32; TYPELIB_DANGER_RELEASE( pTypeDescr ); return bRet; } return false; } bool return_in_hidden_param( typelib_TypeDescriptionReference *pTypeRef ) { if (bridges::cpp_uno::shared::isSimpleType(pTypeRef)) return false; else if (pTypeRef->eTypeClass == typelib_TypeClass_STRUCT || pTypeRef->eTypeClass == typelib_TypeClass_EXCEPTION) return is_complex_struct( pTypeRef ); return true; } } namespace { //================================================================================================== static void callVirtualMethod(void * pThis, sal_uInt32 nVtableIndex, void * pRegisterReturn, typelib_TypeDescription * pReturnTypeDescr, bool bSimpleReturn, sal_uInt64 *pStack, sal_uInt32 nStack, sal_uInt64 *pGPR, sal_uInt32 nGPR, double *pFPR, sal_uInt32 nFPR) { // Stack, if used, must be 16-bytes aligned if ( nStack ) nStack = ( nStack + 1 ) & ~1; // Should not happen, but... if ( nFPR > ia64::MAX_SSE_REGS ) nFPR = ia64::MAX_SSE_REGS; if ( nGPR > ia64::MAX_GPR_REGS ) nGPR = ia64::MAX_GPR_REGS; #if OSL_DEBUG_LEVEL > 2 // Let's figure out what is really going on here { fprintf( stderr, "= callVirtualMethod() =\nGPR's (%d): ", nGPR ); for ( unsigned int i = 0; i < nGPR; ++i ) fprintf( stderr, "0x%lx, ", pGPR[i] ); fprintf( stderr, "\nFPR's (%d): ", nFPR ); for ( unsigned int i = 0; i < nFPR; ++i ) fprintf( stderr, "0x%lx (%f), ", pFPR[i], pFPR[i] ); fprintf( stderr, "\nStack (%d): ", nStack ); for ( unsigned int i = 0; i < nStack; ++i ) fprintf( stderr, "0x%lx, ", pStack[i] ); fprintf( stderr, "\n" ); fprintf( stderr, "pRegisterReturn is %p\n", pRegisterReturn); } #endif // Load parameters to stack, if necessary sal_uInt64 *stack = (sal_uInt64 *) __builtin_alloca( nStack * 8 ); memcpy( stack, pStack, nStack * 8 ); // To get pointer to method // a) get the address of the vtable sal_uInt64 pMethod = *((sal_uInt64 *)pThis); // b) get the address from the vtable entry at offset, each entry is 16bytes, // 8 for function pointer, and 8 for global pointer pMethod += 16 * nVtableIndex; typedef void (* FunctionCall )( sal_uInt64, sal_uInt64, sal_uInt64, sal_uInt64, sal_uInt64, sal_uInt64, sal_uInt64, sal_uInt64 ); FunctionCall pFunc = (FunctionCall)pMethod; switch (nFPR) //deliberate fall through { case 8: asm volatile("ldfd f15=%0" : : "m"(pFPR[7]) : "f15"); case 7: asm volatile("ldfd f14=%0" : : "m"(pFPR[6]) : "f14"); case 6: asm volatile("ldfd f13=%0" : : "m"(pFPR[5]) : "f13"); case 5: asm volatile("ldfd f12=%0" : : "m"(pFPR[4]) : "f12"); case 4: asm volatile("ldfd f11=%0" : : "m"(pFPR[3]) : "f11"); case 3: asm volatile("ldfd f10=%0" : : "m"(pFPR[2]) : "f10"); case 2: asm volatile("ldfd f9=%0" : : "m"(pFPR[1]) : "f9"); case 1: asm volatile("ldfd f8=%0" : : "m"(pFPR[0]) : "f8"); default: break; } //stick the return area into r8 for big struct returning asm volatile("ld8 r8=%0" : : "m"(pRegisterReturn) : "r8"); (*pFunc)(pGPR[0], pGPR[1], pGPR[2], pGPR[3], pGPR[4], pGPR[5], pGPR[6], pGPR[7]); register double f8 asm("f8"); ia64::RegReturn ret; { register long r8 asm("r8"); ret.r8 = r8; register long r9 asm("r9"); ret.r9 = r9; register long r10 asm("r10"); ret.r10 = r10; register long r11 asm("r11"); ret.r11 = r11; } MapReturn(ret, f8, pReturnTypeDescr, bSimpleReturn, (sal_uInt64*)pRegisterReturn); } // Macros for easier insertion of values to registers or stack // pSV - pointer to the source // nr - order of the value [will be increased if stored to register] // pFPR, pGPR - pointer to the registers // pDS - pointer to the stack [will be increased if stored here] // The value in %xmm register is already prepared to be retrieved as a float, // thus we treat float and double the same #define INSERT_FLOAT( pSV, nfr, pFPR, ngr, pGPR, pDS, bOverflow ) \ if ( nfr < ia64::MAX_SSE_REGS && ngr < ia64::MAX_GPR_REGS ) \ pFPR[nfr++] = *reinterpret_cast( pSV ); \ if ( ngr < ia64::MAX_GPR_REGS ) \ pGPR[ngr++] = *reinterpret_cast( pSV ); \ else \ bOverFlow = true; \ if (bOverFlow) \ *pDS++ = *reinterpret_cast( pSV ); // verbatim! #define INSERT_DOUBLE( pSV, nfr, pFPR, ngr, pGPR, pDS, bOverflow ) \ if ( nfr < ia64::MAX_SSE_REGS && ngr < ia64::MAX_GPR_REGS ) \ pFPR[nfr++] = *reinterpret_cast( pSV ); \ if ( ngr < ia64::MAX_GPR_REGS ) \ pGPR[ngr++] = *reinterpret_cast( pSV ); \ else \ bOverFlow = true; \ if (bOverFlow) \ *pDS++ = *reinterpret_cast( pSV ); // verbatim! #define INSERT_INT64( pSV, nr, pGPR, pDS, bOverflow ) \ if ( nr < ia64::MAX_GPR_REGS ) \ pGPR[nr++] = *reinterpret_cast( pSV ); \ else \ bOverFlow = true; \ if (bOverFlow) \ *pDS++ = *reinterpret_cast( pSV ); #define INSERT_INT32( pSV, nr, pGPR, pDS, bOverflow ) \ if ( nr < ia64::MAX_GPR_REGS ) \ pGPR[nr++] = *reinterpret_cast( pSV ); \ else \ bOverFlow = true; \ if (bOverFlow) \ *pDS++ = *reinterpret_cast( pSV ); #define INSERT_INT16( pSV, nr, pGPR, pDS, bOverflow ) \ if ( nr < ia64::MAX_GPR_REGS ) \ pGPR[nr++] = *reinterpret_cast( pSV ); \ else \ bOverFlow = true; \ if (bOverFlow) \ *pDS++ = *reinterpret_cast( pSV ); #define INSERT_INT8( pSV, nr, pGPR, pDS, bOverflow ) \ if ( nr < ia64::MAX_GPR_REGS ) \ pGPR[nr++] = *reinterpret_cast( pSV ); \ else \ bOverFlow = true; \ if (bOverFlow) \ *pDS++ = *reinterpret_cast( pSV ); //================================================================================================== static void cpp_call( bridges::cpp_uno::shared::UnoInterfaceProxy * pThis, bridges::cpp_uno::shared::VtableSlot aVtableSlot, typelib_TypeDescriptionReference * pReturnTypeRef, sal_Int32 nParams, typelib_MethodParameter * pParams, void * pUnoReturn, void * pUnoArgs[], uno_Any ** ppUnoExc ) { // max space for: [complex ret ptr], values|ptr ... sal_uInt64 * pStack = (sal_uInt64 *)alloca( (nParams+3) * sizeof(sal_Int64) ); sal_uInt64 * pStackStart = pStack; sal_uInt64 pGPR[ia64::MAX_GPR_REGS]; sal_uInt32 nGPR = 0; double pFPR[ia64::MAX_SSE_REGS]; sal_uInt32 nFPR = 0; // return typelib_TypeDescription * pReturnTypeDescr = 0; TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef ); OSL_ENSURE( pReturnTypeDescr, "### expected return type description!" ); void * pCppReturn = 0; // if != 0 && != pUnoReturn, needs reconversion bool bOverFlow = false; bool bSimpleReturn = true; if (pReturnTypeDescr) { #if OSL_DEBUG_LEVEL > 2 fprintf(stderr, "return type is %d\n", pReturnTypeDescr->eTypeClass); #endif if ( ia64::return_in_hidden_param(pReturnTypeRef) || ia64::return_via_r8_buffer(pReturnTypeRef) ) bSimpleReturn = false; if ( bSimpleReturn ) { pCppReturn = pUnoReturn; // direct way for simple types #if OSL_DEBUG_LEVEL > 2 fprintf(stderr, "simple return\n"); #endif } else { // complex return via ptr pCppReturn = (bridges::cpp_uno::shared::relatesToInterfaceType( pReturnTypeDescr ) ? alloca( pReturnTypeDescr->nSize ) : pUnoReturn); #if OSL_DEBUG_LEVEL > 2 fprintf(stderr, "pCppReturn/pUnoReturn is %lx/%lx", pCppReturn, pUnoReturn); #endif if (!ia64::return_via_r8_buffer(pReturnTypeRef)) INSERT_INT64( &pCppReturn, nGPR, pGPR, pStack, bOverFlow ); } } // push "this" pointer void * pAdjustedThisPtr = reinterpret_cast< void ** >( pThis->getCppI() ) + aVtableSlot.offset; #if OSL_DEBUG_LEVEL > 2 fprintf(stderr, "this pointer is %p\n", pAdjustedThisPtr); #endif INSERT_INT64( &pAdjustedThisPtr, nGPR, pGPR, pStack, bOverFlow ); // Args void ** pCppArgs = (void **)alloca( 3 * sizeof(void *) * nParams ); // indizes of values this have to be converted (interface conversion cpp<=>uno) sal_Int32 * pTempIndizes = (sal_Int32 *)(pCppArgs + nParams); // type descriptions for reconversions typelib_TypeDescription ** ppTempParamTypeDescr = (typelib_TypeDescription **)(pCppArgs + (2 * nParams)); sal_Int32 nTempIndizes = 0; #if OSL_DEBUG_LEVEL > 2 fprintf(stderr, "n params is %d\n", nParams); #endif for ( sal_Int32 nPos = 0; nPos < nParams; ++nPos ) { const typelib_MethodParameter & rParam = pParams[nPos]; typelib_TypeDescription * pParamTypeDescr = 0; TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef ); #if OSL_DEBUG_LEVEL > 2 fprintf(stderr, "param %d is %d %d %d\n", nPos, rParam.bOut, bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr ), pParamTypeDescr->eTypeClass); #endif if (!rParam.bOut && bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr )) { // uno_copyAndConvertData( pCppArgs[nPos] = alloca( 8 ), pUnoArgs[nPos], pParamTypeDescr, uno_copyAndConvertData( pCppArgs[nPos] = pStack, pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp() ); switch (pParamTypeDescr->eTypeClass) { case typelib_TypeClass_HYPER: case typelib_TypeClass_UNSIGNED_HYPER: #if OSL_DEBUG_LEVEL > 2 fprintf(stderr, "hyper is %lx\n", *(unsigned long*)(pCppArgs[nPos])); #endif INSERT_INT64( pCppArgs[nPos], nGPR, pGPR, pStack, bOverFlow ); break; case typelib_TypeClass_LONG: case typelib_TypeClass_UNSIGNED_LONG: case typelib_TypeClass_ENUM: #if OSL_DEBUG_LEVEL > 2 fprintf(stderr, "long is %lx\n", *(unsigned int*)(pCppArgs[nPos])); #endif INSERT_INT32( pCppArgs[nPos], nGPR, pGPR, pStack, bOverFlow ); break; case typelib_TypeClass_SHORT: case typelib_TypeClass_CHAR: case typelib_TypeClass_UNSIGNED_SHORT: #if OSL_DEBUG_LEVEL > 2 fprintf(stderr, "short is %x\n", *(unsigned short*)(pCppArgs[nPos])); #endif INSERT_INT16( pCppArgs[nPos], nGPR, pGPR, pStack, bOverFlow ); break; case typelib_TypeClass_BOOLEAN: case typelib_TypeClass_BYTE: #if OSL_DEBUG_LEVEL > 2 fprintf(stderr, "byte is %x\n", *(unsigned char*)(pCppArgs[nPos])); #endif INSERT_INT8( pCppArgs[nPos], nGPR, pGPR, pStack, bOverFlow ); break; case typelib_TypeClass_FLOAT: #if OSL_DEBUG_LEVEL > 2 fprintf(stderr, "a float is %f\n", *(float*)(pCppArgs[nPos])); fprintf(stderr, "b float is %f\n", *(double*)(pCppArgs[nPos])); #endif INSERT_FLOAT( pCppArgs[nPos], nFPR, pFPR, nGPR, pGPR, pStack, bOverFlow ); break; case typelib_TypeClass_DOUBLE: #if OSL_DEBUG_LEVEL > 2 fprintf(stderr, "double is %f\n", *(double*)(pCppArgs[nPos])); #endif INSERT_DOUBLE( pCppArgs[nPos], nFPR, pFPR, nGPR, pGPR, pStack, bOverFlow ); break; default: break; } // no longer needed TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } else // ptr to complex value | ref { #if OSL_DEBUG_LEVEL > 2 fprintf(stderr, "complex type again %d\n", rParam.bIn); #endif if (! rParam.bIn) // is pure out { #if OSL_DEBUG_LEVEL > 2 fprintf(stderr, "complex size is %d\n", pParamTypeDescr->nSize ); #endif // cpp out is constructed mem, uno out is not! uno_constructData( pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ), pParamTypeDescr ); pTempIndizes[nTempIndizes] = nPos; // default constructed for cpp call // will be released at reconversion ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr; } // is in/inout else if (bridges::cpp_uno::shared::relatesToInterfaceType( pParamTypeDescr )) { #if OSL_DEBUG_LEVEL > 2 fprintf(stderr, "this one\n"); #endif uno_copyAndConvertData( pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ), pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp() ); pTempIndizes[nTempIndizes] = nPos; // has to be reconverted // will be released at reconversion ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr; } else // direct way { #if OSL_DEBUG_LEVEL > 2 fprintf(stderr, "that one, passing %lx through\n", pUnoArgs[nPos]); #endif pCppArgs[nPos] = pUnoArgs[nPos]; // no longer needed TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } INSERT_INT64( &(pCppArgs[nPos]), nGPR, pGPR, pStack, bOverFlow ); } } try { callVirtualMethod( pAdjustedThisPtr, aVtableSlot.index, pCppReturn, pReturnTypeDescr, bSimpleReturn, pStackStart, ( pStack - pStackStart ), pGPR, nGPR, pFPR, nFPR ); // NO exception occurred... *ppUnoExc = 0; // reconvert temporary params for ( ; nTempIndizes--; ) { sal_Int32 nIndex = pTempIndizes[nTempIndizes]; typelib_TypeDescription * pParamTypeDescr = ppTempParamTypeDescr[nTempIndizes]; if (pParams[nIndex].bIn) { if (pParams[nIndex].bOut) // inout { uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, 0 ); // destroy uno value uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr, pThis->getBridge()->getCpp2Uno() ); } } else // pure out { uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr, pThis->getBridge()->getCpp2Uno() ); } // destroy temp cpp param => cpp: every param was constructed uno_destructData( pCppArgs[nIndex], pParamTypeDescr, cpp_release ); TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } // return value if (pCppReturn && pUnoReturn != pCppReturn) { uno_copyAndConvertData( pUnoReturn, pCppReturn, pReturnTypeDescr, pThis->getBridge()->getCpp2Uno() ); uno_destructData( pCppReturn, pReturnTypeDescr, cpp_release ); } } catch (...) { // fill uno exception fillUnoException( CPPU_CURRENT_NAMESPACE::__cxa_get_globals()->caughtExceptions, *ppUnoExc, pThis->getBridge()->getCpp2Uno() ); // temporary params for ( ; nTempIndizes--; ) { sal_Int32 nIndex = pTempIndizes[nTempIndizes]; // destroy temp cpp param => cpp: every param was constructed uno_destructData( pCppArgs[nIndex], ppTempParamTypeDescr[nTempIndizes], cpp_release ); TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndizes] ); } // return type if (pReturnTypeDescr) TYPELIB_DANGER_RELEASE( pReturnTypeDescr ); } } } namespace bridges { namespace cpp_uno { namespace shared { void unoInterfaceProxyDispatch( uno_Interface * pUnoI, const typelib_TypeDescription * pMemberDescr, void * pReturn, void * pArgs[], uno_Any ** ppException ) { // is my surrogate bridges::cpp_uno::shared::UnoInterfaceProxy * pThis = static_cast< bridges::cpp_uno::shared::UnoInterfaceProxy *> (pUnoI); switch (pMemberDescr->eTypeClass) { case typelib_TypeClass_INTERFACE_ATTRIBUTE: { VtableSlot aVtableSlot( getVtableSlot( reinterpret_cast< typelib_InterfaceAttributeTypeDescription const * >( pMemberDescr))); if (pReturn) { // dependent dispatch cpp_call( pThis, aVtableSlot, ((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef, 0, 0, // no params pReturn, pArgs, ppException ); } else { // is SET typelib_MethodParameter aParam; aParam.pTypeRef = ((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef; aParam.bIn = sal_True; aParam.bOut = sal_False; typelib_TypeDescriptionReference * pReturnTypeRef = 0; OUString aVoidName("void"); typelib_typedescriptionreference_new( &pReturnTypeRef, typelib_TypeClass_VOID, aVoidName.pData ); // dependent dispatch aVtableSlot.index += 1; //get then set method cpp_call( pThis, aVtableSlot, pReturnTypeRef, 1, &aParam, pReturn, pArgs, ppException ); typelib_typedescriptionreference_release( pReturnTypeRef ); } break; } case typelib_TypeClass_INTERFACE_METHOD: { VtableSlot aVtableSlot( getVtableSlot( reinterpret_cast< typelib_InterfaceMethodTypeDescription const * >( pMemberDescr))); switch (aVtableSlot.index) { // standard calls case 1: // acquire uno interface (*pUnoI->acquire)( pUnoI ); *ppException = 0; break; case 2: // release uno interface (*pUnoI->release)( pUnoI ); *ppException = 0; break; case 0: // queryInterface() opt { typelib_TypeDescription * pTD = 0; TYPELIB_DANGER_GET( &pTD, reinterpret_cast< Type * >( pArgs[0] )->getTypeLibType() ); if (pTD) { uno_Interface * pInterface = 0; (*pThis->pBridge->getUnoEnv()->getRegisteredInterface)( pThis->pBridge->getUnoEnv(), (void **)&pInterface, pThis->oid.pData, (typelib_InterfaceTypeDescription *)pTD ); if (pInterface) { ::uno_any_construct( reinterpret_cast< uno_Any * >( pReturn ), &pInterface, pTD, 0 ); (*pInterface->release)( pInterface ); TYPELIB_DANGER_RELEASE( pTD ); *ppException = 0; break; } TYPELIB_DANGER_RELEASE( pTD ); } } // else perform queryInterface() default: // dependent dispatch cpp_call( pThis, aVtableSlot, ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pReturnTypeRef, ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->nParams, ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pParams, pReturn, pArgs, ppException ); } break; } default: { ::com::sun::star::uno::RuntimeException aExc( OUString("illegal member type description!"), ::com::sun::star::uno::Reference< ::com::sun::star::uno::XInterface >() ); Type const & rExcType = ::getCppuType( &aExc ); // binary identical null reference ::uno_type_any_construct( *ppException, &aExc, rExcType.getTypeLibType(), 0 ); } } } } } } /* vim:set shiftwidth=4 softtabstop=4 expandtab: */