/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /************************************************************************* * * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * Copyright 2000, 2010 Oracle and/or its affiliates. * * OpenOffice.org - a multi-platform office productivity suite * * This file is part of OpenOffice.org. * * OpenOffice.org is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License version 3 * only, as published by the Free Software Foundation. * * OpenOffice.org is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License version 3 for more details * (a copy is included in the LICENSE file that accompanied this code). * * You should have received a copy of the GNU Lesser General Public License * version 3 along with OpenOffice.org. If not, see * * for a copy of the LGPLv3 License. * ************************************************************************/ // MARKER(update_precomp.py): autogen include statement, do not remove #include "precompiled_bridges.hxx" #include #include #include #include "bridges/cpp_uno/shared/bridge.hxx" #include "bridges/cpp_uno/shared/types.hxx" #include "bridges/cpp_uno/shared/unointerfaceproxy.hxx" #include "bridges/cpp_uno/shared/vtables.hxx" #include "share.hxx" #include #include using namespace ::rtl; using namespace ::com::sun::star::uno; void MapReturn(long r0, typelib_TypeClass eTypeClass, sal_uInt64* pRegisterReturn) { register float fret asm("$f0"); register double dret asm("$f0"); #ifdef CMC_DEBUG fprintf(stderr,"Mapping Return with %lx %ld %f\n", r0, r0, dret); #endif switch (eTypeClass) { case typelib_TypeClass_HYPER: case typelib_TypeClass_UNSIGNED_HYPER: *pRegisterReturn = r0; break; case typelib_TypeClass_LONG: case typelib_TypeClass_UNSIGNED_LONG: case typelib_TypeClass_ENUM: *(unsigned int*)pRegisterReturn = (unsigned int)r0; break; case typelib_TypeClass_CHAR: case typelib_TypeClass_SHORT: case typelib_TypeClass_UNSIGNED_SHORT: *(unsigned short*)pRegisterReturn = (unsigned short)r0; break; case typelib_TypeClass_BOOLEAN: case typelib_TypeClass_BYTE: *(unsigned char*)pRegisterReturn = (unsigned char)r0; break; case typelib_TypeClass_FLOAT: *reinterpret_cast( pRegisterReturn ) = fret; break; case typelib_TypeClass_DOUBLE: *reinterpret_cast( pRegisterReturn ) = dret; break; default: break; } #ifdef CMC_DEBUG fprintf(stderr, "end of MapReturn with %x\n", pRegisterReturn ? *pRegisterReturn : 0); #endif } #define INSERT_FLOAT( pSV, nr, pFPR, pDS ) \ { \ if ( nr < axp::MAX_WORDS_IN_REGS ) \ { \ pFPR[nr++] = *reinterpret_cast( pSV ); \ } \ else \ *pDS++ = *reinterpret_cast( pSV ); \ } #define INSERT_DOUBLE( pSV, nr, pFPR, pDS ) \ if ( nr < axp::MAX_WORDS_IN_REGS ) \ pFPR[nr++] = *reinterpret_cast( pSV ); \ else \ *pDS++ = *reinterpret_cast( pSV ); // verbatim! #define INSERT_INT64( pSV, nr, pGPR, pDS ) \ if ( nr < axp::MAX_WORDS_IN_REGS ) \ pGPR[nr++] = *reinterpret_cast( pSV ); \ else \ *pDS++ = *reinterpret_cast( pSV ); #define INSERT_INT32( pSV, nr, pGPR, pDS ) \ if ( nr < axp::MAX_WORDS_IN_REGS ) \ pGPR[nr++] = *reinterpret_cast( pSV ); \ else \ *pDS++ = *reinterpret_cast( pSV ); #define INSERT_INT16( pSV, nr, pGPR, pDS ) \ if ( nr < axp::MAX_WORDS_IN_REGS ) \ pGPR[nr++] = *reinterpret_cast( pSV ); \ else \ *pDS++ = *reinterpret_cast( pSV ); #define INSERT_INT8( pSV, nr, pGPR, pDS ) \ if ( nr < axp::MAX_WORDS_IN_REGS ) \ pGPR[nr++] = *reinterpret_cast( pSV ); \ else \ *pDS++ = *reinterpret_cast( pSV ); namespace { //================================================================================================== void callVirtualMethod( void * pThis, sal_Int32 nVtableIndex, void * pRegisterReturn, typelib_TypeDescription * pReturnTypeDescr, sal_uInt64 *pStack, sal_uInt32 nStack, sal_uInt64 *pGPR, sal_uInt32 nGPR, double *pFPR, sal_uInt32 nFPR) { // Should not happen, but... if ( nFPR > axp::MAX_SSE_REGS ) nFPR = axp::MAX_SSE_REGS; if ( nGPR > axp::MAX_GPR_REGS ) nGPR = axp::MAX_GPR_REGS; #ifdef CMC_DEBUG // Let's figure out what is really going on here { fprintf( stderr, "= nStack is %d\n", nStack ); fprintf( stderr, "= callVirtualMethod() =\nGPR's (%d): ", nGPR ); for ( unsigned int i = 0; i < nGPR; ++i ) fprintf( stderr, "0x%lx, ", pGPR[i] ); fprintf( stderr, "\nFPR's (%d): ", nFPR ); for ( unsigned int i = 0; i < nFPR; ++i ) fprintf( stderr, "0x%lx (%f), ", pFPR[i], pFPR[i] ); fprintf( stderr, "\nStack (%d): ", nStack ); for ( unsigned int i = 0; i < nStack; ++i ) fprintf( stderr, "0x%lx, ", pStack[i] ); fprintf( stderr, "\n" ); fprintf( stderr, "pRegisterReturn is %p\n", pRegisterReturn); } #endif // Load parameters to stack, if necessary // Stack, if used, must be 8-bytes aligned sal_uInt64 *stack = (sal_uInt64 *) __builtin_alloca( nStack * 8 ); memcpy( stack, pStack, nStack * 8 ); // To get pointer to method // a) get the address of the vtable sal_uInt64 pMethod = *((sal_uInt64 *)pThis); // b) get the address from the vtable entry at offset pMethod += 8 * nVtableIndex; pMethod = *((sal_uInt64 *)pMethod); typedef void (* FunctionCall )( sal_uInt64, sal_uInt64, sal_uInt64, sal_uInt64, sal_uInt64, sal_uInt64 ); FunctionCall pFunc = (FunctionCall)pMethod; switch (nFPR) //deliberate fall through { case 6: asm volatile("ldt $f16,%0" :: "m"(pFPR[5]) : "$f16"); case 5: asm volatile("ldt $f17,%0" :: "m"(pFPR[4]) : "$f17"); case 4: asm volatile("ldt $f18,%0" :: "m"(pFPR[3]) : "$f18"); case 3: asm volatile("ldt $f19,%0" :: "m"(pFPR[2]) : "$f19"); case 2: asm volatile("ldt $f20,%0" :: "m"(pFPR[1]) : "$f20"); case 1: asm volatile("ldt $f21,%0" :: "m"(pFPR[0]) : "$f21"); default: break; } (*pFunc)(pGPR[0], pGPR[1], pGPR[2], pGPR[3], pGPR[4], pGPR[5]); register sal_uInt64 r0 __asm__("$0"); MapReturn(r0, pReturnTypeDescr->eTypeClass, (sal_uInt64*)pRegisterReturn); } //============================================================================ static void cpp_call( bridges::cpp_uno::shared::UnoInterfaceProxy * pThis, bridges::cpp_uno::shared::VtableSlot aVtableSlot, typelib_TypeDescriptionReference * pReturnTypeRef, sal_Int32 nParams, typelib_MethodParameter * pParams, void * pUnoReturn, void * pUnoArgs[], uno_Any ** ppUnoExc ) { // max space for: [complex ret ptr], values|ptr ... sal_uInt64 * pStack = (sal_uInt64 *)alloca( (nParams+3) * sizeof(sal_Int64) ); sal_uInt64 * pStackStart = pStack; sal_uInt64 pGPR[axp::MAX_GPR_REGS]; double pFPR[axp::MAX_SSE_REGS]; sal_uInt32 nRegs = 0; // return typelib_TypeDescription * pReturnTypeDescr = 0; TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef ); OSL_ENSURE( pReturnTypeDescr, "### expected return type description!" ); void * pCppReturn = 0; // if != 0 && != pUnoReturn, needs reconversion if (pReturnTypeDescr) { if (bridges::cpp_uno::shared::isSimpleType( pReturnTypeDescr )) { pCppReturn = pUnoReturn; // direct way for simple types } else { // complex return via ptr pCppReturn = (bridges::cpp_uno::shared::relatesToInterfaceType( pReturnTypeDescr ) ? alloca( pReturnTypeDescr->nSize ) : pUnoReturn); // direct way INSERT_INT64( &pCppReturn, nRegs, pGPR, pStack ); } } // push "this" pointer void * pAdjustedThisPtr = reinterpret_cast< void ** >( pThis->getCppI() ) + aVtableSlot.offset; INSERT_INT64( &pAdjustedThisPtr, nRegs, pGPR, pStack ); // stack space OSL_ENSURE( sizeof(void *) == sizeof(sal_Int64), "### unexpected size!" ); // args void ** pCppArgs = (void **)alloca( 3 * sizeof(void *) * nParams ); // indizes of values this have to be converted (interface conversion cpp<=>uno) sal_Int32 * pTempIndizes = (sal_Int32 *)(pCppArgs + nParams); // type descriptions for reconversions typelib_TypeDescription ** ppTempParamTypeDescr = (typelib_TypeDescription **)(pCppArgs + (2 * nParams)); sal_Int32 nTempIndizes = 0; for ( sal_Int32 nPos = 0; nPos < nParams; ++nPos ) { const typelib_MethodParameter & rParam = pParams[nPos]; typelib_TypeDescription * pParamTypeDescr = 0; TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef ); if (!rParam.bOut && bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr )) { uno_copyAndConvertData( pCppArgs[nPos] = alloca( 8 ), pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp() ); switch (pParamTypeDescr->eTypeClass) { case typelib_TypeClass_HYPER: case typelib_TypeClass_UNSIGNED_HYPER: INSERT_INT64( pCppArgs[nPos], nRegs, pGPR, pStack ); break; case typelib_TypeClass_LONG: case typelib_TypeClass_UNSIGNED_LONG: case typelib_TypeClass_ENUM: INSERT_INT32( pCppArgs[nPos], nRegs, pGPR, pStack ); break; case typelib_TypeClass_SHORT: case typelib_TypeClass_CHAR: case typelib_TypeClass_UNSIGNED_SHORT: INSERT_INT16( pCppArgs[nPos], nRegs, pGPR, pStack ); break; case typelib_TypeClass_BOOLEAN: case typelib_TypeClass_BYTE: INSERT_INT8( pCppArgs[nPos], nRegs, pGPR, pStack ); break; case typelib_TypeClass_FLOAT: INSERT_FLOAT( pCppArgs[nPos], nRegs, pFPR, pStack ); break; case typelib_TypeClass_DOUBLE: INSERT_DOUBLE( pCppArgs[nPos], nRegs, pFPR, pStack ); break; default: break; } // no longer needed TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } else // ptr to complex value | ref { if (! rParam.bIn) // is pure out { // cpp out is constructed mem, uno out is not! uno_constructData( pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ), pParamTypeDescr ); pTempIndizes[nTempIndizes] = nPos; // default constructed for cpp call // will be released at reconversion ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr; } // is in/inout else if (bridges::cpp_uno::shared::relatesToInterfaceType( pParamTypeDescr )) { uno_copyAndConvertData( pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ), pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp() ); pTempIndizes[nTempIndizes] = nPos; // has to be reconverted // will be released at reconversion ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr; } else // direct way { pCppArgs[nPos] = pUnoArgs[nPos]; // no longer needed TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } INSERT_INT64( &(pCppArgs[nPos]), nRegs, pGPR, pStack ); } } try { callVirtualMethod( pAdjustedThisPtr, aVtableSlot.index, pCppReturn, pReturnTypeDescr, pStackStart, (pStack - pStackStart), pGPR, nRegs, pFPR, nRegs ); // NO exception occured... *ppUnoExc = 0; // reconvert temporary params for ( ; nTempIndizes--; ) { sal_Int32 nIndex = pTempIndizes[nTempIndizes]; typelib_TypeDescription * pParamTypeDescr = ppTempParamTypeDescr[nTempIndizes]; if (pParams[nIndex].bIn) { if (pParams[nIndex].bOut) // inout { uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, 0 ); // destroy uno value uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr, pThis->getBridge()->getCpp2Uno() ); } } else // pure out { uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr, pThis->getBridge()->getCpp2Uno() ); } // destroy temp cpp param => cpp: every param was constructed uno_destructData( pCppArgs[nIndex], pParamTypeDescr, cpp_release ); TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } // return value if (pCppReturn && pUnoReturn != pCppReturn) { uno_copyAndConvertData( pUnoReturn, pCppReturn, pReturnTypeDescr, pThis->getBridge()->getCpp2Uno() ); uno_destructData( pCppReturn, pReturnTypeDescr, cpp_release ); } } catch (...) { // fill uno exception fillUnoException( CPPU_CURRENT_NAMESPACE::__cxa_get_globals()->caughtExceptions, *ppUnoExc, pThis->getBridge()->getCpp2Uno() ); // temporary params for ( ; nTempIndizes--; ) { sal_Int32 nIndex = pTempIndizes[nTempIndizes]; // destroy temp cpp param => cpp: every param was constructed uno_destructData( pCppArgs[nIndex], ppTempParamTypeDescr[nTempIndizes], cpp_release ); TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndizes] ); } // return type if (pReturnTypeDescr) TYPELIB_DANGER_RELEASE( pReturnTypeDescr ); } } } namespace bridges { namespace cpp_uno { namespace shared { void unoInterfaceProxyDispatch( uno_Interface * pUnoI, const typelib_TypeDescription * pMemberDescr, void * pReturn, void * pArgs[], uno_Any ** ppException ) { #ifdef CMC_DEBUG fprintf(stderr, "unoInterfaceProxyDispatch\n"); #endif // is my surrogate bridges::cpp_uno::shared::UnoInterfaceProxy * pThis = static_cast< bridges::cpp_uno::shared::UnoInterfaceProxy *> (pUnoI); switch (pMemberDescr->eTypeClass) { case typelib_TypeClass_INTERFACE_ATTRIBUTE: { VtableSlot aVtableSlot( getVtableSlot( reinterpret_cast< typelib_InterfaceAttributeTypeDescription const * >( pMemberDescr))); if (pReturn) { // dependent dispatch cpp_call( pThis, aVtableSlot, ((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef, 0, 0, // no params pReturn, pArgs, ppException ); } else { // is SET typelib_MethodParameter aParam; aParam.pTypeRef = ((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef; aParam.bIn = sal_True; aParam.bOut = sal_False; typelib_TypeDescriptionReference * pReturnTypeRef = 0; OUString aVoidName( RTL_CONSTASCII_USTRINGPARAM("void") ); typelib_typedescriptionreference_new( &pReturnTypeRef, typelib_TypeClass_VOID, aVoidName.pData ); // dependent dispatch aVtableSlot.index += 1; //get then set method cpp_call( pThis, aVtableSlot, pReturnTypeRef, 1, &aParam, pReturn, pArgs, ppException ); typelib_typedescriptionreference_release( pReturnTypeRef ); } break; } case typelib_TypeClass_INTERFACE_METHOD: { VtableSlot aVtableSlot( getVtableSlot( reinterpret_cast< typelib_InterfaceMethodTypeDescription const * >( pMemberDescr))); switch (aVtableSlot.index) { // standard calls case 1: // acquire uno interface (*pUnoI->acquire)( pUnoI ); *ppException = 0; break; case 2: // release uno interface (*pUnoI->release)( pUnoI ); *ppException = 0; break; case 0: // queryInterface() opt { typelib_TypeDescription * pTD = 0; TYPELIB_DANGER_GET( &pTD, reinterpret_cast< Type * >( pArgs[0] )->getTypeLibType() ); if (pTD) { uno_Interface * pInterface = 0; (*pThis->pBridge->getUnoEnv()->getRegisteredInterface)( pThis->pBridge->getUnoEnv(), (void **)&pInterface, pThis->oid.pData, (typelib_InterfaceTypeDescription *)pTD ); if (pInterface) { ::uno_any_construct( reinterpret_cast< uno_Any * >( pReturn ), &pInterface, pTD, 0 ); (*pInterface->release)( pInterface ); TYPELIB_DANGER_RELEASE( pTD ); *ppException = 0; break; } TYPELIB_DANGER_RELEASE( pTD ); } } // else perform queryInterface() default: // dependent dispatch cpp_call( pThis, aVtableSlot, ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pReturnTypeRef, ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->nParams, ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pParams, pReturn, pArgs, ppException ); } break; } default: { ::com::sun::star::uno::RuntimeException aExc( OUString( RTL_CONSTASCII_USTRINGPARAM("illegal member type description!") ), ::com::sun::star::uno::Reference< ::com::sun::star::uno::XInterface >() ); Type const & rExcType = ::getCppuType( &aExc ); // binary identical null reference ::uno_type_any_construct( *ppException, &aExc, rExcType.getTypeLibType(), 0 ); } } } } } } /* vim:set shiftwidth=4 softtabstop=4 expandtab: */