/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include "bridge.hxx" #include "types.hxx" #include "unointerfaceproxy.hxx" #include "vtables.hxx" #include "share.hxx" #include #include using namespace ::com::sun::star::uno; namespace { void MapReturn(sal_uInt32 r3, sal_uInt32 r4, double dret, typelib_TypeClass eReturnType, void *pRegisterReturn) { switch( eReturnType ) { case typelib_TypeClass_HYPER: case typelib_TypeClass_UNSIGNED_HYPER: ((long*)pRegisterReturn)[1] = r4; // fall through on purpose case typelib_TypeClass_LONG: case typelib_TypeClass_UNSIGNED_LONG: case typelib_TypeClass_ENUM: ((long*)pRegisterReturn)[0] = r3; break; case typelib_TypeClass_CHAR: case typelib_TypeClass_SHORT: case typelib_TypeClass_UNSIGNED_SHORT: *(unsigned short*)pRegisterReturn = (unsigned short)r3; break; case typelib_TypeClass_BOOLEAN: case typelib_TypeClass_BYTE: *(unsigned char*)pRegisterReturn = (unsigned char)r3; break; case typelib_TypeClass_FLOAT: *(float*)pRegisterReturn = (float)dret; break; case typelib_TypeClass_DOUBLE: *(double*)pRegisterReturn = dret; break; default: break; } } #define DISPLACEMENT -2 static void callVirtualMethod( void * pThis, sal_uInt32 nVtableIndex, void * pRegisterReturn, typelib_TypeClass eReturnType, sal_uInt32 * pStack, sal_uInt32 nStack, double *pFPR, sal_uInt32 nFPR) { sal_uInt32 nStackWords = nStack; if (nStackWords < ppc::MAX_GPR_REGS) nStackWords = 0; else nStackWords-=ppc::MAX_GPR_REGS; if (nStackWords) nStackWords = ( nStackWords + 1) & ~1; sal_uInt32 *stack = (sal_uInt32*)__builtin_alloca( nStackWords * sizeof(sal_uInt32) ); memcpy(stack+DISPLACEMENT, pStack+ppc::MAX_GPR_REGS, nStack * sizeof(sal_uInt32)); // Get pointer to method sal_uInt32 pMethod = *((sal_uInt32 *)pThis); pMethod += 4 * nVtableIndex; pMethod = *((sal_uInt32 *)pMethod); typedef void (* FunctionCall )( sal_uInt32, sal_uInt32, sal_uInt32, sal_uInt32, sal_uInt32, sal_uInt32, sal_uInt32, sal_uInt32 ); FunctionCall pFunc = (FunctionCall)pMethod; register double d0 asm("fr1"); d0 = pFPR[0]; register double d1 asm("fr2"); d1 = pFPR[1]; register double d2 asm("fr3"); d2 = pFPR[2]; register double d3 asm("fr4"); d3 = pFPR[3]; register double d4 asm("fr5"); d4 = pFPR[4]; register double d5 asm("fr6"); d5 = pFPR[5]; register double d6 asm("fr7"); d6 = pFPR[6]; register double d7 asm("fr8"); d7 = pFPR[7]; register double d8 asm("fr9"); d8 = pFPR[8]; register double d9 asm("fr10"); d9 = pFPR[9]; register double d10 asm("fr11"); d10 = pFPR[10]; register double d11 asm("fr12"); d11 = pFPR[11]; register double d12 asm("fr13"); d12 = pFPR[12]; (*pFunc)(pStack[0], pStack[1], pStack[2], pStack[3], pStack[4], pStack[5], pStack[6], pStack[7]); register sal_uInt32 r3 asm("r3"); register sal_uInt32 r4 asm("r4"); MapReturn(r3, r4, d0, eReturnType, pRegisterReturn); } #define INSERT_INT32(pSV, pDS) \ { \ *pDS++ = *reinterpret_cast(pSV); \ } #define INSERT_INT16(pSV, pDS) \ { \ *pDS++ = *reinterpret_cast(pSV); \ } #define INSERT_INT8(pSV, pDS) \ { \ *pDS++ = *reinterpret_cast(pSV); \ } #define INSERT_FLOAT(pSV, nr, pFPR, pDS) \ { \ if (nr < ppc::MAX_SSE_REGS) \ { \ sal_uInt32 *pDouble = (sal_uInt32 *)&(pFPR[nr++]); \ pDouble[0] = *reinterpret_cast(pSV); \ } \ *pDS++ = *reinterpret_cast(pSV); \ } #define INSERT_DOUBLE(pSV, nr, pFPR, pDS) \ { \ if (nr < ppc::MAX_SSE_REGS) \ { \ pFPR[nr++] = *reinterpret_cast(pSV); \ } \ *pDS++ = reinterpret_cast(pSV)[1]; \ *pDS++ = reinterpret_cast(pSV)[0]; \ } #define INSERT_INT64(pSV, pDS) \ { \ INSERT_INT32(pSV, pDS) \ INSERT_INT32(((sal_uInt32*)pSV)+1, pDS) \ } static void cpp_call( bridges::cpp_uno::shared::UnoInterfaceProxy * pThis, bridges::cpp_uno::shared::VtableSlot aVtableSlot, typelib_TypeDescriptionReference * pReturnTypeRef, sal_Int32 nParams, typelib_MethodParameter * pParams, void * pUnoReturn, void * pUnoArgs[], uno_Any ** ppUnoExc ) { // max space for: [complex ret ptr], values|ptr ... sal_uInt32 * pStack = (sal_uInt32*)__builtin_alloca( sizeof(sal_Int32) + ((nParams+2) * sizeof(sal_Int64)) ); sal_uInt32 * pStackStart = pStack; double pFPR[ppc::MAX_SSE_REGS]; sal_uInt32 nFPR = 0; // return typelib_TypeDescription * pReturnTypeDescr = 0; TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef ); assert(pReturnTypeDescr && "### expected return type description!"); void * pCppReturn = 0; // if != 0 && != pUnoReturn, needs reconversion if (pReturnTypeDescr) { if (bridges::cpp_uno::shared::isSimpleType( pReturnTypeDescr )) { pCppReturn = pUnoReturn; // direct way for simple types } else { // complex return via ptr pCppReturn = (bridges::cpp_uno::shared::relatesToInterfaceType( pReturnTypeDescr ) ? __builtin_alloca( pReturnTypeDescr->nSize ) : pUnoReturn); // direct way INSERT_INT32(&pCppReturn, pStack); } } // push this void * pAdjustedThisPtr = reinterpret_cast< void ** >(pThis->getCppI()) + aVtableSlot.offset; INSERT_INT32(&pAdjustedThisPtr, pStack); // stack space static_assert( sizeof(void *) == sizeof(sal_Int32), "### unexpected size!" ); // args void ** pCppArgs = (void **)__builtin_alloca( 3 * sizeof(void *) * nParams ); // indices of values this have to be converted (interface conversion cpp<=>uno) sal_Int32 * pTempIndices = (sal_Int32 *)(pCppArgs + nParams); // type descriptions for reconversions typelib_TypeDescription ** ppTempParamTypeDescr = (typelib_TypeDescription **)(pCppArgs + (2 * nParams)); sal_Int32 nTempIndices = 0; for ( sal_Int32 nPos = 0; nPos < nParams; ++nPos ) { const typelib_MethodParameter & rParam = pParams[nPos]; typelib_TypeDescription * pParamTypeDescr = 0; TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef ); if (!rParam.bOut && bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr )) { uno_copyAndConvertData( pCppArgs[nPos] = pStack, pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp() ); switch (pParamTypeDescr->eTypeClass) { case typelib_TypeClass_LONG: case typelib_TypeClass_UNSIGNED_LONG: case typelib_TypeClass_ENUM: INSERT_INT32(pCppArgs[nPos], pStack); break; case typelib_TypeClass_SHORT: case typelib_TypeClass_CHAR: case typelib_TypeClass_UNSIGNED_SHORT: INSERT_INT16(pCppArgs[nPos], pStack); break; case typelib_TypeClass_BOOLEAN: case typelib_TypeClass_BYTE: INSERT_INT8(pCppArgs[nPos], pStack); break; case typelib_TypeClass_FLOAT: INSERT_FLOAT(pCppArgs[nPos], nFPR, pFPR, pStack); break; case typelib_TypeClass_DOUBLE: INSERT_DOUBLE(pCppArgs[nPos], nFPR, pFPR, pStack); break; case typelib_TypeClass_HYPER: case typelib_TypeClass_UNSIGNED_HYPER: INSERT_INT64(pCppArgs[nPos], pStack); break; default: break; } // no longer needed TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } else // ptr to complex value | ref { if (! rParam.bIn) // is pure out { // cpp out is constructed mem, uno out is not! uno_constructData( pCppArgs[nPos] = __builtin_alloca( pParamTypeDescr->nSize ), pParamTypeDescr ); pTempIndices[nTempIndices] = nPos; // default constructed for cpp call // will be released at reconversion ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr; } // is in/inout else if (bridges::cpp_uno::shared::relatesToInterfaceType( pParamTypeDescr )) { uno_copyAndConvertData( pCppArgs[nPos] = __builtin_alloca( pParamTypeDescr->nSize ), pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp() ); pTempIndices[nTempIndices] = nPos; // has to be reconverted // will be released at reconversion ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr; } else // direct way { pCppArgs[nPos] = pUnoArgs[nPos]; // no longer needed TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } INSERT_INT32(&(pCppArgs[nPos]), pStack); } } try { assert( !( (pCppStack - pCppStackStart ) & 3) && "UNALIGNED STACK !!! (Please DO panic)" ); callVirtualMethod( pAdjustedThisPtr, aVtableSlot.index, pCppReturn, pReturnTypeDescr->eTypeClass, pStackStart, (pStack - pStackStart), pFPR, nFPR ); // NO exception occurred... *ppUnoExc = 0; // reconvert temporary params for ( ; nTempIndices--; ) { sal_Int32 nIndex = pTempIndices[nTempIndices]; typelib_TypeDescription * pParamTypeDescr = ppTempParamTypeDescr[nTempIndices]; if (pParams[nIndex].bIn) { if (pParams[nIndex].bOut) // inout { uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, 0 ); // destroy uno value uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr, pThis->getBridge()->getCpp2Uno() ); } } else // pure out { uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr, pThis->getBridge()->getCpp2Uno() ); } // destroy temp cpp param => cpp: every param was constructed uno_destructData( pCppArgs[nIndex], pParamTypeDescr, cpp_release ); TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } // return value if (pCppReturn && pUnoReturn != pCppReturn) { uno_copyAndConvertData( pUnoReturn, pCppReturn, pReturnTypeDescr, pThis->getBridge()->getCpp2Uno() ); uno_destructData( pCppReturn, pReturnTypeDescr, cpp_release ); } } catch (...) { // fill uno exception fillUnoException( CPPU_CURRENT_NAMESPACE::__cxa_get_globals()->caughtExceptions, *ppUnoExc, pThis->getBridge()->getCpp2Uno() ); // temporary params for ( ; nTempIndices--; ) { sal_Int32 nIndex = pTempIndices[nTempIndices]; // destroy temp cpp param => cpp: every param was constructed uno_destructData( pCppArgs[nIndex], ppTempParamTypeDescr[nTempIndices], cpp_release ); TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndices] ); } // return type if (pReturnTypeDescr) TYPELIB_DANGER_RELEASE( pReturnTypeDescr ); } } } namespace bridges { namespace cpp_uno { namespace shared { void unoInterfaceProxyDispatch( uno_Interface * pUnoI, const typelib_TypeDescription * pMemberDescr, void * pReturn, void * pArgs[], uno_Any ** ppException ) { // is my surrogate bridges::cpp_uno::shared::UnoInterfaceProxy * pThis = static_cast< bridges::cpp_uno::shared::UnoInterfaceProxy * > (pUnoI); // typelib_InterfaceTypeDescription * pTypeDescr = pThis->pTypeDescr; switch (pMemberDescr->eTypeClass) { case typelib_TypeClass_INTERFACE_ATTRIBUTE: { VtableSlot aVtableSlot( getVtableSlot( reinterpret_cast< typelib_InterfaceAttributeTypeDescription const * >( pMemberDescr))); if (pReturn) { // dependent dispatch cpp_call( pThis, aVtableSlot, ((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef, 0, 0, // no params pReturn, pArgs, ppException ); } else { // is SET typelib_MethodParameter aParam; aParam.pTypeRef = ((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef; aParam.bIn = sal_True; aParam.bOut = sal_False; typelib_TypeDescriptionReference * pReturnTypeRef = 0; OUString aVoidName("void"); typelib_typedescriptionreference_new( &pReturnTypeRef, typelib_TypeClass_VOID, aVoidName.pData ); // dependent dispatch aVtableSlot.index += 1; //get then set method cpp_call( pThis, aVtableSlot, pReturnTypeRef, 1, &aParam, pReturn, pArgs, ppException ); typelib_typedescriptionreference_release( pReturnTypeRef ); } break; } case typelib_TypeClass_INTERFACE_METHOD: { VtableSlot aVtableSlot( getVtableSlot( reinterpret_cast< typelib_InterfaceMethodTypeDescription const * >( pMemberDescr))); switch (aVtableSlot.index) { // standard calls case 1: // acquire uno interface (*pUnoI->acquire)( pUnoI ); *ppException = 0; break; case 2: // release uno interface (*pUnoI->release)( pUnoI ); *ppException = 0; break; case 0: // queryInterface() opt { typelib_TypeDescription * pTD = 0; TYPELIB_DANGER_GET( &pTD, reinterpret_cast< Type * >( pArgs[0] )->getTypeLibType() ); if (pTD) { uno_Interface * pInterface = 0; (*pThis->pBridge->getUnoEnv()->getRegisteredInterface)( pThis->pBridge->getUnoEnv(), (void **)&pInterface, pThis->oid.pData, (typelib_InterfaceTypeDescription *)pTD ); if (pInterface) { ::uno_any_construct( reinterpret_cast< uno_Any * >( pReturn ), &pInterface, pTD, 0 ); (*pInterface->release)( pInterface ); TYPELIB_DANGER_RELEASE( pTD ); *ppException = 0; break; } TYPELIB_DANGER_RELEASE( pTD ); } } // else perform queryInterface() default: // dependent dispatch cpp_call( pThis, aVtableSlot, ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pReturnTypeRef, ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->nParams, ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pParams, pReturn, pArgs, ppException ); } break; } default: { ::com::sun::star::uno::RuntimeException aExc( OUString("illegal member type description!"), ::com::sun::star::uno::Reference< ::com::sun::star::uno::XInterface >() ); Type const & rExcType = cppu::UnoType::get(); // binary identical null reference ::uno_type_any_construct( *ppException, &aExc, rExcType.getTypeLibType(), 0 ); } } } } } } /* vim:set shiftwidth=4 softtabstop=4 expandtab: */