/************************************************************************* * * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * Copyright 2008 by Sun Microsystems, Inc. * * OpenOffice.org - a multi-platform office productivity suite * * $RCSfile: linerenderer.hxx,v $ * $Revision: 1.8 $ * * This file is part of OpenOffice.org. * * OpenOffice.org is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License version 3 * only, as published by the Free Software Foundation. * * OpenOffice.org is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License version 3 for more details * (a copy is included in the LICENSE file that accompanied this code). * * You should have received a copy of the GNU Lesser General Public License * version 3 along with OpenOffice.org. If not, see * * for a copy of the LGPLv3 License. * ************************************************************************/ #ifndef INCLUDED_BASEBMP_LINERENDERER_HXX #define INCLUDED_BASEBMP_LINERENDERER_HXX #include #include #include /* Scan-converting lines */ namespace basebmp { /** Render line with Bresenham This function renders the line given by rPt1 and rPt2 using the Bresenham algorithm with the specified color value. Make sure rPt1 and rPt1 are valid coordinates in the image given by begin and end, since no clipping takes place. @param aPt1 Start point of the line @param aPt2 End point of the line @param color Color value to render the line with @param begin left-top image iterator @param end right-bottom image iterator @param acc Image accessor @param bRoundTowardsPt2 Rounding mode to use. Giving false here results in line pixel tend towards pt1, i.e. when a pixel exactly hits the middle between two pixel, the pixel closer to pt1 will be chosen. Giving true here makes renderClippedLine() choose pt2 in those cases. */ template< class Iterator, class Accessor > void renderLine( const basegfx::B2IPoint& rPt1, const basegfx::B2IPoint& rPt2, typename Accessor::value_type color, Iterator begin, Accessor acc, bool bRoundTowardsPt2=false ) { // code inspired by Paul Heckbert's Digital Line Drawing // (Graphics Gems, Academic Press 1990) const sal_Int32 x1 = rPt1.getX(); const sal_Int32 x2 = rPt2.getX(); const sal_Int32 y1 = rPt1.getY(); const sal_Int32 y2 = rPt2.getY(); // TODO(E1): This might overflow sal_Int32 adx = x2 - x1; int sx = 1; if( adx < 0 ) { adx *= -1; sx = -1; } // TODO(E1): This might overflow sal_Int32 ady = y2 - y1; int sy = 1; if( ady < 0 ) { ady *= -1; sy = -1; } // TODO(P3): handle horizontal and vertical lines specially sal_Int32 xs = x1; sal_Int32 ys = y1; if( adx >= ady ) { // semi-horizontal line sal_Int32 rem = 2*ady - adx - !bRoundTowardsPt2; adx *= 2; ady *= 2; Iterator currIter( begin + vigra::Diff2D(0,ys) ); typename vigra::IteratorTraits::row_iterator rowIter( currIter.rowIterator() + xs ); while(true) { acc.set(color, rowIter); if( xs == x2 ) return; if( rem >= 0 ) { ys += sy; xs += sx; currIter.y += sy; rowIter = currIter.rowIterator() + xs; rem -= adx; } else { xs += sx; rowIter += sx; } rem += ady; } } else { // semi-vertical line sal_Int32 rem = 2*adx - ady - !bRoundTowardsPt2; adx *= 2; ady *= 2; Iterator currIter( begin + vigra::Diff2D(xs,0) ); typename vigra::IteratorTraits::column_iterator colIter( currIter.columnIterator() + ys ); while(true) { acc.set(color, colIter); if( ys == y2 ) return; if( rem >= 0 ) { xs += sx; ys += sy; currIter.x += sx; colIter = currIter.columnIterator() + ys; rem -= ady; } else { ys += sy; colIter += sy; } rem += adx; } } } } // namespace basebmp #endif /* INCLUDED_BASEBMP_LINERENDERER_HXX */