//---------------------------------------------------------------------------- // Anti-Grain Geometry - Version 2.3 // Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com) // // Permission to copy, use, modify, sell and distribute this software // is granted provided this copyright notice appears in all copies. // This software is provided "as is" without express or implied // warranty, and with no claim as to its suitability for any purpose. // //---------------------------------------------------------------------------- // Contact: mcseem@antigrain.com // mcseemagg@yahoo.com // http://www.antigrain.com //---------------------------------------------------------------------------- #ifndef AGG_SPAN_IMAGE_RESAMPLE_RGB_INCLUDED #define AGG_SPAN_IMAGE_RESAMPLE_RGB_INCLUDED #include "agg_color_rgba.h" #include "agg_span_image_resample.h" namespace agg { //=========================================span_image_resample_rgb_affine template > class span_image_resample_rgb_affine : public span_image_resample_affine { public: typedef ColorT color_type; typedef Order order_type; typedef Allocator alloc_type; typedef span_image_resample_affine base_type; typedef typename base_type::interpolator_type interpolator_type; typedef typename color_type::value_type value_type; typedef typename color_type::long_type long_type; enum { base_shift = color_type::base_shift, base_mask = color_type::base_mask, downscale_shift = image_filter_shift }; //-------------------------------------------------------------------- span_image_resample_rgb_affine(alloc_type& alloc) : base_type(alloc) {} //-------------------------------------------------------------------- span_image_resample_rgb_affine(alloc_type& alloc, const rendering_buffer& src, const color_type& back_color, interpolator_type& inter, const image_filter_lut& filter) : base_type(alloc, src, back_color, inter, filter) {} //-------------------------------------------------------------------- color_type* generate(int x, int y, unsigned len) { base_type::interpolator().begin(x + base_type::filter_dx_dbl(), y + base_type::filter_dy_dbl(), len); long_type fg[4]; value_type back_r = base_type::background_color().r; value_type back_g = base_type::background_color().g; value_type back_b = base_type::background_color().b; value_type back_a = base_type::background_color().a; color_type* span = base_type::allocator().span(); int diameter = base_type::filter().diameter(); int filter_size = diameter << image_subpixel_shift; int radius_x = (diameter * base_type::m_rx) >> 1; int radius_y = (diameter * base_type::m_ry) >> 1; int maxx = base_type::source_image().width() - 1; int maxy = base_type::source_image().height() - 1; const int16* weight_array = base_type::filter().weight_array(); do { base_type::interpolator().coordinates(&x, &y); x += base_type::filter_dx_int() - radius_x; y += base_type::filter_dy_int() - radius_y; fg[0] = fg[1] = fg[2] = fg[3] = image_filter_size / 2; int y_lr = y >> image_subpixel_shift; int y_hr = ((image_subpixel_mask - (y & image_subpixel_mask)) * base_type::m_ry_inv) >> image_subpixel_shift; int total_weight = 0; int x_lr_ini = x >> image_subpixel_shift; int x_hr_ini = ((image_subpixel_mask - (x & image_subpixel_mask)) * base_type::m_rx_inv) >> image_subpixel_shift; do { int weight_y = weight_array[y_hr]; int x_lr = x_lr_ini; int x_hr = x_hr_ini; if(y_lr >= 0 && y_lr <= maxy) { const value_type* fg_ptr = (const value_type*) base_type::source_image().row(y_lr) + x_lr * 3; do { int weight = (weight_y * weight_array[x_hr] + image_filter_size / 2) >> downscale_shift; if(x_lr >= 0 && x_lr <= maxx) { fg[0] += fg_ptr[0] * weight; fg[1] += fg_ptr[1] * weight; fg[2] += fg_ptr[2] * weight; fg[3] += base_mask * weight; } else { fg[order_type::R] += back_r * weight; fg[order_type::G] += back_g * weight; fg[order_type::B] += back_b * weight; fg[3] += back_a * weight; } total_weight += weight; fg_ptr += 3; x_hr += base_type::m_rx_inv; ++x_lr; } while(x_hr < filter_size); } else { do { int weight = (weight_y * weight_array[x_hr] + image_filter_size / 2) >> downscale_shift; total_weight += weight; fg[order_type::R] += back_r * weight; fg[order_type::G] += back_g * weight; fg[order_type::B] += back_b * weight; fg[3] += back_a * weight; x_hr += base_type::m_rx_inv; } while(x_hr < filter_size); } y_hr += base_type::m_ry_inv; ++y_lr; } while(y_hr < filter_size); fg[0] /= total_weight; fg[1] /= total_weight; fg[2] /= total_weight; fg[3] /= total_weight; if(fg[0] < 0) fg[0] = 0; if(fg[1] < 0) fg[1] = 0; if(fg[2] < 0) fg[2] = 0; if(fg[3] < 0) fg[3] = 0; if(fg[3] > base_mask) fg[3] = base_mask; if(fg[0] > fg[3]) fg[0] = fg[3]; if(fg[1] > fg[3]) fg[1] = fg[3]; if(fg[2] > fg[3]) fg[2] = fg[3]; span->r = (value_type)fg[order_type::R]; span->g = (value_type)fg[order_type::G]; span->b = (value_type)fg[order_type::B]; span->a = (value_type)fg[3]; ++span; ++base_type::interpolator(); } while(--len); return base_type::allocator().span(); } }; //===============================================span_image_resample_rgb template > class span_image_resample_rgb : public span_image_resample { public: typedef ColorT color_type; typedef Order order_type; typedef Interpolator interpolator_type; typedef Allocator alloc_type; typedef span_image_resample base_type; typedef typename color_type::value_type value_type; typedef typename color_type::long_type long_type; enum { base_shift = color_type::base_shift, base_mask = color_type::base_mask, downscale_shift = image_filter_shift }; //-------------------------------------------------------------------- span_image_resample_rgb(alloc_type& alloc) : base_type(alloc) {} //-------------------------------------------------------------------- span_image_resample_rgb(alloc_type& alloc, const rendering_buffer& src, const color_type& back_color, interpolator_type& inter, const image_filter_lut& filter) : base_type(alloc, src, back_color, inter, filter) {} //-------------------------------------------------------------------- color_type* generate(int x, int y, unsigned len) { color_type* span = base_type::allocator().span(); base_type::interpolator().begin(x + base_type::filter_dx_dbl(), y + base_type::filter_dy_dbl(), len); long_type fg[4]; value_type back_r = base_type::background_color().r; value_type back_g = base_type::background_color().g; value_type back_b = base_type::background_color().b; value_type back_a = base_type::background_color().a; int diameter = base_type::filter().diameter(); int filter_size = diameter << image_subpixel_shift; const int16* weight_array = base_type::filter().weight_array(); do { int rx; int ry; int rx_inv = image_subpixel_size; int ry_inv = image_subpixel_size; base_type::interpolator().coordinates(&x, &y); base_type::interpolator().local_scale(&rx, &ry); rx = (rx * base_type::m_blur_x) >> image_subpixel_shift; ry = (ry * base_type::m_blur_y) >> image_subpixel_shift; if(rx < image_subpixel_size) { rx = image_subpixel_size; } else { if(rx > image_subpixel_size * base_type::m_scale_limit) { rx = image_subpixel_size * base_type::m_scale_limit; } rx_inv = image_subpixel_size * image_subpixel_size / rx; } if(ry < image_subpixel_size) { ry = image_subpixel_size; } else { if(ry > image_subpixel_size * base_type::m_scale_limit) { ry = image_subpixel_size * base_type::m_scale_limit; } ry_inv = image_subpixel_size * image_subpixel_size / ry; } int radius_x = (diameter * rx) >> 1; int radius_y = (diameter * ry) >> 1; int maxx = base_type::source_image().width() - 1; int maxy = base_type::source_image().height() - 1; x += base_type::filter_dx_int() - radius_x; y += base_type::filter_dy_int() - radius_y; fg[0] = fg[1] = fg[2] = fg[3] = image_filter_size / 2; int y_lr = y >> image_subpixel_shift; int y_hr = ((image_subpixel_mask - (y & image_subpixel_mask)) * ry_inv) >> image_subpixel_shift; int total_weight = 0; int x_lr_ini = x >> image_subpixel_shift; int x_hr_ini = ((image_subpixel_mask - (x & image_subpixel_mask)) * rx_inv) >> image_subpixel_shift; do { int weight_y = weight_array[y_hr]; int x_lr = x_lr_ini; int x_hr = x_hr_ini; if(y_lr >= 0 && y_lr <= maxy) { const value_type* fg_ptr = (const value_type*) base_type::source_image().row(y_lr) + x_lr * 3; do { int weight = (weight_y * weight_array[x_hr] + image_filter_size / 2) >> downscale_shift; if(x_lr >= 0 && x_lr <= maxx) { fg[0] += fg_ptr[0] * weight; fg[1] += fg_ptr[1] * weight; fg[2] += fg_ptr[2] * weight; fg[3] += base_mask * weight; } else { fg[order_type::R] += back_r * weight; fg[order_type::G] += back_g * weight; fg[order_type::B] += back_b * weight; fg[3] += back_a * weight; } total_weight += weight; fg_ptr += 3; x_hr += rx_inv; ++x_lr; } while(x_hr < filter_size); } else { do { int weight = (weight_y * weight_array[x_hr] + image_filter_size / 2) >> downscale_shift; total_weight += weight; fg[order_type::R] += back_r * weight; fg[order_type::G] += back_g * weight; fg[order_type::B] += back_b * weight; fg[3] += back_a * weight; x_hr += rx_inv; } while(x_hr < filter_size); } y_hr += ry_inv; ++y_lr; } while(y_hr < filter_size); fg[0] /= total_weight; fg[1] /= total_weight; fg[2] /= total_weight; fg[3] /= total_weight; if(fg[0] < 0) fg[0] = 0; if(fg[1] < 0) fg[1] = 0; if(fg[2] < 0) fg[2] = 0; if(fg[3] < 0) fg[3] = 0; if(fg[3] > base_mask) fg[3] = base_mask; if(fg[0] > fg[3]) fg[0] = fg[3]; if(fg[1] > fg[3]) fg[1] = fg[3]; if(fg[2] > fg[3]) fg[2] = fg[3]; span->r = (value_type)fg[order_type::R]; span->g = (value_type)fg[order_type::G]; span->b = (value_type)fg[order_type::B]; span->a = (value_type)fg[3]; ++span; ++base_type::interpolator(); } while(--len); return base_type::allocator().span(); } }; } #endif