summaryrefslogtreecommitdiff
path: root/vcl/unx/source/gdi/salgdi.cxx
diff options
context:
space:
mode:
Diffstat (limited to 'vcl/unx/source/gdi/salgdi.cxx')
-rw-r--r--vcl/unx/source/gdi/salgdi.cxx787
1 files changed, 84 insertions, 703 deletions
diff --git a/vcl/unx/source/gdi/salgdi.cxx b/vcl/unx/source/gdi/salgdi.cxx
index 7637d3b2bd02..15e391256344 100644
--- a/vcl/unx/source/gdi/salgdi.cxx
+++ b/vcl/unx/source/gdi/salgdi.cxx
@@ -50,8 +50,9 @@
#include "basegfx/polygon/b2dpolygonclipper.hxx"
#include "basegfx/polygon/b2dlinegeometry.hxx"
#include "basegfx/matrix/b2dhommatrix.hxx"
-#include <basegfx/matrix/b2dhommatrixtools.hxx>
+#include "basegfx/matrix/b2dhommatrixtools.hxx"
#include "basegfx/polygon/b2dpolypolygoncutter.hxx"
+#include "basegfx/polygon/b2dtrapezoid.hxx"
#include <vector>
#include <queue>
@@ -1087,115 +1088,6 @@ SystemGraphicsData X11SalGraphics::GetGraphicsData() const
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
-// B2DPolygon support methods
-
-namespace { // anonymous namespace to prevent export
-// the methods and structures here are used by the
-// B2DPolyPolygon->RenderTrapezoid conversion algorithm
-
-// compare two line segments
-// assumption: both segments point downward
-// assumption: they must have at least some y-overlap
-// assumption: rA.p1.y <= rB.p1.y
-bool IsLeftOf( const XLineFixed& rA, const XLineFixed& rB )
-{
- bool bAbove = (rA.p1.y <= rB.p1.y);
- const XLineFixed& rU = bAbove ? rA : rB;
- const XLineFixed& rL = bAbove ? rB : rA;
-
- const XFixed aXDiff = rU.p2.x - rU.p1.x;
- const XFixed aYDiff = rU.p2.y - rU.p1.y;
-
- // compare upper point of lower segment with line through upper segment
- if( (rU.p1.y != rL.p1.y) || (rU.p1.x != rL.p1.x) )
- {
- const sal_Int64 n1 = (sal_Int64)aXDiff * (rL.p1.y - rU.p1.y);
- const sal_Int64 n2 = (sal_Int64)aYDiff * (rL.p1.x - rU.p1.x);
- if( n1 != n2 )
- return ((n1 < n2) == bAbove);
- }
-
- // compare lower point of lower segment with line through upper segment
- if( (rU.p2.y != rL.p2.y) || (rU.p2.x != rL.p2.x) )
- {
- const sal_Int64 n3 = (sal_Int64)aXDiff * (rL.p2.y - rU.p1.y);
- const sal_Int64 n4 = (sal_Int64)aYDiff * (rL.p2.x - rU.p1.x);
- if( n3 != n4 )
- return ((n3 < n4) == bAbove);
- }
-
- // both segments overlap
- return false;
-}
-
-struct HalfTrapezoid
-{
- // assumptions:
- // maLine.p1.y <= mnY < maLine.p2.y
- XLineFixed maLine;
- XFixed mnY;
-
- XFixed getXMin() const { return std::min( maLine.p1.x, maLine.p2.x); }
- XFixed getXMax() const { return std::max( maLine.p1.x, maLine.p2.x); }
-};
-
-class HalfTrapCompare
-{
-public:
- bool operator()( const HalfTrapezoid& rA, const HalfTrapezoid& rB ) const
- {
- bool bIsTopLeft = false;
- if( rA.mnY != rB.mnY ) // sort top-first if possible
- bIsTopLeft = (rA.mnY < rB.mnY);
- else // else sort left-first
- bIsTopLeft = IsLeftOf( rA.maLine, rB.maLine );
- // adjust to priority_queue sorting convention
- return !bIsTopLeft;
- }
-};
-
-typedef std::vector< HalfTrapezoid > HTVector;
-typedef std::priority_queue< HalfTrapezoid, HTVector, HalfTrapCompare > HTQueueBase;
-// we need a priority queue with a reserve() to prevent countless reallocations
-class HTQueue
-: public HTQueueBase
-{
-public:
- void reserve( size_t n ) { c.reserve( n ); }
- void swapvec( HTVector& v ) { c.swap( v ); }
-};
-
-typedef std::vector<XTrapezoid> TrapezoidVector;
-
-class TrapezoidXCompare
-{
- const TrapezoidVector& mrVector;
-public:
- TrapezoidXCompare( const TrapezoidVector& rVector )
- : mrVector( rVector ) {}
- bool operator()( int nA, int nB ) const
- { return IsLeftOf( mrVector[nA].left, mrVector[nB].left ); }
-};
-
-typedef std::multiset< int, TrapezoidXCompare > ActiveTrapSet;
-
-class TrapezoidYCompare
-{
- const TrapezoidVector& mrVector;
-public:
- TrapezoidYCompare( const TrapezoidVector& rVector )
- : mrVector( rVector ) {}
- bool operator()( int nA, int nB ) const
- { return (mrVector[nA].bottom < mrVector[nB].bottom); }
-};
-
-typedef std::multiset< int, TrapezoidYCompare > VerticalTrapSet;
-
-#ifndef DISABLE_SOLVECROSSOVER_WORKAROUND
-void splitIntersectingSegments( HTVector&);
-#endif // DISABLE_SOLVECROSSOVER_WORKAROUND
-} // end of anonymous namespace
-
// draw a poly-polygon
bool X11SalGraphics::drawPolyPolygon( const ::basegfx::B2DPolyPolygon& rOrigPolyPoly, double fTransparency)
{
@@ -1219,329 +1111,66 @@ bool X11SalGraphics::drawPolyPolygon( const ::basegfx::B2DPolyPolygon& rOrigPoly
if( pRenderEnv )
return FALSE;
- // check xrender support for trapezoids
- XRenderPeer& rRenderPeer = XRenderPeer::GetInstance();
- if( !rRenderPeer.AreTrapezoidsSupported() )
- return FALSE;
- Picture aDstPic = GetXRenderPicture();
- // check xrender support for this drawable
- if( !aDstPic )
- return FALSE;
+ // snap to raster if requested
+ basegfx::B2DPolyPolygon aPolyPoly = rOrigPolyPoly;
+ const bool bSnapToRaster = !getAntiAliasB2DDraw();
+ if( bSnapToRaster )
+ aPolyPoly = basegfx::tools::snapPointsOfHorizontalOrVerticalEdges( aPolyPoly );
// don't bother with polygons outside of visible area
const basegfx::B2DRange aViewRange( 0, 0, GetGraphicsWidth(), GetGraphicsHeight() );
- const basegfx::B2DRange aPolyRange = basegfx::tools::getRange( rOrigPolyPoly );
- const bool bNeedViewClip = aPolyRange.isInside( aViewRange );
- if( !aPolyRange.overlaps( aViewRange ) )
+ aPolyPoly = basegfx::tools::clipPolyPolygonOnRange( aPolyPoly, aViewRange, true, false );
+ if( !aPolyPoly.count() )
return true;
- // convert the polypolygon to trapezoids
-
- // prepare the polypolygon for the algorithm below:
- // - clip it against the view range
- // - make sure it contains no self-intersections
- // while we are at it guess the number of involved polygon points
- int nHTQueueReserve = 0;
- basegfx::B2DPolyPolygon aGoodPolyPoly;
- for( int nOrigPolyIdx = 0; nOrigPolyIdx < nOrigPolyCount; ++nOrigPolyIdx )
- {
- const ::basegfx::B2DPolygon aOuterPolygon = rOrigPolyPoly.getB2DPolygon( nOrigPolyIdx );
-
- // render-trapezoids should be inside the view => clip polygon against view range
- basegfx::B2DPolyPolygon aClippedPolygon( aOuterPolygon );
- if( bNeedViewClip )
- {
- aClippedPolygon = basegfx::tools::clipPolygonOnRange( aOuterPolygon, aViewRange, true, false );
- DBG_ASSERT( aClippedPolygon.count(), "polygon confirmed to overlap with view should not get here" );
- }
- const int nClippedPolyCount = aClippedPolygon.count();
- if( !nClippedPolyCount )
- continue;
-
-#ifndef DISABLE_SOLVECROSSOVER_WORKAROUND
- for( int nClippedPolyIdx = 0; nClippedPolyIdx < nClippedPolyCount; ++nClippedPolyIdx )
- {
- const ::basegfx::B2DPolygon aSolvedPolygon = aClippedPolygon.getB2DPolygon( nClippedPolyIdx );
- const int nPointCount = aSolvedPolygon.count();
- aGoodPolyPoly.append( aSolvedPolygon );
- nHTQueueReserve += aSolvedPolygon.areControlPointsUsed() ? 8 * nPointCount : nPointCount;
- }
-#else // DISABLE_SOLVECROSSOVER_WORKAROUND
- // #i103259# polypoly.solveCrossover() fails to remove self-intersections
- // but polygon.solveCrossover() works. Use it to build the intersection-free polypolygon
- // TODO: if the self-intersection prevention is too expensive make the trap-algorithm tolerate intersections
- for( int nClippedPolyIdx = 0; nClippedPolyIdx < nClippedPolyCount; ++nClippedPolyIdx )
- {
- ::basegfx::B2DPolygon aUnsolvedPolygon = aClippedPolygon.getB2DPolygon( nClippedPolyIdx );
- basegfx::B2DPolyPolygon aSolvedPolyPoly( basegfx::tools::solveCrossovers( aUnsolvedPolygon) );
- const int nSolvedPolyCount = aSolvedPolyPoly.count();
- for( int nSolvedPolyIdx = 0; nSolvedPolyIdx < nSolvedPolyCount; ++nSolvedPolyIdx )
- {
- // build the intersection-free polypolygon one by one
- const ::basegfx::B2DPolygon aSolvedPolygon = aSolvedPolyPoly.getB2DPolygon( nSolvedPolyIdx );
- aGoodPolyPoly.append( aSolvedPolygon );
- // and while we are at it use the conviently available point count to guess the number of needed half-traps
- const int nPointCount = aSolvedPolygon.count();
- nHTQueueReserve += aSolvedPolygon.areControlPointsUsed() ? 8 * nPointCount : nPointCount;
- }
- }
-#endif // DISABLE_SOLVECROSSOVER_WORKAROUND
- }
- // #i100922# try to prevent priority-queue reallocations by reservering enough
- nHTQueueReserve = ((4*nHTQueueReserve) | 0x1FFF) + 1;
- HTVector aHTVector;
- aHTVector.reserve( nHTQueueReserve );
-
- // first convert the B2DPolyPolygon to HalfTrapezoids
- const int nGoodPolyCount = aGoodPolyPoly.count();
- for( int nGoodPolyIdx = 0; nGoodPolyIdx < nGoodPolyCount; ++nGoodPolyIdx )
- {
- ::basegfx::B2DPolygon aInnerPolygon = aGoodPolyPoly.getB2DPolygon( nGoodPolyIdx );
-
- // render-trapezoids have linear edges => get rid of bezier segments
- if( aInnerPolygon.areControlPointsUsed() )
- aInnerPolygon = ::basegfx::tools::adaptiveSubdivideByDistance( aInnerPolygon, 0.125 );
-
- const int nPointCount = aInnerPolygon.count();
- if( nPointCount >= 3 )
- {
- // convert polygon point pairs to HalfTrapezoids
- // connect the polygon point with the first one if needed
- XPointFixed aOldXPF = { 0, 0 };
- XPointFixed aNewXPF;
- for( int nPointIdx = 0; nPointIdx <= nPointCount; ++nPointIdx, aOldXPF = aNewXPF )
- {
- // auto-close the polygon if needed
- const int k = (nPointIdx < nPointCount) ? nPointIdx : 0;
- const ::basegfx::B2DPoint& aPoint = aInnerPolygon.getB2DPoint( k );
-
- // convert the B2DPoint into XRENDER units
- if(getAntiAliasB2DDraw())
- {
- aNewXPF.x = XDoubleToFixed( aPoint.getX() );
- aNewXPF.y = XDoubleToFixed( aPoint.getY() );
- }
- else
- {
- aNewXPF.x = XDoubleToFixed( basegfx::fround( aPoint.getX() ) );
- aNewXPF.y = XDoubleToFixed( basegfx::fround( aPoint.getY() ) );
- }
-
- // check if enough data is available for a new HalfTrapezoid
- if( nPointIdx == 0 )
- continue;
-
- // construct HalfTrapezoid as topdown segment
- HalfTrapezoid aHT;
- if( aNewXPF.y < aOldXPF.y )
- {
- aHT.maLine.p1 = aNewXPF;
- aHT.maLine.p2 = aOldXPF;
- }
- else
- {
- aHT.maLine.p2 = aNewXPF;
- aHT.maLine.p1 = aOldXPF;
- }
-
- aHT.mnY = aHT.maLine.p1.y;
+ // tesselate the polypolygon into trapezoids
+ basegfx::B2DTrapezoidVector aB2DTrapVector;
+ basegfx::tools::trapezoidSubdivide( aB2DTrapVector, aPolyPoly );
+ const int nTrapCount = aB2DTrapVector.size();
+ const bool bDrawn = drawFilledTrapezoids( &aB2DTrapVector[0], nTrapCount, fTransparency );
+ return bDrawn;
+}
-#if 0 // ignore clipped HalfTrapezoids
- if( aHT.mnY < 0 )
- aHT.mnY = 0;
- else if( aHT.mnY > 10000 )
- continue;
-#endif
+// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
- // queue up the HalfTrapezoid
- aHTVector.push_back( aHT );
- }
- }
- }
+bool X11SalGraphics::drawFilledTrapezoids( const ::basegfx::B2DTrapezoid* pB2DTraps, int nTrapCount, double fTransparency )
+{
+ if( nTrapCount <= 0 )
+ return true;
- if( aHTVector.empty() )
- return TRUE;
+ Picture aDstPic = GetXRenderPicture();
+ // check xrender support for this drawable
+ if( !aDstPic )
+ return false;
-#ifndef DISABLE_SOLVECROSSOVER_WORKAROUND
- // find intersecting halftraps and split them up
- // TODO: remove when solveCrossOvers gets fast enough so its use can be enabled above
- // FAQ: why should segment intersection be handled before adaptiveSubdivide()?
- // Answer: because it is conceptually much faster
- // Example: consider two intersecting circles with a diameter of 1000 pixels
- // before subdivision: eight bezier segments
- // after subdivision: more than a thousand line segments
- // since even the best generic intersection finders have a complexity of O((n+k)*log(n+k))
- // it shows that testing while the segment count is still low is a much better approach.
- splitIntersectingSegments( aHTVector);
-#endif // DISABLE_SOLVECROSSOVER_WORKAROUND
-
- // build queue from vector of intersection-free segments
- // TODO: is replacing the priority-queue by a sorted vector worth it?
- std::make_heap( aHTVector.begin(), aHTVector.end(), HalfTrapCompare());
- HTQueue aHTQueue;
- aHTQueue.swapvec( aHTVector);
-
- // then convert the HalfTrapezoids into full Trapezoids
- TrapezoidVector aTrapVector;
- aTrapVector.reserve( aHTQueue.size() * 2 ); // just a guess
-
- TrapezoidXCompare aTrapXCompare( aTrapVector );
- ActiveTrapSet aActiveTraps( aTrapXCompare );
-
- TrapezoidYCompare aTrapYCompare( aTrapVector );
- VerticalTrapSet aVerticalTraps( aTrapYCompare );
-
- while( !aHTQueue.empty() )
+ // convert the B2DTrapezoids into XRender-Trapezoids
+ typedef std::vector<XTrapezoid> TrapezoidVector;
+ TrapezoidVector aTrapVector( nTrapCount );
+ const basegfx::B2DTrapezoid* pB2DTrap = pB2DTraps;
+ for( int i = 0; i < nTrapCount; ++pB2DTrap, ++i )
{
- XTrapezoid aTrapezoid;
-
- // convert a HalfTrapezoid pair
- // get the left side of the trapezoid
- const HalfTrapezoid& rLeft = aHTQueue.top();
- aTrapezoid.top = rLeft.mnY;
- aTrapezoid.left = rLeft.maLine;
- aHTQueue.pop();
-
- // ignore left segment that would result in an empty trapezoid
- if( aTrapezoid.left.p2.y <= aTrapezoid.top )
- continue;
-
- // get the right side of the trapezoid
- aTrapezoid.right.p2.y = aTrapezoid.bottom;
- while( !aHTQueue.empty() ) {
- const HalfTrapezoid& rRight = aHTQueue.top();
- aTrapezoid.right = rRight.maLine;
- aHTQueue.pop();
- // ignore right segment that would result in an empty trapezoid
- if( aTrapezoid.right.p2.y > aTrapezoid.top )
- break;
- }
-
- // the topmost endpoint determines the trapezoid bottom
- aTrapezoid.bottom = aTrapezoid.left.p2.y;
- if( aTrapezoid.bottom > aTrapezoid.right.p2.y )
- aTrapezoid.bottom = aTrapezoid.right.p2.y;
-
- // keep the full Trapezoid candidate
- aTrapVector.push_back( aTrapezoid );
-
- // unless it splits another trapezoid that is still active
- bool bSplit = false;
- ActiveTrapSet::iterator aActiveTrapsIt = aActiveTraps.begin();
- while(aActiveTrapsIt != aActiveTraps.end())
- {
- XTrapezoid& rLeftTrap = aTrapVector[ *aActiveTrapsIt ];
-
- // skip until first overlap candidate
- // TODO: use stl::*er_bound() instead
- if( IsLeftOf( aTrapezoid.left, rLeftTrap.left) )
- {
- ++aActiveTrapsIt;
- continue;
- }
-
- // in the ActiveTrapSet there are still trapezoids where
- // a vertical overlap with new trapezoids is no longer possible
- // they could have been removed in the verticaltraps loop below
- // but this would be expensive and is not needed as we can
- // simply ignore them until we stumble upon them here.
- if( rLeftTrap.bottom <= aTrapezoid.top )
- {
- ActiveTrapSet::iterator it = aActiveTrapsIt;
- if( aActiveTrapsIt != aActiveTraps.begin() )
- {
- --aActiveTrapsIt;
- aActiveTraps.erase( it );
- ++aActiveTrapsIt;
- }
- else
- {
- aActiveTraps.erase( it );
- aActiveTrapsIt = aActiveTraps.begin();
- }
- continue;
- }
-
- // check if there is horizontal overlap
- // aTrapezoid.left==rLeftTrap.right is allowed though
- if( !IsLeftOf( aTrapezoid.left, rLeftTrap.right ) )
- {
- ++aActiveTrapsIt;
- continue;
- }
-
- // prepare to split the old trapezoid and keep its upper part
- // find the old trapezoids entry in the VerticalTrapSet and remove it
- typedef std::pair<VerticalTrapSet::iterator, VerticalTrapSet::iterator> VTSPair;
- VTSPair aVTSPair = aVerticalTraps.equal_range( *aActiveTrapsIt );
- VerticalTrapSet::iterator aVTSit = aVTSPair.first;
- for(; aVTSit != aVTSPair.second; ++aVTSit )
- {
- if( *aVTSit != *aActiveTrapsIt )
- continue;
- aVerticalTraps.erase( aVTSit );
- break;
- }
- // then update the old trapezoid's bottom
- rLeftTrap.bottom = aTrapezoid.top;
- // enter the updated old trapzoid in VerticalTrapSet
- aVerticalTraps.insert( aVerticalTraps.begin(), *aActiveTrapsIt );
- // the old trapezoid is no longer active
- aActiveTraps.erase( aActiveTrapsIt );
-
- // the trapezoid causing the split has become obsolete
- // so its both sides have to be re-queued
- HalfTrapezoid aHT;
- aHT.mnY = aTrapezoid.top;
- aHT.maLine = aTrapezoid.left;
- aHTQueue.push( aHT );
- aHT.maLine = aTrapezoid.right;
- aHTQueue.push( aHT );
-
- bSplit = true;
- break;
- }
-
- // keep or forget the resulting full Trapezoid
- if( bSplit )
- aTrapVector.pop_back();
- else
- {
- aActiveTraps.insert( aTrapVector.size()-1 );
- aVerticalTraps.insert( aTrapVector.size()-1 );
- }
-
- // mark trapezoids that can no longer be split as inactive
- // and recycle their sides which were not fully resolved
- static const XFixed nMaxTop = +0x7FFFFFFF;
- const XFixed nNewTop = aHTQueue.empty() ? nMaxTop : aHTQueue.top().mnY;
- while( !aVerticalTraps.empty() )
- {
- // check the next trapezoid to be retired
- const XTrapezoid& rOldTrap = aTrapVector[ *aVerticalTraps.begin() ];
- if( nNewTop < rOldTrap.bottom )
- break;
- // this trapezoid can no longer be split
- aVerticalTraps.erase( aVerticalTraps.begin() );
-
- // recycle its sides that were not fully resolved
- HalfTrapezoid aHT;
- aHT.mnY = rOldTrap.bottom;
-
- if( rOldTrap.left.p2.y > aHT.mnY )
- {
- aHT.maLine = rOldTrap.left;
- aHTQueue.push( aHT );
- }
- if( rOldTrap.right.p2.y > aHT.mnY )
- {
- aHT.maLine = rOldTrap.right;
- aHTQueue.push( aHT );
- }
- }
+ XTrapezoid& rTrap = aTrapVector[ i ] ;
+
+ // set y-coordinates
+ const double fY1 = pB2DTrap->getTopY();
+ rTrap.left.p1.y = rTrap.right.p1.y = rTrap.top = XDoubleToFixed( fY1 );
+ const double fY2 = pB2DTrap->getBottomY();
+ rTrap.left.p2.y = rTrap.right.p2.y = rTrap.bottom = XDoubleToFixed( fY2 );
+
+ // set x-coordinates
+ const double fXL1 = pB2DTrap->getTopXLeft();
+ rTrap.left.p1.x = XDoubleToFixed( fXL1 );
+ const double fXR1 = pB2DTrap->getTopXRight();
+ rTrap.right.p1.x = XDoubleToFixed( fXR1 );
+ const double fXL2 = pB2DTrap->getBottomXLeft();
+ rTrap.left.p2.x = XDoubleToFixed( fXL2 );
+ const double fXR2 = pB2DTrap->getBottomXRight();
+ rTrap.right.p2.x = XDoubleToFixed( fXR2 );
}
- // create xrender Picture for polygon foreground
+ // get xrender Picture for polygon foreground
+ // TODO: cache it like the target picture which uses GetXRenderPicture()
+ XRenderPeer& rRenderPeer = XRenderPeer::GetInstance();
SalDisplay::RenderEntry& rEntry = GetDisplay()->GetRenderEntries( m_nScreen )[ 32 ];
if( !rEntry.m_aPicture )
{
@@ -1569,15 +1198,17 @@ bool X11SalGraphics::drawPolyPolygon( const ::basegfx::B2DPolyPolygon& rOrigPoly
rRenderPeer.CompositeTrapezoids( PictOpOver,
rEntry.m_aPicture, aDstPic, pMaskFormat, 0, 0, &aTrapVector[0], aTrapVector.size() );
- return TRUE;
+ return true;
}
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
bool X11SalGraphics::drawPolyLine(const ::basegfx::B2DPolygon& rPolygon, const ::basegfx::B2DVector& rLineWidth, basegfx::B2DLineJoin eLineJoin)
{
+ const bool bIsHairline = (rLineWidth.getX() == rLineWidth.getY()) && (rLineWidth.getX() <= 1.2);
+
// #i101491#
- if(rPolygon.count() > 1000)
+ if( !bIsHairline && (rPolygon.count() > 1000) )
{
// the used basegfx::tools::createAreaGeometry is simply too
// expensive with very big polygons; fallback to caller (who
@@ -1587,33 +1218,44 @@ bool X11SalGraphics::drawPolyLine(const ::basegfx::B2DPolygon& rPolygon, const :
// the same way.
return false;
}
- const XRenderPeer& rRenderPeer = XRenderPeer::GetInstance();
- if( !rRenderPeer.AreTrapezoidsSupported() )
- return false;
- // get the area polygon for the line polygon
+ // temporarily adjust brush color to pen color
+ // since the line is drawn as an area-polygon
+ const SalColor aKeepBrushColor = nBrushColor_;
+ nBrushColor_ = nPenColor_;
+
+ // #i11575#desc5#b adjust B2D tesselation result to raster positions
basegfx::B2DPolygon aPolygon = rPolygon;
- if( (rLineWidth.getX() != rLineWidth.getY())
- && !basegfx::fTools::equalZero( rLineWidth.getY() ) )
+ const double fHalfWidth = 0.5 * rLineWidth.getX();
+ aPolygon.transform( basegfx::tools::createTranslateB2DHomMatrix(+fHalfWidth,+fHalfWidth) );
+
+ // shortcut for hairline drawing to improve performance
+ if( bIsHairline )
{
- // prepare for createAreaGeometry() with anisotropic linewidth
- aPolygon.transform(basegfx::tools::createScaleB2DHomMatrix(1.0, rLineWidth.getX() / rLineWidth.getY()));
+ // hairlines can benefit from a simplified tesselation
+ // e.g. for hairlines the linejoin style can be ignored
+ basegfx::B2DTrapezoidVector aB2DTrapVector;
+ basegfx::tools::createLineTrapezoidFromB2DPolygon( aB2DTrapVector, aPolygon, rLineWidth.getX() );
+
+ // draw tesselation result
+ const int nTrapCount = aB2DTrapVector.size();
+ const bool bDrawOk = drawFilledTrapezoids( &aB2DTrapVector[0], nTrapCount, 0.0 );
+
+ // restore the original brush GC
+ nBrushColor_ = aKeepBrushColor;
+ return bDrawOk;
}
- // special handling for hairlines to improve the drawing performance
- // TODO: revisit after basegfx performance related changes
- const bool bIsHairline = (rLineWidth.getX() < 1.2) && (rLineWidth.getY() < 1.2);
- if( bIsHairline )
+ // get the area polygon for the line polygon
+ if( (rLineWidth.getX() != rLineWidth.getY())
+ && !basegfx::fTools::equalZero( rLineWidth.getY() ) )
{
- // for hairlines the linejoin style becomes irrelevant
- eLineJoin = basegfx::B2DLINEJOIN_NONE;
- // createAreaGeometry is still too expensive when beziers are involved
- if( aPolygon.areControlPointsUsed() )
- aPolygon = ::basegfx::tools::adaptiveSubdivideByDistance( aPolygon, 0.125 );
+ // prepare for createAreaGeometry() with anisotropic linewidth
+ aPolygon.transform( basegfx::tools::createScaleB2DHomMatrix(1.0, rLineWidth.getX() / rLineWidth.getY()));
}
// create the area-polygon for the line
- const basegfx::B2DPolyPolygon aAreaPolyPoly( basegfx::tools::createAreaGeometry(aPolygon, 0.5*rLineWidth.getX(), eLineJoin) );
+ const basegfx::B2DPolyPolygon aAreaPolyPoly( basegfx::tools::createAreaGeometry(aPolygon, fHalfWidth, eLineJoin) );
if( (rLineWidth.getX() != rLineWidth.getY())
&& !basegfx::fTools::equalZero( rLineWidth.getX() ) )
@@ -1622,11 +1264,6 @@ bool X11SalGraphics::drawPolyLine(const ::basegfx::B2DPolygon& rPolygon, const :
aPolygon.transform(basegfx::tools::createScaleB2DHomMatrix(1.0, rLineWidth.getY() / rLineWidth.getX()));
}
- // temporarily adjust brush color to pen color
- // since the line is drawn as an area-polygon
- const SalColor aKeepBrushColor = nBrushColor_;
- nBrushColor_ = nPenColor_;
-
// draw each area polypolygon component individually
// to emulate the polypolygon winding rule "non-zero"
bool bDrawOk = true;
@@ -1634,7 +1271,7 @@ bool X11SalGraphics::drawPolyLine(const ::basegfx::B2DPolygon& rPolygon, const :
for( int nPolyIdx = 0; nPolyIdx < nPolyCount; ++nPolyIdx )
{
const ::basegfx::B2DPolyPolygon aOnePoly( aAreaPolyPoly.getB2DPolygon( nPolyIdx ) );
- bDrawOk = drawPolyPolygon( aOnePoly, 0.0);
+ bDrawOk = drawPolyPolygon( aOnePoly, 0.0 );
if( !bDrawOk )
break;
}
@@ -1646,259 +1283,3 @@ bool X11SalGraphics::drawPolyLine(const ::basegfx::B2DPolygon& rPolygon, const :
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
-#ifndef DISABLE_SOLVECROSSOVER_WORKAROUND
-// TODO: move the intersection solver into basegfx
-// and then support bezier-intersection finding too
-
-namespace { // anonymous namespace to prevent export
-
-typedef HalfTrapezoid LineSeg;
-typedef HTVector LSVector;
-
-inline bool operator==( const LineSeg& r1, const LineSeg& r2)
-{
- if( r1.maLine.p2.y != r2.maLine.p2.y) return false;
- if( r1.maLine.p2.x != r2.maLine.p2.x) return false;
- if( r1.maLine.p1.y != r2.maLine.p1.y) return false;
- if( r1.maLine.p1.x != r2.maLine.p1.x) return false;
- return true;
-}
-
-struct LSYMinCmp
-{
- bool operator()( const LineSeg& r1, const LineSeg& r2) const
- { return r2.maLine.p1.y < r1.maLine.p1.y; }
-};
-
-struct LSYMaxCmp
-{
- bool operator()( const LineSeg& r1, const LineSeg& r2) const
- { return r2.maLine.p2.y < r1.maLine.p2.y; }
-};
-
-struct LSXMinCmp
-{
- bool operator()( const LineSeg& r1, const LineSeg& r2) const
- { return( r1.getXMin() < r2.getXMin()); }
-};
-
-struct CutPoint
-{
- XFixed mnSegmentId;
- float mfCutParam;
- XPointFixed maPoint;
-};
-
-struct CutPointCmp
-{
- bool operator()( const CutPoint& r1, const CutPoint& r2) const
- {
- if( r1.mnSegmentId != r2.mnSegmentId)
- return (r1.mnSegmentId < r2.mnSegmentId);
- return (r1.mfCutParam < r2.mfCutParam);
- }
-};
-
-bool findIntersection( const LineSeg& rLS1, const LineSeg& rLS2, CutPoint aCutPoints[2])
-{
- // segments intersect at r1.p1 + s*(r1.p2-r1.p1) == r2.p1 + t*(r2.p2-r2.p1)
- // when both segment-parameters are ((0 <s<1) && (0<t<1))
- // (r1.p1 - r2.p1) == s * (r1.p1 - r1.p2) + t * (r2.p2 - r2.p1)
- // =>
- // (r1.p1x - r2.p1x) == s * (r1.p1x - r1.p2x) + t * (r2.p2x - r2.p1x)
- // (r1.p1y - r2.p1y) == s * (r1.p1y - r1.p2y) + t * (r2.p2y - r2.p1y)
- // check if lines are identical or parallel => not intersecting
- const XLineFixed& r1 = rLS1.maLine;
- const XLineFixed& r2 = rLS2.maLine;
- const double fDet = (double)(r1.p1.x - r1.p2.x) * (r2.p2.y - r2.p1.y)
- - (double)(r2.p2.x - r2.p1.x) * (r1.p1.y - r1.p2.y);
- static const double fEps = 1e-8;
- if( fabs(fDet) < fEps)
- return false;
- // check if intersecting with first segment
- const double fS1 = (double)(r2.p2.y - r2.p1.y) * (r1.p1.x - r2.p1.x);
- const double fS2 = (double)(r2.p2.x - r2.p1.x) * (r2.p1.y - r1.p1.y);
- const double fS = (fS1 + fS2) / fDet;
- if( (fS <= +fEps) || (fS >= 1-fEps))
- return false;
- // check if intersecting with second segment
- const double fT1 = (double)(r1.p2.y - r1.p1.y) * (r1.p1.x - r2.p1.x);
- const double fT2 = (double)(r1.p2.x - r1.p1.x) * (r2.p1.y - r1.p1.y);
- const double fT = (fT1 + fT2) / fDet;
- if( (fT <= +fEps) || (fT >= 1-fEps))
- return false;
- // force the intersection point to be exactly identical on both segments
- aCutPoints[0].maPoint.x = (XFixed)(r1.p1.x + fS * (r1.p2.x - r1.p1.x));
- aCutPoints[0].maPoint.y = (XFixed)(r1.p1.y + fS * (r1.p2.y - r1.p1.y));
- aCutPoints[1].maPoint.x = aCutPoints[0].maPoint.x;
- aCutPoints[1].maPoint.y = aCutPoints[0].maPoint.y;
- aCutPoints[0].mnSegmentId = rLS1.mnY;
- aCutPoints[0].mfCutParam = (float)fS;
- aCutPoints[1].mnSegmentId = rLS2.mnY;
- aCutPoints[1].mfCutParam = (float)fT;
- return true;
-}
-
-typedef std::priority_queue< LineSeg, LSVector, LSYMinCmp> LSYMinQueueBase;
-typedef std::priority_queue< LineSeg, LSVector, LSYMaxCmp> LSYMaxQueueBase;
-typedef std::multiset< LineSeg, LSXMinCmp> LSXMinSet;
-typedef std::set< CutPoint, CutPointCmp> CutPointSet;
-
-class LSYMinQueue : public LSYMinQueueBase
-{
-public:
- void reserve( size_t n) { c.reserve(n);}
- void swapvec( LSVector& v) { c.swap(v);}
-};
-
-class LSYMaxQueue : public LSYMaxQueueBase
-{
-public:
- void reserve( size_t n) { c.reserve(n);}
-};
-
-void addAndCutSegment( LSVector& rLSVector, const LineSeg& rLS, CutPointSet& rCutPointSet)
-{
- // short circuit when no segment was cut
- if( rCutPointSet.empty()) {
- rLSVector.push_back( rLS);
- return;
- }
-
- // find the first cut point for this segment
- LineSeg aCS = rLS;
- CutPoint aMinCutPoint;
- aMinCutPoint.mnSegmentId = rLS.mnY;
- aMinCutPoint.mfCutParam = 0.0;
- CutPointSet::iterator itFirst = rCutPointSet.lower_bound( aMinCutPoint);
- CutPointSet::iterator it = itFirst;
- // iterate through all cut points of this segment
- for(; it != rCutPointSet.end(); ++it) {
- const CutPoint rCutPoint = (*it);
- if( rCutPoint.mnSegmentId != rLS.mnY)
- break;
- // cut segment at the cutpoint
- aCS.maLine.p2 = rCutPoint.maPoint;
- rLSVector.push_back( aCS);
- // prepare for next segment cut
- aCS.maLine.p1 = aCS.maLine.p2;
- }
- // remove cutparams that will no longer be needed
- // TODO: is it worth it or should we just keep the cutparams?
- rCutPointSet.erase( itFirst, it);
-
- // add segment part remaining after last cut
- aCS.maLine.p2 = rLS.maLine.p2;
- rLSVector.push_back( aCS);
-}
-
-void splitIntersectingSegments( LSVector& rLSVector)
-{
- // get a unique id for each lineseg, temporarily abuse the mnY member
- LSVector::iterator aLSit = rLSVector.begin();
- for( int i = 0; aLSit != rLSVector.end(); ++aLSit) {
- LineSeg& rLS = *aLSit;
- rLS.mnY = i++;
- }
- // get an y-sorted queue from the input vector
- LSYMinQueue aYMinQueue;
- std::make_heap( rLSVector.begin(), rLSVector.end(), LSYMinCmp());
- aYMinQueue.swapvec( rLSVector);
-
- // prepare the result vector
- // try to avoid reallocations by guessing a reasonable result size
- rLSVector.reserve( aYMinQueue.size() * 3/2 );
-
- // find all intersections
- CutPointSet aCutPointSet;
- LSXMinSet aXMinSet;
- LSYMaxQueue aYMaxQueue;
- aYMaxQueue.reserve( aYMinQueue.size());
- // sweep-down and check all segment-pairs that overlap
- while( !aYMinQueue.empty()) {
- // get next input-segment
- const LineSeg& rLS = aYMinQueue.top();
- // retire obsoleted segments
- const XFixed fYCur = rLS.maLine.p1.y;
- while( !aYMaxQueue.empty()) {
- // check next segment to be retired
- const LineSeg& rOS = aYMaxQueue.top();
- if( fYCur < rOS.maLine.p2.y)
- break;
- // emit resolved segment into result
- addAndCutSegment( rLSVector, rOS, aCutPointSet);
- // find segment to be retired in xmin-compare-set
- LSXMinSet::iterator itR = aXMinSet.lower_bound( rOS);
- while( !(*itR == rOS)) ++itR;
- // retire segment from xmin-compare-set
- aXMinSet.erase( itR);
- // this segment is pining for the fjords
- aYMaxQueue.pop();
- }
-
- // iterate over all segments that might overlap
- // skip over the leftmost segments that cannot overlap
- const XFixed fXMax = rLS.getXMax();
- LSXMinSet::const_iterator itC = aXMinSet.begin();
- for(; itC != aXMinSet.end(); ++itC)
- if( (*itC).getXMin() <= fXMax)
- break;
- // TODO: if the linear search becomes too expensive
- // then use an XMaxQueue based approach to replace it
- const XFixed fXMin = rLS.getXMin();
- for(; itC != aXMinSet.end(); ++itC) {
- const LineSeg& rOS = *itC;
- if( fXMin >= rOS.getXMax())
- continue;
- if( fXMax < rOS.getXMin())
- break;
- CutPoint aCutPoints[2];
- if( !findIntersection( rLS, rOS, aCutPoints))
- continue;
- // remember cut parameters
- // TODO: std::set seems to use individual allocations
- // which results in perf-problems for many entries
- // => pre-allocate nodes by using a non-default allocator
- aCutPointSet.insert( aCutPoints[0]);
- aCutPointSet.insert( aCutPoints[1]);
- }
- // add segment to xmin-compare-set
- // TODO: do we have a good insertion hint?
- aXMinSet.insert( /*itC,*/ rLS);
- // register segment for retirement
- aYMaxQueue.push( rLS);
- aYMinQueue.pop();
- }
-
- // retire the remaining segments
- aXMinSet.clear();
- while( !aYMaxQueue.empty()) {
- // emit segments and cut them up if needed
- const LineSeg& rLS = aYMaxQueue.top();
- addAndCutSegment( rLSVector, rLS, aCutPointSet);
- aYMaxQueue.pop();
- }
-
- // get the segments ready to be consumed by the drawPolygon() caller
- aLSit = rLSVector.begin();
- LSVector::iterator aLSit2 = aLSit;
- for(; aLSit != rLSVector.end(); ++aLSit) {
- LineSeg& rLS = *aLSit;
- // restore the segment top member
- rLS.mnY = rLS.maLine.p1.y;
- // remove horizontal segments for now
- // TODO: until the trapezoid converter is adjusted to handle them
- if( rLS.maLine.p1.y == rLS.maLine.p2.y )
- continue;
- *(aLSit2++) = rLS;
- }
- if(aLSit2 != aLSit)
- rLSVector.resize( aLSit2 - rLSVector.begin() );
-}
-
-} // end anonymous namespace
-
-#endif // DISABLE_SOLVECROSSOVER_WORKAROUND
-
-// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
-